
Constraint-Based Typing for ML via Semiunification

Computer Science Technical Report CS-2008-10

Brad Lushman Gordon V. Cormack

May 15, 2008

Abstract

We characterize ML type inference as a constraint satisfaction based on a new generaliza-
tion of the semiunification problem, based on a new class of constraint variables that we call
unknowns (we call the semiunification problem with unknowns USUP). Unlike previous char-
acterizations based on ordinary semiunification, ours maintains a one-to-one correspondence
between terms in the source language and constraints in the problem instance. This correspon-
dence promises to facilitate reasoning about types by backward propagation of information back
to the original source program—for example, unsolvable constraint sets could be directly trans-
lated back into specific type error information. Previous formulations of ML type inference in
terms of semiunification have been less direct, thereby making practical adoption more difficult.
We show that our syntax-directed formulation of ML type inference in terms of USUP is sound
and complete. We give a solution semiprocedure for USUP, and show that the USUP image of
any ML program is decidable. Through these contributions we wish to establish semiunification
as a viable alternative to existing constraint-based typing systems for ML.

1 Introduction

Although Damas and Milner’s Algorithm W [3] is, in many ways, the reference implementation for
ML type inference, modern ML implementations tend to implement type inference as a constraint
satisfaction problem. Typically, implementers devise a language of constraints, and then separately
implement two phases of the type inference process: the translation from the type inference problem
to the constraint language, and then the solution of the resulting constraint problem.

Semiunification is one of several constraint languages capable of expressing the type inference
problem for ML. However, currently known translations (in particular, that of Kfoury and Wells
[6]) suffer from the need to first transform the source term into a canonical form before translating
to a set of semiunification constraints. Inelegance aside, the need for such a preprocessing step
means that there can be no straightforward one-to-one correspondence between subterms of the
source program and subsets of the set of constraints encoded in the semiunification instance. Hence,
analysis made at the semiunification level cannot easily be communicated back to the source level;
in particular, reporting type errors in a way that the user can understand becomes difficult.

As we show in this paper, there appears to be no syntax-directed translation from an arbi-
trary ML program to a semiunification instance such that the latter is solvable if and only if the
former is typable. To address this problem, we consider the addition of a new class of identifier
(the “unknown”) to the semiunification problem. Unknowns operate almost as a hybrid between
constants (i.e., nullary functors) and ordinary variables, and can be used to encode the types of
broadly-scoped monomorphic variables.

1

v ∈ x | λx.E

(λx.E)v → E[v/x]

E1 → E2

E1 E → E2E

E1 → E2

v E1 → v E2

E1 → E2

let x = E1 in E → let x = E2 in E

let x = v in E → E[v/x]

Figure 1: Reduction semantics for ML.

We show that there is a syntax-directed translation from arbitrary ML source programs to a
semiunification problem augmented with unknowns, such that the source program is typable if and
only if the semiunification problem is solvable. Moreover, although the generalized semiunification
problem is obviously undecidable, we show that the image under the translation of the set of all
ML source programs is a decidable subset of the general problem.

2 Background: ML and Semiunification

The core of the ML programming language is the following grammar:

E ::= x | λx.E | E E | let x = E in E

In expressions λx.E, the variable x is bound in E; in expressions let x = E1 in E2, the variable
x is bound in E2, but not in E1. We assume throughout this paper that all bound variables have
distinct names from each other and from all free variables.

Reduction rules for this language are given in Figure 1. Although we give a call-by-value
semantics to match the full ML language, the choice of reduction strategy is not essential. Note
that we allow free variables to act as values in this calculus, simply to avoid the explicit introduction
of literal constants. Such extensions are, however, straightforward, as are the introduction of other
constructors, including products and sums.

