
Competitive Dynamic Multiprocessor Allocation
for Parallel Applications

Timothy Brecht, Xiaotie Deng, Nian Gu
Department of Computer Science

York University, Toronto, Ontario, Canada M3J 1P3
email: brecht@cs.yorku.ca / deng@cs.yorku.ca / gu@cs.yorku.ca

Abstract

In this paper we use competitive analysis to study
preemptive multiprocessor allocation policies for parallel
jobs whose execution time is not known to the scheduler
at the time of scheduling. The objective is to minimize the
makespan (i.e., the completion time of the last job to finish
executing). We characterize a parallel job, Ji , by two
parameters: its execution time, li , and its parallelism, Pi ,
which may vary over time. The preemption and
reallocation of processors can take place at any time.

We devise a preemptive policy which achieves the
best possible competitive ratio and then derive upper and
lower bounds for scheduling N parallel jobs on P
processors.

1. Introduction
A number of studies have applied competitive

analysis to sequential job scheduling on multiprocessors
when the scheduler has no a priori information about job
arrivals or execution times [5][4][6][12]. In this paper we
address the processor allocation problem for parallel jobs
executing on multiprocessors.

We characterize a parallel job using a parallelism
profile, which is defined as the number of processors an
application is capable of using at any point in time during
its execution [7][11]. That is, a job, Ji , is characterized
by its execution time, li , and its parallelism, Pi , which
may vary with time. If the parallelism of an application
varies with time during its execution, its parallelism
profile is said to have multiple phases as shown in Figure
1. If the parallelism does not change during job

In the Seventh IEEE Symposium on Parallel and Distributed Processing (SPDP’95), San Antonio, Texas, October 25-28, pp. 448-455, 1995.

number of processors

time
0

Figure 1: Parallelism profile

execution, the parallelism profile is said to have a single
phase. Our research differs from previous studies by
Turek, et al. [15][16][17] in that (a) the exact length of
the profile (which is equivalent to the execution time of
the job) is not known to the scheduler a priori and (b) the
parallelism may vary with time, and the variations in
parallelism are not known to the scheduler before the job
reaches the point at which it changes parallelism. In other
words, the instantaneous parallelism of jobs is the only
information available to the system when making
scheduling decisions. We allow processors to be
preempted and reallocated during the execution of a job
and assume that the cost of preemption is negligible. We
assume that the execution time of a job does not decrease
if it is allocated more processors than its parallelism.
Therefore, no job should be allocated more processors
than its parallelism. However, when less than Pi

processors are allocated to job Ji , we assume that the
job’s execution will be prolonged proportionally.

We first construct an optimal competitive policy
using competitive analysis for scheduling two parallel
jobs without a priori information about job execution

times. Then we compare our optimal competitive policy
with the Dynamic Equipartition policy (abbreviated DEQ
in this paper), which is reported to perform very well in
simulation and experimental studies [9][18][8][10][1]
and is considered to possess the desired properties of a
good scheduler on multiprocessors [9][8]. DEQ is first
introduced to parallel scheduling by Tucker and Gupta as
a process control policy [14], and modified by Zahorjan
and McCann [18][10]. The main idea behind this
approach is to distribute processors evenly provided they
have sufficient parallelism. Our result shows that the
competitive ratio of DEQ is very close to that of the
optimal policy we devise for two jobs.

The competitive analysis of algorithms is an
approach to studying algorithms operating with
incomplete information, first introduced by Sleator and
Tarjan [13] in the study of a system memory management
problem. Let M A(JS) be the makespan for a scheduling
algorithm A on job set, JS , and Opt(JS) be the
makespan for the optimal algorithm which has complete
information about the jobs. The competitive ratio of

algorithm A is defined as maxall JS



M A(JS)

Opt(JS)



. The

goal is to find an algorithm which leads to the minimum
competitive ratio.

