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Abstract

In multiprocessors a parallel program’s execution time is directly influenced by the
number of processors it is allocated. The problem of scheduling parallel programs
in a multiprogrammed environment becomes one of determining how to best allocate
processors to the different simultaneously executing programs in order to minimize
mean response time.

In this paper we address the problem of how many processors to allocate to each
of the executing parallel jobs by examining the following questions:

1. Is allocating processors equally among all jobs (equipartitioning) a desirable prop-
erty of a scheduling algorithm?

2. Does using information about the service demand of parallel jobs significantly
reduce mean response time?

3. Does using information about the efficiency with which parallel jobs execute sig-
nificantly reduce mean response time?

4. Does allocating each job a number of processors corresponding to the knee of the
execution time — efficiency curve significantly reduce mean response time?

5. What are the desirable properties of a scheduler that is designed to minimize
mean response time?

The main contributions of this paper are: a first-order understanding of how pro-
cessing power should be dynamically allocated to jobs, a new family of algorithms
for dynamic processor allocation and a rough quantification of the benefits that may
be realized by properly utilizing job characteristics when making processor alloca-
tion decisions. We believe that these new algorithms can be combined with recently
demonstrated techniques for obtaining sufficiently accurate runtime estimates of job
efficiencies to improve scheduler implementations for multiprogrammed multiproces-
SOTS.
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1 Introduction

When trying to minimize the mean response time of parallel programs in a multiprogrammed
environment, a fundamental tension exists between allocating a sufficiently large number of
processors to a job (in order to minimize its execution time) and allocating a sufficiently
small number of processors (in order to maximize the efficiency with which the processors
are used). This tension exists because if one job is not efficiently utilizing the processors it
has been allocated, another job might be able to make better use of them. The problem of
minimizing mean response time is further complicated by other factors: the amount of work
to be executed by each job (its service demand) and the arrival of new jobs.

Understanding that the optimal uniprocessor scheduling policy executes the job with
the Shortest Remaining Processor Time (SRPT) first has led to significant improvements in
many uniprocessor scheduler implementations, even though the execution time of jobs is not
known a priori . For example, one of the objectives of multi-level feedback queue schedulers
[6, 2, 15], popular in many UNIX systems, is to try to approximate the SRPT algorithm by
decreasing the amount of CPU time (the number of quantums) allocated to long running
jobs. This approach helps to complete shorter jobs first and reduces mean response time
when compared with a Round Robin algorithm [16]. Policies that attempt to approximate
a SRPT approach have been proposed and studied in multiprocessor scheduling contexts
[20, 32, 3]. However, we believe that such strategies must also consider the efficiency with
which parallel programs execute.

Previous work has suggested approaches for obtaining estimates of a job’s efficiency dur-
ing runtime [3]. Recently, Nguyen, Vaswani, and Zahorjan [25, 24] have experimentally
demonstrated that such estimates can in fact be determined by monitoring the job’s execu-
tion during run time. They also find that the performance of scheduling policies that use
these estimates achieve performance surprisingly close to that possible when perfect a priori
information is used.

We seek foundational insights into the properties of effective scheduling algorithms for
multiprogrammed multiprocessors by examining policies that assume a priori knowledge of
job characteristics (work and efficiency) to improve processor allocation decisions. We believe
that these insights and resulting algorithms, when combined with the recently demonstrated
techniques for obtaining job characteristics at runtime, can form the basis of future multi-
processor scheduler implementations.

In this paper we use simulations to evaluate a number of different processor allocation
policies that are designed to reduce mean response time when compared with an equipartition
policy. In Section 2 we discuss related work. This is followed by descriptions of the job,
workload and system models, in Section 3. In Section 4 we describe a generalization of a
family of processor allocation policies. We then use this generalization to explore a spectrum
of policies that make processor allocation decisions based on the work a job executes (in
Section 5), the efficiency with which jobs execute (in Section 6) and the knee of the execution
time — efficiency profile (in Section 7). The results of these experiments show that while each
approach is capable of reducing mean response time, the reductions are either relatively small
or limited to a relatively small subset of possible workloads. In Section 8 we use the insights
gained from these experiments to propose and evaluate a new strategy that incorporates



characteristics of both a job’s work and its efficiency. Our evaluation of this technique shows
that it can be used to obtain significantly lower mean response times than equipartition
under a variety of workloads. We present our conclusions in Section 9.

2 Related Work

A topic of interest and some debate in recent studies has been how to use job characteristics in
multiprocessor scheduling algorithms and whether or not their use offers significant benefits
(mainly, reductions in mean response time).

An algorithm that has been derived from a technique called Process Control [33, 13], and
has been widely studied and extensively compared with other processor allocation policies
(36, 19, 18, 22, 5] is called equipartition. The equipartition algorithm simply allocates an
equal number of processors to each job in the system by dynamically reallocating processors
whenever jobs arrive or depart. It is a very practical algorithm in the sense that it can be
easily implemented since no job characteristics are required for making allocation decisions.
Moreover, it is robust in that it provides acceptable mean response times over a wide variety
of workloads. Studies by some researchers have concluded that a desirable property of a good
scheduler is that it share processing power equally among all jobs in the system [19, 18]. Tt is
our hypothesis that a good scheduler should be able to produce mean response times that are
significantly lower than equipartition, if given information about the execution characteristics
of jobs.