More importantly, the type rules for the language are given in Figure 2. We use the metavari-
ables τ and σ to range, respectively, over monotypes and polytypes. Note the two difference
between the two binding operations with respect to typing. A variable bound in a λ-abstraction is
forced to be given a monotype in the environment, whereas a variable bound in a let-construction
may receive a polytype in the environment. Note that, operationally speaking, the construction
let x = E1 in E2 is equivalent to the application (λx.E2)E1. From a typing perspective, the
two constructions would be equivalent if the x in (λx.E2)E1 were allowed to assume a polymorphic
type. We therefore annotate the abstraction as (λpx.E2)E1 to indicate that the function part of

2

τ ::= α | τ → τ
σ ::= τ | ∀α.σ

Γ, x : σ ` x : σ

Γ, x : τ1 ` E : τ2

Γ ` (λx.E) : τ1 → τ2

Γ ` E1 : τ1 → τ2 Γ ` E2 : τ1

Γ ` (E1 E2) : τ2

Γ ` E1 : σ Γ, x : σ ` E2 : τ
Γ ` (let x = E1 in E2) : τ

Γ ` E : σ
Γ ` E : ∀α.σ (α not free in Γ)

Γ ` E : ∀α.σ
Γ ` E : σ[τ/α]

Figure 2: Type rules for ML.

the application is a polymorphic abstraction—one in which the parameter x is assumed to take on
a polymorphic type. To complete the distinction between the two classes of functions, we may, if
we wish annotate all other abstractions as λmz.E, to denote monomorphic abstractions, in which
the parameter cannot assume a polymorphic type. We will adhere to the convention that x and z
denote, respectively, a polymorphic function parameter and a monomorphic function parameter.

For convenience, then, we will confine ourselves to the language expressed by the following
grammar:

E ::= x | λmx.E | λpx.E | E E .

We restrict ourselves to the sublanguage that arises from translating let-constructions in ML to
the application of a polymorphic abstraction to an argument. All other abstractions are assumed
to be monomorphic.

Note that an abstraction may only be polymorphic if it is applied to an argument; abstractions
that remain unapplied when the program terminates are necessarily monomorphic. If we like, we
may further restrict our attention to the case where all abstractions whose arguments are present
are permitted to be polymorphic abstractions. This relaxation corresponds to translating all func-
tion applications in the original source language into let-constructions. Since every monotype
is, by inclusion, a polytype, a typable term cannot become untypable by making such otherwise
monomorphic abstractions polymorphic; it is, however, possible for an untypable term to become
typable under this transformation. For simplicity, we will assume for most of this paper that all
abstractions whose argument is present are polymorphic abstractions (and all others are monomor-
phic abstractions). We call this restricted language ML0. As we shall eventually see, moving to the
more general case is easy.

We will consider constraint-based type inference for ML in the context of the semiunification

3

problem (SUP), which is a problem related to terms in some term algebra. We therefore implicitly
assume in the remainder of this paper that we are working in a term algebra T over some signature
Σ, and that there is a countably infinite supply V of variables. The metavariables f and g will
range over functors in Σ, and we will denote elements of V as Greek letters near the beginning of
the alphabet.

Substitutions on terms in T are defined as follows:

Definition 1 (Substitution) A substitution is a map σ : V → T that is an identity map on all but
finitely many variables. We define the domain of σ, written dom(σ) as the set {α ∈ V | σ(α) 6= α}
of variables on which σ is not an identity. Substitutions then extend homomorphically to maps of
type T → T . We typically write substitutions as postfix operators, so that if τ ∈ T , then τσ is
equivalent notation to σ(τ).

Definition 2 (SUP) Let Σ be a signature, and T a term algebra over Σ. An instance Γ of SUP is
a set {τi ≤ µi}Ni=1, where, for each i, τi and µi are members of T . A solution of Γ is a substitution
σ such that there exist substitutions σ1, . . . , σN such that for each i,

τiσσi = µiσ .

Throughout this paper, as in the above definition, we will be working in a term algebra T over
a signature Σ. For any inequality τ ≤ µ, we define LVars(τ ≤ µ) and RVars(τ ≤ µ), to be,
respectively, Vars(τ) and Vars(µ).