We start our study by making the following two
assumptions: (a) the parallelism profiles of all parallel
jobs have only one phase, and (b) all jobs arrive at the
system simultaneously. In Section 2, we obtain the
optimal solution Opt(JS) for scheduling jobs on P
processors, assuming that complete information about job
execution time is known to the scheduler. In Section 3,
we use competitive analysis to devise a policy with an
optimal competitive ratio for scheduling two parallel jobs,
whose parallelism does not change during execution. In
Section 4, we study the problem of scheduling N parallel
jobs by generalizing our analysis in Section 3 and the
results for scheduling sequential jobs on multiprocessors
by Graham [5], Hall and Shmoys [6] and Shmoys, et al.
[12]. We prove that the matched upper and lower bound
is 2 − 1/P , for scheduling N single-phased parallel jobs
on P processors. Then we consider the cases where the
job parallelism profiles have multiple phases and there are
new job arrivals. We prove that the competitive ratio for
scheduling N parallel jobs with multi-phased parallelism
profiles is 2 − 1/P . As well, we prove that the
competitive ratio for scheduling N parallel jobs (with
single or multiple phased parallelism profiles) with new
arrivals is also 2 − 1/P . In Section 5, we conclude our
work.

2. Optimal scheduling with complete
information

A scheduling policy that minimizes makespan will
not leave processors idle if there exists a job in the system
capable of using it. (Such a policy is also called a work-
conserving policy We start by considering the case when
the job parallelism does not change during execution.
Assume that P1 is the parallelism of job J1, and P2 is the
parallelism of job J2. Let l1 represent the time J1 needs
to complete its execution if it is allocated P1 processors.
Similarly l2 is the time required for J2 to execute if
allocated P2 processors. There are P processors in the
system. The total amount of work to be executed by J1

and J2 can be denoted by W1 + W2 which is equal to
P1l1 + P2l2 . Let pi be the number of processors that

are actually allocated to Ji .

Theorem 1: The optimal makespan for scheduling two
parallel jobs on P processors is

Opt(JS) = max 


l1, l2,
P1l1 + P2 l2

P



Proof: Processor allocation is trivial when P1 + P2 ≤ P:
allocate Pi processors to Ji . The theorem holds in this
case. Therefore, we only need to prove the theorem when
P1 + P2 > P. Without loss of generality, we assume that
P1 ≥ P2. We make use of the following three policies :

Least Parallelism First (LPF)
Allocate min(P, P2) processors to J2 and allocate
the remaining to J1. When one job finishes
execution, allocate min(P, Pi) processors to the
other job, where Pi is the parallelism of the job
which is still executing.

Most Parallelism First (MPF)
Allocate min(P, P1) processors to J1 and allocate
the remaining to J2. When one job finishes
execution, allocate min(P, Pi) processors to the
other job, where Pi is the parallelism of the job
which is still executing.

Dynamic Proportional Partition (DPP)
The number of processors allocated to each job is
proportional to the job parallelism. That is, allocate
(P1P)/(P1 + P2) processors to J1, and allocate

(P2P)/(P1 + P2) processors to J2. After one job
has finished execution, allocate min(P, Pi)
processors to the remaining job.

LPF and MPF deal with two extreme situations, and
therefore the allocation of processors using any other
policy will lie between these two extremes. To obtain the
optimal makespan we consider three possible relations
among P1, P2, and P.

(1) P2 ≤ P1 < P
Obviously, neither J1 nor J2 can use all P
processors. The processor allocation varies with
the relation between l1 and l2. Therefore, we
consider the three possibilities in terms of l1 and l2.

(1a) l1 = l2

Since P1 + P2 > P, the processors allocated
to at least one of the jobs will be less than
its parallelism. DPP yields the optimal
makespan, since it keeps all processors busy,
and both jobs finish execution at the same
time. The makespan for DPP is
(P1l1 + P2l2)/P .

(1b) l1 < l2

In order to reduce the number of idle
processors during the execution of both
jobs, the initial allocation of J2 should be
P2, and therefore J1 should be P − P2. In
other words, the processors should be
initially allocated according to LPF until the
jobs reach a point at which the remaining
execution time of both the jobs are the same.
Once they reach that point, the remainder of
the execution is identical to case (1a).
Therefore, at that point the processors
should be allocated according to DPP so
that both jobs finish simultaneously. The
completion time is (P1l1 + P2l2)/P if there
is work remained after using LPF.
Otherwise, J1 will finish execution before
J2 and the makespan will be l2 .

(1c) l1 > l2

This case is symmetric to (1b). The initial
allocation of processors is done according to
MPF. Once the remaining execution time of
both jobs is equal, the processors should be
reallocated according to DPP.

(2) P2 ≤ P ≤ P1

In this case LPF yields the optimal makespan
regardless of the values of l1 and l2, because LPF
keeps all processors busy until both jobs have
finished execution. Therefore, the makespan is
(P1l1 + P2l2)/P.