Majumdar, Eager, and Bunt [20] compare policies having accurate knowledge or an esti-
mate of a job’s cumulative service demand with policies having no such information. They
report, that policies using knowledge of service demands improve mean response times sig-
nificantly over Round Robin and First Come First Served (policies that have no information
about service demand). They make no comparison with equipartition since it did not exist
at the time.

In order to analytically compare the performance of equipartition with optimal algo-
rithms Brecht [3] examines a number of scheduling algorithms in restricted environments.
By assuming that there are no new job arrivals, that all jobs execute with perfect efficiency
and considering a batch scheduling environment (i.e., all jobs are available to be scheduled
at time zero), equipartition is shown to produce mean response times that are guaranteed
to be within a factor of two of the optimal algorithm (LWF). Also, when new arrivals are
considered (i.e., no longer using batch scheduling) the mean response time of equipartition
can (under pessimal workloads) be a factor of N times (where N is the number of jobs
executed) worse than the optimal algorithm Least Remaining Work First (LRWF).

When developing and comparing static scheduling algorithms a number of researchers
have considered characteristics related to the efficiency of a job’s execution such as a job’s
average, minimum, maximum and variation in parallelism, the knee of the execution time —
efficiency profile, and the processor working set [8, 31, 11, 21]. Eager, Zahorjan, and Lazowska
[8] suggest that the number of processors to allocate to each job in a multiprogrammed
environment could be made based on the point at which the ratio of efficiency to execution
time, E(p;)/T (p;), is maximized (p; is the number of processors allocated to job J;, E(p;) is
the job’s efficiency and T'(p;) is its execution time, when allocated p; processors). Ghosal,
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Serazzi, and Tripathi [11] introduce another characterization of a parallel program called the
processor working set (pws). Pws has been defined as the minimum number of processors
that maximizes the speedup per unit of cost associated with the allocation of a processor.
The pws is also shown to be equivalent to the knee for a linear cost function. They study
a number of static scheduling algorithms that use information about a job’s pws and show
that they perform well under a varying system load. Majumdar, Eager and Bunt [21] also
report that in a static scheduling environment, allocating a number of processors near the
knee was effective in producing low mean response times over a broad range of system loads.

Chiang, Mansharamani, and Vernon [5] study a number of static (run-to-completion)
algorithms that use information about a job’s execution rate characteristics (average paral-
lelism and pws). They assert that policies using execution rate characteristics do not improve
performance (compared with policies that use none) especially when the coefficient of vari-
ation of job service demand is greater than one (because jobs with long execution times are
allocated too many processors).

Sevcik [31] finds that static policies that consider additional information about an appli-
cation’s parallelism, such as the minimum, maximum, and variation in parallelism, improve
mean response time over methods that only consider average parallelism. Sevcik [32] also
identifies a number of useful parameters for characterizing parallel applications and exam-
ines the problem of statically allocating processors to a batch of parallel applications given
a priori knowledge of these parameters.

Zahorjan and McCann [36] and McCann, Vaswani, and Zahorjan [22] use simple infor-
mation about a job’s current degree of parallelism to reallocate processors in response to
changes in the parallelism of the job; in a sense attempting to utilize processors more ef-
fectively. This dynamic allocation policy reduces mean response time when compared with
repartitioning processors strictly upon job arrivals and departures [33, 13]. The advantage
of this dynamic scheduling policy is that it may adjust to a job’s changing demands for
processors over time.

Recent studies examine scheduling algorithms that consider another important charac-
teristic, the memory requirements of jobs [37, 4, 29, 23, 30, 1, 27, 28]. These studies identify
memory (as well as processors) as being a critical resource for the effective execution of
parallel programs and devise and investigate scheduling policies that ensure minimum pro-
cessor allocations for jobs in order to secure sufficient memory resources. Our work does not
explicitly model a job’s memory requirements but rather relies on the execution signature of
a job to implicitly indicate its memory requirements.

3 The Job, Workload, and System Models

We intentionally adopt a fairly high-level approach to the scheduling problem by using a
relatively simple model of jobs, workloads, and the system. This is done in order to gain
a first-order understanding of how processing power should be allocated to jobs in order to
minimize mean response time. These models are used in this paper to simulate a number of
scheduling policies executing under a variety of workloads.



3.1 The Job Model

In a uniprogrammed multiprocessor environment the execution time of a parallel program
is mainly influenced the amount of basic work to be executed by the job. However, the
execution time is also prolonged by a number of overheads incurred through the parallel
execution of the job. These overheads include: the degree to which the work can be divided
and balanced among multiple processors, the amount and type of communication among the
cooperating processes, the amount and type of synchronization, as well as the costs incurred
when creating and executing multiple processes on different processors. These different
overheads can all be considered to be characteristics of the job being executed and can
be modelled as inefficiencies in the ability of parallel programs to fully utilize the assigned
processors. We use an execution rate function to model these inefficiencies.
In our job model two parameters are used to characterize a job, J;.

1. W; — is the amount of basic work executed. This corresponds to the execution time
required to execute the program serially (i.e., the service demand).

2. (; — is a parameter to an execution rate function and is used to characterize the rate
at which the work, W;, is executed when allocated a specified number of processors,
pi- This models the efficiency of the parallel job.