Although SUP is known to be undecidable [5], a subset of ML0 corresponds to a decidable
subset of SUP, known as R-ASUP [8]. R-ASUP is best expressed by viewing SUP instances as
graphs:

Definition 3 (Graph of a SUP instance) Let Γ be an instance of SUP. The graph of Γ, de-
noted G(Γ), is the graph G obtained as follows:

• the vertices of G are the inequalities of Γ;

• there is an edge from v1 to v2 in G if RVars(v1) ∩ LVars(v2) 6= ∅.

Definition 4 Let Γ be a SUP instance. Define relations R and R′ on the variables of Γ such that,
for variables α and β, we say αRβ (resp. αR′β) if there exist vertices vi and vj in G(Γ) such that
α ∈ RVars(vi), β ∈ RVars(vj) and there is a path in G(Γ) (resp. a path of nonzero length) from vi
to vj.

Definition 5 (R-acyclicity) For a SUP instance Γ, the graph G(Γ) (and, by extension, Γ itself)
is said to be R-acyclic if, whenever αR′β, for variables α and β, we have ¬(βR∗α), where R∗ is
the transitive closure of the (already reflexive) relation R.

Definition 6 (R-ASUP) R-ASUP is the restriction of SUP to R-acyclic problem instances.

R-ASUP was shown to be a decidable subset of SUP in earlier work [8].
The solution procedure for R-ASUP is the redex-based semiprocedure given by Kfoury, Tiuryn,

and Urzczyn [5] for SUP, reproduced below:

Definition 7 (Redex procedure) Let Γ be an instance of SUP. The redex procedure consists
of applying the following reduction rules throughout Γ as long as possible:

4

• (Redex-I reduction) Let Σ be a path and 1 ≤ i ≤ N be such that Σ(µi) is a variable and Σ(τi)
is not a variable. Then apply the substitution [Σ(τi)′/Σ(µi)] throughout Γ, where Σ(τi)′ is
Σ(τi) with all variables renamed consistently to fresh variables.

• (Redex-II reduction) Let Σ1 and Σ2 be paths, α a variable, and 1 ≤ i ≤ N be such that
Σ1(τi) = Σ2(τi) = α and Σ1(µi) 6= Σ2(µi). If Σ1(µi) and Σ2(µi) are not unifiable, terminate
with failure. Else, let θ be the most general unifier of Σ1(µi) and Σ2(µi), as output by standard
unification algorithms, and apply θ throughout Γ.

• If neither of the above steps is possible, but there exists i such that µi is not a substitution
instance of τi, then there is a functor mismatch in the i-th inequality; terminate with failure.

The redex procedure terminates on all solvable instances of the full SUP. For ASUP and R-ASUP,
the redex procedure is a full solution procedure.

The translation from the typability problem in ML0 to R-ASUP is based on the original ASUP
translation from Kfoury and Wells [6]. Like the original, the translation relies on a source-level
transformation known as θ-reduction that reduces every source program to the canonical form
(“θ-normal form”):

(λpy1.(λpy2. · · · (λpyn.En+1)En · · ·)E2)E1 ,

where each expression Ei contains no λp-abstractions.
The rules for θ-reduction are as follows:

• (θ1) ((λpy.N)P)Q→ (λpy.NQ)P

• (θ2) λmz.(λpy.N)P → (λpv.λmz.(N ′))(λmw.(P ′)), where N ′ = N [vz/y], P ′ = P [w/z], and v
and w are fresh variables

• (θ3) N((λpy.P)Q)→ (λpy.NP)Q

The θ-reduction operation preserves both types and β-normal forms.
The translation from θ-normal ML0 terms to ASUP is as follows. Assume that the λm-variables

bound in the subterms Ei are named zi,j for j = 1, 2, . . ., and that the free variables in the source
term are w1, w2, Then for each subterm M of each Ei, the ASUP instance contains the following
inequalities:

• if M = yj , the inequality βyi,j ≤ δM ;

• if M = wj , the inequality βwi,j ≤ δM ;

• if M = zi,j , the inequality γi,j = δM ;

• if M = λmzi,j .E, the equality δM = γi,j → δE ;

• if M = PQ, the equality δP = δQ → δM ,

where an equality τ = µ is syntactic sugar for the inequality α → α ≤ τ → µ, where α is a fresh
variable. In addition, the instance contains the following inequalities:

• for each yj , j < i ≤ n, the inequality βyi,j ≤ β
y
i+1,j ;

• for each wj , 1 ≤ i ≤ n, the inequality βwi,j ≤ βwi+1,j .