(3) P ≤ P2 ≤ P1

In this case, any work-conserving policy yields the
optimal makespan, since either J1 or J2 by itself
can utilize all P processors. In other words, there
are no idle processors until both jobs have finished
execution. The makespan is (P1 l1 + P2 l2)/P.

The above analysis shows that max 


l1, l2,
P1l1 + P2l2

P



is an upper bound on the makespan. When P1 + P2 ≤ P

the makespan is max(l1, l2) ≥
P1l1 + P2l2

P
. For other

cases, we have:

Case (1a):

The makespan is
P1l1 + P2l2

P
≥ max(l1, l2).

Case (1b):
Either case (1a) doesn’t occur and the makespan is

l2 ≥ l1, l2 ≥
P1l1 + P2l2

P
or case (1a) does occur

and the makespan is
P1l1 + P2l2

P
≥ max(l1, l2).

Case (1c):
This case is symmetric to case (1b).

Case (2):
Either J1 finishes first and the makespan is

l2 ≥ max


P1l1 + P2l2

P
, l1




or J1 finishes first and

the makespan is
P1l1 + P2l2

P
≥ max(l1,l2).

Case (3):

The makespan is
P1l1 + P2l2

P
≥ max(l1,l2).

It is not difficult to see that

max


l1, l2,
P1 l1 + P2 l2

P



is also a lower bound on the

makespan. Therefore, the optimal makespan for

scheduling two jobs is max 


l1, l2,
P1 l1 + P2 l2

P



.

This result can be extended to schedule N parallel
jobs on P processors.

Theorem 2: The optimal makespan for scheduling N
parallel jobs on P processors is

Opt(JS) = max







l1, l2, . . . li ,

N

i=1
Σ Pi li

P







.

Proof: Combining the previous analysis in this section
and the optimal algorithm for scheduling sequential jobs
on multiprocessors by Shmoys, et al. [12], we construct
the following optimal algorithm for scheduling N parallel
jobs on P processors. Suppose that there are N parallel
jobs: (P1, l1), (P2, l2), ... ,(PN , lN). Without loss of
generality, we assume that l1 ≤ l2 ≤ . . . ≤ lN . First, we
allocate processors to jobs according to the following
recursive rules:

(1) (Base case): l1 = l2 = . . . = lN . Allocate processors
to jobs in proportion to their parallelism.

(2) (Recursive case): lm < lm+1 = lm+2 = . . . = lN . If
N

i=m+1
Σ Pi < P, allocate Pi processors to Ji , where

m + 1 ≤ i ≤ N . Then recursively allocate the

remaining P −
N

i=m+1
Σ Pi processors to the remaining

jobs. Otherwise, allocate
Pi P
N

i=m+1
Σ Pi

processors to Ji ,

m + 1 ≤ i ≤ N .

This process continues until one of the following
cases occurs :

(a) All applications have finished execution.

(b) One job finishes execution, after which the
processors are reallocated according to the
above rules.

(c) Some job Ji reaches a point at which its
remaining execution time becomes equal to
that of one or more other jobs (which were
not previously the same as Ji). Then we
reallocate the processors using the above
recursive rules.

The correctness follows easily by an inductive proof.

3. Scheduling two jobs on P processors
Without loss of generality, we assume that

P1 ≥ P2. The worst case competitive ratio for MPF
occurs when J1 finishes execution before J2 does. After
this point, P − P2 processors will be idle. Similarly, the
worst case for LPF occurs when J2 finishes execution
first, after which P − P1 processors will be idle. Since
there are more idle processors in the worst case using
MPF than using LPF, the competitive ratio for MPF is
larger than that of LPF. If we consider the number of
processors allocated to J1 (or J2) to be a continuum, with
the allocations of MPF and LPF being the two extremes,
the policy that yields the smallest competitive ratio will be
closer to LPF than to MPF. DPP can be viewed as a
combination of LPF and MPF. Its worst case competitive
ratio occurs when J1 finishes execution first, since there
will be more idle processors than the case when J2

finishes first. The policy with the optimal competitive
ratio will be a combination of LPF and DPP in the form of
α LPF + (1 − α)DPP. Let p1 be the number of processors
allocated to J1, and p2 be the number of processors

allocated to J2. Then p1 = α (P − P2) + (1 − α)
P1P

P1 + P2
,

and p2 = α P2 + (1 − α)
P2P

P1 + P2
. The policy that yields

the minimum competitive ratio will yield the same
competitive ratio no matter which job finishes execution
first. We can thus determine α and the optimal policy
accordingly.