A number of models of parallel system and parallel program performance have been
proposed and studied [10, 35, 7, 32]. We use the following execution rate function, used
in a number of previous studies [5, 23, 30], which has been derived from an execution rate
function (also called an ezecution signature) proposed by Dowdy [7]:

I+ B)pi
Bi + pi

In this equation S(p;) is the speedup obtained when the job is executed on p; processors
and f; is the parameter that is used to determine the efficiency of the job. If the number of
processors allocated to a job, p;, is fixed for the duration of the job’s execution its execution

time is therefore: W
Tp) = G + p)
(1 + B) pi

When working with the execution rate function, F, we found it difficult to think in
terms of (; values for the execution rate. For example, does 3; = 300 imply that the job
attains good speedup? The answer depends on the number of processors in the system, P.
Therefore, we use a term called effective efficiency, €;, which expresses the speedup attained
as a percentage of the number of processors used if all P processors would be allocated to
the job. Therefore, ¢, = 90% means that if the job was executed in isolation using all of the
processors its speedup would be 90% of P. Alternately, E(P) = 0.90.
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Figure 1: Execution rate function, speedup (S(p)) versus the number of processors (p) for
various [3;

Note that if ¢; = 100, 3; = oo and that a lower bound on ¢; is 1%, since the parameter 5;, is

bounded by zero. "

Using ¢; (rather than f3;) we gain an intuitive feeling for possible values of, and perhaps
even representative distributions of, ¢;. Therefore, we can think of and perform experiments
in terms of ¢; values while the simulator internally uses the corresponding f; values. Figure
1 plots the execution rate function using a number of ¢; values (corresponding f3; values are
also shown), assuming a system of 100 processors.

We recognize that this function does not accurately model the efficiency of all parallel
applications because some applications may limit their parallelism (since they are unable
to support P threads of execution efficiently) and because some applications will actually
experience decreases in speedup when too many processors are allocated (due to increases in
communication overhead). However, we chose not to use such models in this paper, because it
could produce what might be considered an unfair bias against the equipartition policy. Since
workloads can be easily generated on which the equipartition algorithm will perform poorly
(because it will unknowingly allocate too many processors to jobs), developing algorithms
that use job characteristics to improve mean response times would be trivial. Additionally,
any algorithms developed using the model used here will only produce greater advantages
when used with models of efficiency that consider jobs with limited parallelism and jobs that
experience “slowdown” when too many processors are allocated. Note that more detailed
and accurate models of efficiency, including a model that addresses both of these issues, are
examined by Guha [12].

3.2 The Workload Model

We assume that the work a job has to execute, W;, is drawn from a Hypergeometric distribu-
tion with mean W = 1000 and coefficient of variation Cyy (1, 5, and 30 are considered). This
is consistent with variations in service demands used in previous studies [5, 26] and those
observed at one supercomputer installation [9]. We also assume that there is no correlation



between the amount of work a job executes and the efficiency with which it is executed.
Although this might not be true for all applications, we want to separately examine the
effects of service demand and efficiency on the mean response time obtained with different
allocation policies. This is not possible if efficiency and work are correlated.

We model the fact that jobs execute with different efficiency by using the execution rate
function, F', for all jobs and choosing ¢; uniformly between €,y and enjgn. This distribution is
similar to that used in previous studies [23, 30] except that we ensure that the distribution is
uniformly distributed in ¢; rather than 3;. We believe that this is what was actually intended
in the previous studies.

Each workload executes M jobs, whose arrival follows a Poisson distribution. Each
experiment is repeated a number of times using different random seeds in order to compute
confidence intervals. The number of jobs and repetitions used for each experiment was chosen
in order to achieve 90% confidence intervals that are within 5% of the mean. We use the
bootstrap method for computing confidence intervals since it is robust for small numbers of
repetitions and for non-normal distributions of observed means [34].

3.3 The System Model

In order to determine how different allocations of processing power affect the mean response
time we assume that allocation decisions and processor reallocations can be performed in-
stantaneously with negligible overhead. This is not unreasonable since we are only comparing
dynamic scheduling algorithms (i.e., we are not comparing with static policies). Furthermore,
experimental studies have demonstrated that although overhead is required to reallocate pro-
cessors, the overhead does not significantly impact dynamic scheduling algorithms [25, 24].
For the purposes of simplifying the implementation of our simulator, we also assume that
the number of processors allocated to a job may be fractional. Such an assumption does not
affect the qualitative results of this work. As well, the effects of this assumption on the quan-
titative results are insignificant, since a large number of processors are used. The simulation
results reported in this paper all assume a multiprocessor system containing P = 100 pro-
cessors. For implementation purposes, the algorithms studied here could be easily modified
to use an integral number of processors.

4 The Adaptive Algorithms

In order to explore different methods of allocating processing power to jobs we employ a
slightly modified version of the generalization of processor allocation policies proposed by
Brecht [3]. In this generalization, X; is the characteristic of job .J; being used to make the
allocation decision, P is the number of processors in the system, N is the number of jobs
currently executing, « is the control that determines the actual allocation policy, and p; is
the number of processors allocated to job J; as a result of the policy. The generalization is

defined as:
P X©
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Different values of a represent various points on a spectrum of processor allocation strate-
gies. The o chosen acts as both a means of selecting the degree of processor sharing and as
a control on which jobs should be given larger portions of the processors. Different values
of X; can be used to make allocation decisions based on different job characteristics. For
example, using X; = W;, we have policies that base allocation decisions on work. In this case
larger positive values of « allocate a greater portion of processors to jobs with more work
(larger jobs) while larger negative values of « allocate a greater portion of processors to jobs
with less work (smaller jobs). Specific values of o worth noting (when using X; = W;) are:

1. @ =1, which allocates processors in direct proportion to the work being executed by
each application [3].

2. a = 0.5, which allocates processors in proportion to the square root of the work being
executed by each application. This policy has been examined by Sevcik [32] and Brecht
[3] in the context of static scheduling algorithms.

3. a = 0, which allocates processors equally among all jobs (i.e., independently of the
work being executed by each job). This is the much studied equipartition policy
(33, 19, 36, 5].

We consider dynamic scheduling policies that allocate or reallocate processors at job
arrival and departures (if required). The scheduling algorithm limits the number of jobs
active at any time, IV, to be less than or equal to the number of processors, P.

The Generalized Algorithm:

e Upon the arrival of job J; :
if the number of jobs in the active list < P {
add J; to the active list and
repartition processors according to

P X
Ej]il Xja '

}

else add J; to the inactive queue

e Upon the departure of job J; :
if the inactive queue is not empty {
move a job from the inactive queue to the active list
}

now repartition processors according to
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Under this scheme at most P jobs can be active at one time. Note, however, that although
a job is considered active (under this definition) it may be allocated zero processors by the
partitioning scheme. Once a job is added to the active list it is never moved back into the
inactive queue. Obvious variations on this algorithm exist. However, during our simulated
experiments we found that the inactive queue was almost always empty. Therefore, we have
not yet evaluated different techniques for maintaining the active list and the inactive queue.

5 Considering Work

We begin by considering jobs that execute with perfect efficiency. This is an admittedly un-
realistic assumption, but one that is useful in understanding and quantifying the importance
of the service demand characteristic of a job (i.e., its work). This is done by comparing a
spectrum of allocation algorithms that adaptively reallocate processing power to jobs ac-
cording to their remaining work, W;. The basis for comparison is equipartition (i.e., « = 0).
Since jobs execute with perfect efficiency we use X; = W; in order to determine processor
allocations and examine a range of o values.

The results shown in Figure 2 have been obtained by simulating a system with P = 100
processors, using a mean work requirement of W = 1000, and the coefficient of variation of
work being Cy, = 1. The graph plots the mean response time as a function of the scheduling
policy (« value) and shows results for loads (mean processor utilizations) of 30%, 50%, 70%,
and 90%.
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Figure 2: Mean response time vs. scheduling algorithm (a); Cy = 1, perfectly efficient
jobs

We first note, as expected, that the mean response times, R, obtained with positive
values of « are very large when compared with values of « less than or equal to zero. This is

because positive values of « will assign a larger portion of processors to larger jobs (i.e., jobs
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with larger W;). The larger the « value, the larger the portion of processors assigned to the
largest job. With large enough «, jobs are essentially executed in a Most Remaining Work
First (MRWF) fashion. We include positive a values in this experiment mainly to point
out that MRWF is not pessimal. We see that in this experiment, with a load of 90%, R is
maximized (there is a peak in the curve) when o = 2. This is because the mean response
time of a MRWF first policy can be increased by introducing processor sharing among the
largest jobs, thus increasing the mean response time.

We also note that the difference in mean response time across different scheduling policies
(c values) decreases as the load decreases. This is because as the load gets lighter the degree
of multiprogramming decreases. Under extremely low loads there will only be one job in the
system at any point in time, in which case all of the allocation policies behave in the same
fashion (i.e., the job is allocated all P processors).

In Figure 3 we more closely examine the range —10 < o < 0. This graph has been pro-
duced by running experiments using a load of 90% and increasing the coefficient of variation
of work. We consider C'yy = 1,5, and 30. In each case, as « increases in the negative direction
the mean response time decreases. This is not surprising since (as mentioned previously)
all jobs execute with perfect efficiency and a Least Remaining Work First (LRWF) policy is
optimal under these conditions [32, 3]. As well, as the coefficient of variation increases so
does the difference between @ = 0 and @ = —10, demonstrating the increased benefits of
knowing and appropriately using the job characteristic W;. We also point out that the shape
of the curves becomes sharper with increases in Cy,. This is because with a small variation
in W;, higher values of a are required in order to approximate a LRWF policy, while with
larger variations in W; smaller values of o can be used to approximate LRWF.

Figure 3: Mean response time vs. scheduling algorithm («); load=90%, perfectly efficient
jobs

In Table 1 we provide a rough quantification of the performance gains that can be achieved
by knowing and utilizing WW; when jobs are perfectly efficient and the load is 90%. This table
contains one column for the mean response times and 90% confidence intervals for the two
policies & = 0 and o = —10, as well as one column showing the percentage improvement that
is obtained by using o = —10 instead of a = 0. It shows that for C'y = 1 an improvement
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of roughly 64% can be expected and that the improvements likely increase with Cy, (note
the larger confidence intervals for larger Cyy).

This rough quantification is of interest because it provides an approximate bound on
the reduction in mean response time that can be obtained by using W; (or ;). This is
because workloads with less efficient jobs will receive less benefit from allocating all processors
to one job at a time (assuming a non-decreasing execution rate function), thus reducing
the difference between an equipartition and an optimal policy. As well, previous analytic
comparisons between LRWF and equipartition policies [3] show that the reduction in mean
response time obtained when all jobs arrive simultaneously can be as large as 50% and
that the difference can grow with the number of jobs (i.e., it is not competitive) when new
arrivals are considered. Since this previous result assumes that arrival times and job sizes
are designed to demonstrate maximum differences between the two policies, our comparison
is important because it provides more reasonable bounds on the performance improvements
that might be expected.