Define Mα (JS) as the makespan of the combined
policy, Policy(α), with parameter α on a job set JS. Its

competitive ratio is maxall JS
Mα (JS)

Opt(JS)
. If J1 finishes first

using Policy(α), the optimal allocation policy for the
worst competitive ratio will be LPF because the number
of idle processors is the smallest. That is, Opt(JS) = l2.
In this case, l1 and l2 satisfy the following relation:
l2 = (P1l1)/(P − P2). Denote the competitive ratio as
R1(P1, P2, α), 0 ≤ α ≤ 1. Similarly, Opt(JS) = l1 if J2

finishes first, where l1 = (P2l2)/(P − P1). Denote the
competitive ratio in this case as R2(P1, P2, α), 0 ≤ α ≤ 1.
When R1(P1, P2, α) = R2(P1, P2, α), we can obtain a
function of α (P1, P2) which yields the smallest
competitive ratio.

<- the proper α

competitive ratio

J2 finishes first->

J1 finishes first->

1

1.04

1.08

1.12

1.16

0 0.2 0.4 0.6 0.8 1
α

Figure 2: Finding α when P1 = 0. 75 and P2 = 0. 6.

Let P1 = mP, and P2 = nP, 0 ≤ m ≤ 1 and 0 ≤ n ≤ 1.
Then R1 and R2 can be represented as functions of m, n
and α . The minimum competitive ratio is achieved by
setting R1 = R2 which eliminates α . The solution is
presented in the appendix. Figure 2 illustrates how a
proper α value is selected when m = 0. 75 and n = 0. 6.
The two curves in Figure 2 are R1 and R2 respectively.
The proper value of α corresponds to the point at which
R1 intersects with R2. In this case, α is approximately
0.2.

Figure 3 illustrates the competitive ratio of the
optimal policy, R1 (note that R1 = R2), as a function of m
and n. It shows that, across all possible m and n where
0 ≤ m, n ≤ 1, R1 reaches the maximum of 4 − 2√2
(approximately 1.175729) when m = n = √2/2. This

means that, in the worst case, the makespan for Policy(α)
is within a constant of 1. 175729 times the optimal (i.e.,
the competitive ratio of Policy(α) is 1. 175729).

0.6

competitive ratio

0.70.80.91
m

00.20.40.60.81 n

1

1.04

1.08

1.12

1.16

Figure 3: Competitive ratio of OptComp

As well, in the process of deriving this policy we hav e
shown that 1. 175729 is the best possible competitive ratio
among all possible policies. That is, Policy(α) has the
optimal competitive ratio. Therefore, we call it OptComp.
(Note that OptComp is different from Opt(JS).) Opt(JS)
refers to the policy which has the optimal makespan when
it has information about the execution time of the jobs
being executed, while OptComp refers to the policy which
has the optimal competitive ratio when it does not know
job execution times at the time of scheduling.

Now we compare OptComp with the dynamic
equipartition (DEQ) policy. The purpose of this
comparison is to find out the difference between DEQ and
OptComp for scheduling two parallel jobs when the job
execution time is not known to the scheduler a priori. We
find that the competitive ratio for DEQ is the same as for
OptComp when m = n = √2/2. For all other cases, the
competitive ratio of DEQ is slightly larger than that of
OptComp but nev er more than 4 − 2√2 = 1. 175729.
Taking the complexity of OptComp into consideration
(see the appendix) one would likely prefer DEQ to
OptComp.

4. Scheduling N jobs on P processors
In Section 3, we have devised an optimal

competitive policy for scheduling two parallel jobs on P
processors when the job execution time is not known to
the scheduler a priori. In this section, we study the
problem of scheduling N jobs on P processors in the
same environment.

4.1. N jobs with single-phased profiles
Let Pi denote the parallelism of Ji , and let li

denote the time it takes to execute Ji if it is allocated Pi

processors, 1 ≤ i ≤ N . We first assume that all N jobs
arrive simultaneously, and there are no new arrivals. (We
will relax these assumptions later.) We also assume that
N

i=1
Σ Pi > P. (It is trivial to schedule N jobs if

N

i=1
Σ Pi ≤ P.)

Similar to studies for sequential job scheduling problems
by Graham [5], Hall and Shmoys [6] and Shmoys, et al.
[12], we have the following theorem.