Table 1: Comparing mean response times for « = 0 and o = —10 for different Cy; load =
90%
|Cw| R(ax=0)]|R (a=-10) | %Impr |
1(100.1 +/-1.7| 36.5+/-0.4 64
511004 +/-5.2| 29.8+/-0.7 70
30| 98.1+/-5.1| 282+/-25 71

These same experiments have also been conducted under the assumption that the work,
W;, is not known a priori (see [12] for details). By keeping track of each job’s accumulated
execution time and using that as an estimate of a job’s remaining work, influenced by studies
performed by Leland and Ott on uniprocessor systems [17] (a portion of this study was
recently confirmed for modern workloads by Harchol-Balter and Downey [14]), the response
time is significantly reduced when compared with equipartition, although the reductions are
not as large as when W; is known.

We now explore the consequences of using only information about a job’s remaining work,
W;, if jobs do not execute with perfect efficiency. In this experiment we again choose W; with
a mean of W = 1000 and Cy = 1,5,and 30. Now instead of having all jobs execute with
perfect efficiency, each job executes work at the rate defined by the execution rate function
and the parameter 3; (¢;). In the following experiments we generate ¢; values uniformly
between €jo,, and enigh and consider different workloads with different o, and enien values.

The graph on the left side of Figure 4 shows that for workloads with relatively low
average efficiency (¢ = 50%), using only W; to make scheduling decisions leads to increased
mean response times (versus equipartitioning processors, a = 0). This is because these
policies (—10 < « < 1) are allocating larger portions of the processors to small jobs even
though they may not be capable of utilizing them effectively, and are therefore essentially
wasting processing power. However, the graph on the right side of Figure 4 shows that for
workloads with high average efficiency (€ = 87%), using only W; to make scheduling decisions
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can decrease mean response times (versus using no job characteristics and equipartitioning
processors, a = 0). This is because, under this workload, the average efficiency of jobs is
high enough that the benefits of allocating large portions of the processors to these jobs
(reduced response time) outweigh the costs (under-utilized processors).
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Figure 4: Mean response time vs. scheduling algorithm («); load=90%, jobs are not perfectly
efficient

6 Considering Efficiency

As we have seen in the previous section, if jobs do not execute with high average efficiency,
the mean response times obtained using scheduling algorithms that make allocation decisions
based only on W; are quite high when compared with a scheduling algorithm that makes no
use of job characteristics. This is because jobs are being allocated processors that they are
not able to use effectively. In this section, we consider scheduling policies which only use
information about a job’s efficiency.

Various policies are considered by using different values of « to allocate processing power
according to the efficiency with which a job executes. Positive values of o will allocate more
processors to jobs with higher efficiency while negative o values allocate more processors to
jobs with low efficiency (an obviously bad approach). Since under our workload model the
efficiency of each job is characterized by f;, we set X; = [3; and use:

P

=~ o4 -
j=1 ﬂja

The graph in Figure 5 plots the mean response time against different o values (repre-
senting different scheduling policies) and shows results for Cyyy = 1 and 5. (Cy = 30 yields
such a pronounced v-shape that it is not included because it hides the distinction between
Cw =1 and Cy = 5.) This graph shows that as « increases, in both positive and negative
directions, the mean response time also increases. These experiments were conducted using
€low = D0% and enigh = 99% and a low target load (30%). Even under this light load we find
that with Cy, = 5 performance degrades significantly for o < 0 and o > 1. We use this
light load to demonstrate the general shape of the response time curves since at higher loads

Di
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the differences in mean response times for the various algorithms change drastically (i.e.,
the v-shape becomes more pronounced more quickly). Under this scheme, positive a values
imply that more processors are given to jobs with higher efficiency. Significantly increasing
the number of processors allocated to efficient jobs, while improving the degree to which
processors are efficiently utilized, does not improve mean response time. This is because
jobs that might potentially take a short amount of time to execute can become stuck behind
jobs that take a long time to execute.
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Figure 5: Mean response time versus scheduling policy (o); €iow = 50%, €nigh = 99%, load =
30

Note that the mean response time obtained when o = 1 is relatively close to that obtained
when o = 0. In fact in most cases it yields mean response times that are statistically equal
to those obtained with @ = 0. Because the o = 0 and o = 1 values are so similar we now
more closely examine these algorithms and also consider another point on the spectrum of
algorithms (o = 0.5).

Table 2 contains the mean response times and 90% confidence intervals for o = 0, 0.5,
and 1.0 for workloads with Cy, = 1, 5, and 30 and ranges of effective efficiency of 1-50%,
1-99%, and 50-99%. The column labelled “%Impr” gives the percent by which the mean
response time of o = 0 is reduced if o = 0.5 is used. (A negative value indicates the mean
response time has increased, however, these negative differences can not be considered to
be statistically significant.) Each experiment was run using an arrival rate that produces
observed loads of approximately 90%. Interestingly, when average efficiency is relatively low,
the algorithm obtained when using o = 0.5 produces mean response times that are lower
than those obtained when o = 0 or oo = 1.

We believe that with a@ = 1 too many processors are allocated to jobs that are not capable
of utilizing them effectively. Because of the nature of how [; determines the efficiency of
each job we expect that the improved mean response times obtained for o = 0.5 are more
indicative of how to schedule using (; than how to schedule using other characteristics of
a job’s efficiency. (For example, we expect that if €; was used o = 1 might perform better
than o = 0.5.) However, these results do demonstrate that a characteristic of each job’s
efficiency, (; in this case, can be used to make processor allocation decisions and produce
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Table 2: Comparison of mean response times for different policies based on efficiency

‘ €low — €high ‘ Cw ‘

R(a=00) | R(a=05) | R (o« =1.0) | %Impr

01-50% 11989 +/-01]95.3+/-01]97.0+/-01] 3.64
5]98.8+/-0.3|95.4+/-03|97.0+/-0.7| 3.44

30 | 99.5 +/- 1.6 | 96.1 +/- 1.5 | 98.1 +/- 1.5 |  3.42

01-99% 1[624+/-01|583+/-0160.6+/-01| 657
5623 +/-0.3 | 585 +/-02|624+/-02| 6.10

30 | 62.9 +/- 1.4 | 59.3 +/- 1.2 | 66.5 +/- 1.3 |  5.72

50-99% 1[37.6+/-0.137.0+/-0.1|37.6 +/-0.1| 1.60
5|37.4+/-0.2|38.0+/-02|426 +/-02 | -1.60

30 | 36.6 +/- 1.0 | 37.3 +/- 1.0 | 44.5 +/-1.2 | -1.91

mean response times that are statistically lower than an equipartition strategy.
these differences are quite small.

However,

7 Considering the Knee

Eager, Zahorjan, and Lazowska [8] point out that where speedup is a measure of the “benefit”
of using some number of processors for the parallel execution of a job, the efficiency is a
measure of the “cost” of using those processors. The point at which the ratio of efficiency to
execution time, E(p;)/T(p;), is maximized is called the knee of the execution time — efficiency
profile and may be useful in determining effective processor allocations in multiprogrammed
environments. Given our function that describes the execution rate of parallel jobs, the knee
can be easily derived and is k; = ;. Chiang, Mansharamani, and Vernon [5] also point out
that the knee, k;, for job J; can be shown to be equal to g;.

In the previous section we based processor allocations on the efficiency of jobs and used
0B; to characterize the efficiency of an application. Since the knee of the execution time
— efficiency profile for the execution rate function we have chosen is (3;, we have already,
indirectly, examined the affects of using the knee, k;, to make scheduling decisions (in the
previous section). To reiterate, the problem with such an approach is that while small
benefits can be obtained by utilizing the knee, those benefits are limited because the approach
does not directly consider the amount of work executed by each job.

8 Combining Work and Efficiency

We now propose a new scheduling strategy that is designed to take into account both the
efficiency of a job and its work. This algorithm has evolved from our observations that there
are two main characteristics that contribute to the response time of a parallel application,
the remaining work, W;, and the efficiency with which that work can be executed, [;, and
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that policies based on using either one of these characteristics in isolation are unable to sig-
nificantly reduce mean response times over the wide range of potential workloads considered.
While it may be desirable to give less processing power to jobs that execute large amounts
of work, in order to prevent them from delaying jobs that execute smaller amounts of work,
it is also necessary to consider the efficiency with which each job can utilize the allocated
Processors.

We use a two-phased algorithm to determine the number of processors, p;, to allocate
to each job J;. Our strategy is to maintain a sorted list of jobs in the system (sorted by
increasing W;). This ordered list is used to prevent short jobs from being stuck behind large
jobs. Jobs are considered for activation in this order and are assigned f; processors, where f;
is determined by considering the efficiency with which they execute. During this first phase
jobs are assigned processors until either all P processors have been assigned or until all jobs
have been activated. If all jobs have been activated and all P processors have not been
assigned a second phase is performed which assigns the remaining processors to activated
jobs. A number of different assignment policies are possible for the first and second phases.
In this paper we focus our investigation on policies for the first phase, since we believe
that the number of unassigned processors left for the second phase will be relatively small
(especially under workloads with relatively high loads — assuming the average efficiency is
not unreasonably low). The policy used for the second phase divides the remaining processors
equally among the active jobs (since this is a safe approach).

An obvious strategy to use in the first phase is to assign processors to each job according
to the knee of the execution time — efficiency profile (f; = k; = ;). Unfortunately, this
approach has an important drawback: (; is greater than P for jobs with relatively low
efficiency. In fact, for P = 100 processors, §; > P for all ¢; > 50.5%. This may be due to the
execution rate function used. However, no matter what execution rate function is used there
are likely to be some jobs whose communication and synchronization overhead is relatively
small and therefore execute with high efficiency. In these cases their knee will be greater
than the number of processors in the system. For such jobs the knee must be mapped into
a number of processors < P. In future work we plan to consider alternative execution rate
functions and to investigate the importance of appropriate mappings. One way to avoid this
problem is to simply assign min(g;, P) processors, rather than ;. However, this approach
will allocate all P processors to any job for which ¢; > 50.5%. As expected, experiments
showed that this approach did not perform well for workloads with high average efficiency, €.
For example, using this policy to execute a workload with Cy = 1, ¢; = 50-99%, and a load
of 90% yields a mean response time that is 27% higher than obtained using equipartition.
Therefore, we require a function that more evenly maps the range, 3;, to the domain, f;.