Theorem 3 : The competitive ratio for scheduling N jobs
with single-phased parallelism profiles is 2 − 1/P .

Proof: Suppose that all jobs arrive at the system at time
t0 . Assume that J j finishes at time t*, which makes, for

the first time, the sum of the parallelism of the remaining
jobs in the system less than P. Assume that the last job
finishes execution at time tN . The execution of these N
jobs can be divided into two parts. The first part is from
time t0 to t*. The second part is from time t* to tN . Let
τ = t* − t0 and τ ′ = tN − t*. Therefore, the makespan is
τ + τ ′. Let W ′

i be the amount of work done on job Ji up
to time t*, 1 ≤ i ≤ N . Obviously this is no more than Pi li ,

1 ≤ i ≤ N . Therefore, we have τ ≤

N

i=1
Σ W ′

i

P
≤

N

i=1
Σ Pi li

P
.

Obviously, after time t*, the number of processors
allocated to each remaining job will be equal to its
parallelism. Denote the remaining execution time of each
job after t* with rti . Then τ ′ = max(rt1, rt2,

. . . , rtN)

Therefore, τ + τ ′ ≤

N

i=1
Σ W ′

i

P
+ max(rt1, rt2,

. . . , rtN). Let

L1 = max(rt1, rt2,
. . . , rtN). Since the minimum

parallelism of a job is one,
N

i=1
Σ Pi li ≥ L1 +

N

i=1
Σ W ′

i . It

follows that Opt(JS) ≥ x L1 + y ≥ (x +
y

P
) L1 Since

τ + τ ′ = L1 +

N

i=1
Σ W ′

i

P
, we let y =

1

2 − 1/P
so that we can

simplify the term
τ + τ ′

Opt(JS)
. Therefore, we have an upper

bound on the competitive ratio:
τ + τ ′

Opt(JS)
≤ 2 − 1/P .

Shmoys, et al. [12] prove that a lower bound on the
competitive ratio for scheduling N sequential jobs on P
multiprocessors is 2 − 1/P. Since scheduling sequential
jobs can be viewed as a special case of scheduling parallel
jobs, a lower bound on the competitive ratio for

scheduling N jobs on P processors is also 2 − 1/P. Since
both the upper and the lower bounds are 2 − 1/P, the
competitive ratio for scheduling N parallel jobs on P
processors is 2 − 1/P.

4.2. N jobs with multi-phased profiles
We hav e studied the problem of scheduling N

parallel jobs, whose parallelism does not change during
execution. In this section, we study the problem of
scheduling parallel jobs with multi-phased parallelism
profiles. The analysis is similar to that used to prove the
upper bound on the competitive ratio for scheduling
parallel jobs in Section 4.1. Without loss of generality, let
Ji be the last completed job. We can divide the total
execution time into two phases: Phase 1 is when the
number of processors allocated to Ji is the same as its full
parallelism. Denote the total length of time of periods of
this type with τ ′ . Phase 2 occurs when the number of
processors allocated to Ji is smaller than its full
parallelism. Denote the length of this time period with τ .
Denote the total amount of work executed by both jobs

during τ with W ′. Therefore, the makespan is
W ′

P
+ τ ′.

On the other hand, the total work executed by all jobs is at

least W ′ + τ ′. Thus, OPT ≥
W ′ + τ ′

P
. We also have

OPT ≥ τ ′. Therefore, OPT ≥ xτ ′ + y
τ ′ + W ′

P

≥ (x +
y

P
) τ ′ + y

W ′

P
. Letting y =

1

2 − 1/P
, we obtain the

same competitive ratio, 2 − 1/P, as in the previous
subsection.

4.3. Scheduling with new arrivals
Note that so far we have assumed that all jobs

arrive at the system simultaneously. We now relax this
assumption. Assume that there are new job arrivals and
that the scheduler does not have a priori information
about the job arrival times. Shmoys, et al. prove that the
competitive ratio of scheduling sequential jobs on
multiprocessors with new arrivals is 2 − 1/P [12].
Again, in our analysis, we consider the job Ji which is the
last job to finish according to DEQ. Denote the arrival
time of Ji by t0. We divide the total execution time of Ji

into two phases: the full parallelism phase, which occurs
while the number of processors assigned to Ji is equal to
its full parallelism; and the equipartition phase, which
takes place while the number of processors assigned to Ji

is smaller than its full parallelism. Let the total length of
time during the full parallelism phase be t full . Let Wequi

be the work executed by job Ji during the equipartition
phase. Let the optimal completion time (using complete

information) be OPT . Then, we have

OPT ≥ t0 + t full +
Wequi

P
.