We start by considering an alternate, simple and obvious mapping, f; = e;. The advan-
tage of this policy is that only jobs with high efficiency will be allocated a large number of
processors. Also, as the average efficiency of the workload increases this algorithm asymp-
totically behaves optimally (i.e., if all jobs execute with perfect efficiency they would be
executed in a LRWF fashion). We call the general form of our algorithm W&E (Work and
Efficiency). The form that uses f; = k; = §; we call W&/f;, and the form that uses f; = ¢;
we call W &e;.

We have conducted a series of experiments to compare W&e; with equipartition. The
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results of these experiments are shown in Figure 6. These experiments were conducted using
arrival rates that produced loads of approximately 30% and 90% respectively. An arrival
rate was determined using W&e; and was then used for equipartition. Each bar shown in
these graphs represents the mean response time of W&e;, normalized with respect to the
mean response time of equipartition (represented by the dotted line, EQUI). The workload
for each experiment is specified below the x-axis by displaying the parameters Cy and the
range €pow — €high-

As expected under low loads (30%), the reductions in mean response time obtained by
using W &e; instead of equipartition are relatively small, but statistically significant. Again,
this is because of the relatively low degree of multiprogramming, which reduces the allocation
alternatives. Under this load equipartition is relatively robust since the maximum observed
improvement is about 15%. As seen by the results obtained when a load of 90% is used,
if the degree of multiprogramming is increased, the size of the reductions in mean response
times increases.

120 120
r 80+ r 80
m. 60— m. 60—
40 40-
R 20 R 20
0 0
Cw 1530 1530 1530 Cw 1530 1530 1530
£ 1-50 1-99 50-99 £ 1-50 1-99 50-99

Figure 6: Mean response time of W&e; for different workloads, normalized with respect to

EQUI

In the next series of experiments (shown in Figure 7) we consider additional ranges of
efficiency values by also considering ¢; = 75-99% and 99-99%. These values are considered
to emphasize that as the average efficiency of the jobs increases, the behaviour of our W&e;
policy approaches that of an optimal algorithm. This can be seen by comparing the improve-
ments obtained in these graphs with those obtained in Section 4. These ranges demonstrate
the substantial reductions in mean response time that are possible when the average effi-
ciency of the jobs is high and illustrate how the size of these reductions grows with increases
in average efficiency.

Additionally we study the affect that the variation in job efficiencies, C,, might have
on our results. This is done by fixing a mean efficiency and examining different efficiency
ranges. We choose a fixed mean of 50%, since it offers the greatest potential variation for
our distribution and compare the ranges 1-99%, 30-70%, and 50-50% (which produce C.,
of 0.57, 0.23, and 0.0 respectively). The results in Figure 7 show that as the variation in
efficiencies decreases, the mean response time obtained using W &e; increases substantially
when compared with equipartition.

Next we conducted a series of experiments in order to determine if this increase is because
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Figure 7: Mean response time of W&e; for different workloads, normalized with respect to
EQUI

the general method, W&E, is unable to handle workloads with low variation in efficiency or
because the number of processors allocated during the first phase could be improved. We
started by experimentally testing whether or not a value of f; could be found that improved
the mean response time for the range 50-50% (under a load of 90%). We found that by using
the value f; = 30, we were able to produce mean response times that were lower than those
obtained using equipartition. Further investigation found that for low and high efficiency
ranges (e.g., 1-20% and 80-99%) allocating ¢; processors produced response times lower than
for equipartition. Using these results we developed a simple assignment policy that we hoped
would uniformly produce mean response times equal to or lower than equipartition.

This new policy (or mapping) was derived from our observations that f; = ¢; performed
reasonably well for 1% < ¢; < 20% and for 80% < ¢; < 99% and that f; = 30 performed well
for the workload with the efficiency range 50-50%. Therefore, we (naively) chose a piecewise
linear function as the basis for a new variation of our algorithm. This variation is called
W&F (¢;) and is described below. The different forms of the W&FE algorithm are shown in
Figure 8. Algorithmically this function is described (for P = 100) as follows:

) (& — 20)(10/30) + 20 : if 20% < ¢ < 50%
i = (e — 50) (50/30) + 30 : if 50% < ¢ < 80%
p if 80% < & < 99%

As shown in Figure 8, when ¢; = 50%, there is a large difference between the number of
processors allocated using W&/p; (i.e., using the knee) and using either W&e; or W& F'(¢;).
This seems to indicate that under these job and workload models, processor allocations in
a dynamic scheduling environment might be better made at a point much lower than the
knee.

The results of using this policy, W&F(¢;), for a wide variety of workloads are shown in
Figure 9. These experiments show that this policy does produce mean response times that
are at least as good as, and are in many cases substantially better than, those obtained with
the equipartition policy. This policy therefore performs better across the variety of workloads
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Figure 8: Different allocation policies considered for W& E

considered than the W& (3;, the W &e; and the equipartition policies. This suggests that in a
dynamic scheduling environment, it may not be desirable to allocate processors according to
the knee of the execution time — efficiency profile (especially if a wide variety of workloads
are possible). (We plan to further investigate other factors, such as the load, the execution
rate function, and the distribution used to generate the efficiency for each job.)

In the case when a load of 90% is used, the largest improvement seen is approximately
70%. A general trend that can be seen by examining the ranges 1-50%, 50-99%, 75-99% and
99-99% in this graph, is that the size of the reductions obtained by using W& F'(¢;) increases
as the average efficiency increases. It also seems that the size of the reduction is correlated
with the coefficient of variation of work, Cyy, especially when the load and average efficiency
of the jobs is relatively high. We also point out again that the reductions in mean response
time are larger for the workload whose range of efficiency is 1-99% than for the range 30-70%
even though the mean efficiency has not changed.