Without loss of generality, we may assume that
there is at least one job in the system between time zero
and time t0. Therefore, the total amount of work done
during time interval [0, t0] is at least t0. Let W ′ be the
work done on the other jobs executed during the
equipartition phase. The total amount of work done is at
least t0 + t full + Wequi + W ′. Then, we have

OPT ≥
t0 + t full + Wequi + W ′

P
.

On the other hand, all of the jobs are executed by

time t0 + t full +
Wequi + W ′

P
, according to DEQ. By a

linear combination of the above inequalities for OPT , it is
easy to verify that the makespan for DEQ is bounded by
(2 − 1/P) OPT .

In fact, the algorithm DEQ is not necessary here. It
is not hard to modify this proof to show that all work-
conserving policies will achieve the same competitive
ratio.

5. Conclusions
In this paper we address the problem of scheduling

parallel jobs on multiprocessors in order to minimize the
makespan, when the scheduler does not have a priori
information about job arrivals, execution times, or the
variation in job parallelism. We use competitive analysis
to devise an optimal policy for scheduling two parallel
jobs on multiprocessors. In this case, DEQ produces a
competitive ratio very close to that of the optimum.
However, DEQ is much simpler than the complicated
formula obtained in the appendix for the optimal
competitive ratio in this case. Therefore, DEQ is a good
policy to use for scheduling two jobs.

Following the work by Hall and Shmoys [6] and
Shmoys, et al. [12] in sequential job scheduling, we
generalize our result of scheduling two parallel jobs to
scheduling N parallel jobs and prove that the upper and
lower bounds for scheduling N parallel jobs is 2 − 1/P .
As well, we prove that the competitive ratio for
scheduling parallel jobs is 2 − 1/P when the job
parallelism changes and there are new arrivals.

The fact that DEQ performs well in the case with
two jobs is no coincidence. In subsequent work, we show
that DEQ achieves the optimal competitive ratio for mean
job response time [2]. Mean response time is an
important performance metric because it is of interest in
general purpose multiprocessors and because makespan is
unable to differentiate a number of scheduling policies

(e.g., any work-conserving policy achieves the minimum
possible makespan). Our result for mean response time
has also been extended to include interactive jobs, which
are defined to be jobs that enter a blocked or sleeping
phase while waiting for user input (which occurs at an
unspecified time, waking the job).

6. Acknowledgments
This work was partially supported by the Natural

Sciences and Engineering Research Council of Canada.

7. References

[1] S. Chiang, R. K. Mansharamani, and M. K. Vernon,
‘‘Use of Application Characteristics and Limited
Preemption for Run-To-Completion Parallel Processor
Scheduling Policies,’’ Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 33-44 (May, 1994).

[2] X. Deng, N. Gu, T. Brecht, and K. Lu, ‘‘Preemptive
Scheduling of Parallel Jobs on Multiprocessors,’’
Technical Report No. CS-95-04, Department of
Computer Science, York University (July, 1995).

[3] D. L. Eager, J. Zahorjan, and E. D. Lazowska, ‘‘Speedup
Versus Efficiency in Parallel Systems,’’ IEEE
Tr ansactions on Computers, 38(3) pp. 408-423 (March,
1989).

[4] M. R. Garey and R. L. Graham, ‘‘Bounds for
Multiprocessor Scheduling with Resource Constraints,’’
SIAM Journal of Computing, 4(2) pp. 187-200 (June,
1975).

[5] R. L. Graham, ‘‘Bounds for Certain Multiprocessor
Anomalies,’’ Bell System Technical Journal, 45 pp.
1563-1581 (1966).

[6] L. Hall and D. B. Shmoys, ‘‘Approximation Schemes for
Constrained Scheduling Problems,’’ Proceedings of the
30th Annual Symposium on the Foundations of Computer
Science, pp. 134-141 (October, 1989).

[7] M. Kumar, ‘‘Measuring Parallelism in Computation-
Intensive Scientific/Engineering Applications,’’ IEEE
Tr ansactions on Computers, 37(9) pp. 1088-1098
(September, 1988).

[8] S. T. Leutenegger and R. D. Nelson, ‘‘Analysis of Spatial
and Temporal Scheduling Policies for Semi-Static and
Dynamic Multiprocessor Environments,’’ Report RC
17086 (No. 75594), IBM T. J. Watson Research Center,
Yorktown Heights, NY (August, 1991).