Although the W& F'(¢;) algorithm can very likely be improved, since it was chosen naively,
these experiments demonstrate that the W& FE strategy is an attractive approach to using
job characteristics to make processor allocation decisions in a dynamic scheduling environ-
ment. If the number of processors to assign during the first phase of the algorithm is chosen
properly, this method can produce mean response times that are significantly lower than
those obtained by using equipartition across a wide variety of workloads. As well, the im-
provements are greater than those that can be obtained using only characteristics of work,
W;, or efficiency, f3;, in isolation. We believe that these results demonstrate the importance
of using job characteristics correctly as well as the need for allocation policies that effectively
use characteristics of both work and efficiency.

9 Conclusions and Future Research

In this paper we examine the problem of processor allocation in multiprogrammed multipro-
cessors. We intentionally use relatively simple models of a parallel program’s execution, the
workload, and the system, in order to gain a first-order understanding of how job character-
istics might be used to make better processor allocation decisions. The experiments include
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Figure 9: Mean response time of W& F'(¢;) for different workloads, normalized with respect
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a wide range of workload characteristics, including large variations in the amount of work
jobs execute as well as jobs that execute work at different rates.
Using our job, system, and workload models we make the following observations:

1.

Policies that use only information about the amount of work each job executes do not
reduce mean response time when compared with an equipartition policy unless the av-
erage efficiency of the jobs is relatively high. The size of the improvements observed by
making partitioning decisions based on the amount of work each job executes increases
with the average efficiency of the jobs, the coefficient of variation of the work, and
the system load. Improvements are maximized and are substantial when all jobs are
perfectly efficient.

Policies that use only information about the efficiency with which a job executes can
provide small but statistically significant reductions in mean response time when com-
pared with equipartition, if extreme partitioning policies are avoided. With the par-
ticular workload used in these experiments we found that using a value of a = 0.5
yielded reductions of up to 14% in some instances. However, these policies are unable
to produce further improvements because they fail to consider the amount of remaining
work each job has to execute. At first this conclusion might appear to conflict with
results from recent work by Nguyen, Vaswani, and Zahorjan [25]. However, their sig-
nificant performance gains are obtained under workloads for which equipartition can
naively allocate too many processors (thus actually increasing the execution time of
applications). If similar workload models were used here we would see similarly large
improvements.

Under the execution rate function used in this paper, policies that make processor
partitioning decisions using only information about the knee of the execution time —
efficiency profile of each job provide the same advantages and disadvantages of policies
that consider only the efficiency of a job.

. Policies that consider both a job’s remaining work and a job’s efficiency when making

processor allocation decisions can yield substantial improvements when compared with
the equipartition policy. However, the improvements are limited by the coefficient of
variation of the work jobs execute, the average efficiency with which jobs execute their
work, and the system load. Our new algorithm is based on using characteristics about
the amount of work a job executes and the efficiency with which it can be executed.
Although such information may not be readily available we believe that it is important
to understand the properties of effective processor allocation policies in order to develop
more effective, practical scheduling algorithms.

. We demonstrate that it is not desirable to blindly equipartition processors, and that

considerable improvement in mean response time can be obtained by using information
about a job’s work and efficiency. However, the performance benefits obtained by using
partitioning techniques based on job characteristics is likely bounded and equiparti-
tioning processors is a compromise that is safe in the absence of such characteristics.

20



Equipartition is also likely to remain the practical algorithm of choice until more stud-
ies of multiprocessor workloads are performed and better techniques for obtaining job
characteristics are developed.

While true evidence of the applicability of our results requires an experimental evaluation,
we believe that the insights from our work can be used to guide the implementation of
scheduling algorithms in production multiprogrammed multiprocessors. Nguyen, Vaswani
and Zahorjan [25, 24] have shown experimentally that estimates of a job’s efficiency can
be obtained and used effectively at run-time, and that the cost of reallocating processor in
response to changes in job and workload characteristics is not prohibitive. Leland and Ott
[17] point out, and Harchol-Balter and Downey confirm their study using modern UNIX
workloads [14], that under sequential UNIX workloads there is a strong correlation between
the length of time a job has been executing and its expected remaining execution time.
This observation is part of the inspiration behind the multilevel feedback queue schedulers
currently used on many UNIX systems [2] and we expect that similar observations will hold
for multiprocessor workloads.

These previous studies demonstrate that it is possible to obtain estimates of a job’s
efficiency and of its remaining work. They also provide evidence that these estimates are
reasonably accurate and that the estimates can be applied efficiently. We believe that such
estimates can be combined with the scheduling techniques outlined in our algorithms and
that this combination can be used to reduce mean response time when compared with existing
multiprogrammed multiprocessor scheduling algorithms.

9.1 Future Work

Now that we have a better understanding of the conditions under which characteristics of
parallel programs can be used to reduce mean response time and a better grasp of the
size of the reductions that can be expected, we plan to examine the importance of these
job characteristics and the relative performance of the algorithms investigated here while
considering different job models. (A modified model that includes limitations on a job’s
maximum parallelism as well as the maximum number of processors a job can use efficiently
has already been considered [12].) We hope to more fully explore variations on our W&FE
algorithm and to try to determine the optimal allocation given the job, workload and system
models used in this paper. We are also interested in trying to apply our W&FE technique in
a static scheduling environment.
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