[9] S. T. Leutenegger and M. K. Vernon, ‘‘The Performance
of Multiprogrammed Multiprocessor Scheduling
Policies,’’ Proceedings of the 1990 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, pp. 226-236 (May, 1990).

[10] C. McCann, R. Vaswani, and J. Zahorjan, ‘‘A Dynamic
Processor Allocation Policy for Multiprogrammed,
Shared Memory Multiprocessors,’’ ACM Transactions on
Computer Systems, 11(2) pp. 146-178 (May, 1993).

[11] K. C. Sevcik, ‘‘Characterizations of Parallelism in
Applications and Their Use In Scheduling,’’ Proceedings
of the 1989 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp.
171-180 (May, 1989).

[12] D. B. Shmoys, J. Wein, and D. P. Williamson,
‘‘Scheduling Parallel Machines On-line,’’ Proceedings of
the 32nd Annual Symposium on the Foundations of
Computer Science, pp. 131-140 (1991).

[13] D. D. Sleator and R. E. Tarjan, ‘‘Amortized Efficiency of
List Update and Paging Rules,’’ Communications of the
ACM, 28(2) pp. 202-208 (1985).

[14] A. Tucker and A. Gupta, ‘‘Process Control and
Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors,’’ Proceedings of the Twelfth
ACM Symposium on Operating Systems Principles, pp.
159-166 (1989).

[15] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari,
J. Glasgow, U. Schwiegelshohn, and P. S. Yu,
‘‘Scheduling Parallelizable Tasks to Minimize Average
Response Time,’’ Proceedings of the 6th Annual
Symposium on Parallel Algorithms and Architectures,
(June, 1994).

[16] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu,
‘‘A Significantly Smarter Bound for a Slightly Smarter
SMART Algorithm,’’ Report RC 19422 (84462), IBM
Research Division, T. J. Watson Research Center,
Yorktown Heights, NY 10598 (February, 1994).

[17] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu,
‘‘Scheduling Parallel Tasks to Minimize Average
Response Time,’’ Proceedings of the 5th SIAM
Symposium on Discrete Algorithms, pp. 112-121 (May,
1994).

[18] J. Zahorjan and C. McCann, ‘‘Processor Scheduling in
Shared Memory Multiprocessors,’’ Proceedings of the
1990 ACM SIGMETRICS Conference on Measurement
& Modeling of Computer Systems, pp. 214-225 (May,
1990).

Appendix
The following are the equations for α and R1 for

the optimal competitive policy Policy(α) discussed in
Section 3. Note that α is obtained by setting R1 = R2.
They are presented in terms of x and y to simplify the
formulae. Since P1 and P2 can be expressed as a fraction
of P , we let P1 = m P and P2 = n P .

x = 4 n m − 8 n2 m − 8 n m2 + 5 n3 m + 10 n2 m2 − 3 n3 m2

− 3 n2 m3 + 5 n m3 − n4 m − m4 n + (4 n3 m + 8 n2 m2

+ 4 n m3 − 48 n3 m2 − 48 n2 m3 − 16 n4 m − 16 m4 n

+ 104 n4 m2 + 160 n3 m3 − 232 n4 m3 − 232 n3 m4

+ 104 n2 m4 − 104 n5 m2 − 104 n2 m5 + 160 n5 m3

+ 230 n4 m4 + 49 n6 m2 + 160 n3 m5 + 49 n2 m6 − 50 n6 m3

− 100 n5 m4 − 10 n7 m2 − 100 n4 m5 − 50 n3 m6 + 15 n6 m4

+ 20 n5 m5 + 6 n7 m3 + 15 n4 m6 + 6 n3 m7 − 10 n2 m7

+ n8 m2 + m8 n2 + 24 n m5 − 16 n m6 + 4 n m7 + 24 n5 m

− 16 n6 m + 4 n7 m)1/2

y = n m + n2 m2 − n3 m + n m3 − 2 n m2 − n2 + 2 n3 − n4

α =
x

2 y

Replacing α in R1 (or R2 equivalently), we have :

R1 =

x n

2 y
− 2 m +

x m

2 y
+ 1 − 2 n −

x

2 y
+ n2 + n m

−
x n

2 y
+

xn 2

2 y
+

xn m

2 y
− m