5

Each redex (λpyi.Ei+1)Ei contributes the equality βyi,i+1 = δEi . Finally, for the free variables wj ,
we consult a type environment A. If A(wj) yields a type τ , we add the equality βw1,j = τ ; otherwise
we add no new inequalities.

The variables that we introduce into the ASUP problem instance have the following intended
interpretations:

• for each yj , the variable βyi,j represents its type in subexpression Ei, for i > j;

• for each wj , the variable βwi,j represents its type in subexpression Ei;

• for each zi,j , the variable γi,j represents its type;

• for each subexpression M of each Ei, the variable δM represents its derived type (different
occurrences of the same subexpression are assigned different δ-variables).

The result type of the source term is the image of the variable δEn+1 under the substitution that
solves the R-ASUP instance.

The effect of performing a full θ-reduction on a given source term can be quite drastic; accord-
ingly, the set of θ-normal forms is quite restricted. While having a small target set of normal forms
may reduce the descriptional complexity of the remainder of the algorithm, as a side effect the
resemblance between the θ-reduced term and the original term may be slight at best. Subterms
that appear in the original source term may, due to the rearrangement of expressions, be absent
in the θ-normal form, and vice-versa. Moreover, the θ2-reduction in particular introduces variables
and abstractions that simply do not appear anywhere in the source term.

Although the R-ASUP instance built from the θ-reduced source term does accurately describe
the type of the original source term as the solution of a set of constraints, the fact that the
translation from the source term to R-ASUP is not syntax-directed means that it is difficult to
propagate information backwards from the R-ASUP instance back to the source program. In
particular, if a source term is untypable, then the corresponding R-ASUP instance will fail to have
a solution and the solution procedure will produce an error. However, in a real implementation, it
is not sufficient to simply alert the programmer that a given source program yields a type error; the
implementation must point the programmer to the part of the source program at which the error
occurs, and give the derived types of the subterms involved, so that the programmer can observe
the type mismatch and correct it. Since the translation to R-ASUP is not syntax-directed, there is
no easy map from inequalities in the R-ASUP instance to subterms of the source program. Even
if we could pinpoint a precise location within the source program that gives rise to the type error,
the terms involved may not even be present in the θ-reduced version and therefore we may not
have computed types for them to show the programmer in order to illustrate the error. Even in
well-typed terms, we may be interested in type information about subterms; to compute the types
of subterms we either need a way to derive them from the types of subterms of the θ-normal form,
or a syntax-directed translation to a system of semiunification constraints.

3 Naive Syntax-Directed Translation

We consider in this section a straightforward, syntax-directed translation from ML0 to SUP. As we
shall discover, this naive translation is unsound, from which we conclude that the full SUP itself is
not a suitable target for syntax-directed translation non-θ-normal terms.

The translation from θ-normal forms takes advantage of the fact that the term is θ-normal in
its handling of λp-abstractions. We could consider, therefore, a more direct translation that works
on arbitrary terms and has ordinary syntax-directed rules for λp-abstractions:

6

Definition 8 (Naive SUP translation) Let E be a term in ML0. Define a map NT (for “naive
translation”) from E to SUP as follows:

NT (x) = {βx ≤ δx}
NT (z) = {γz ≤ δz}

NT (MN) = {δM = δN → δMN} ∪NT (M) ∪NT (N)
NT (λpx.M) = {δλpx.M = βx → δM} ∪NT (M)
NT (λmz.M) = {δλmz.M = γz → δM} ∪NT (M) ,

where x ranges over λp-bound variables and z ranges over λm-bound variables.

We reinforce the distinction between polymorphic and monomorphic variables in the SUP instance
by representing their types with β and γ, respectively, as in the original ASUP translation. Notice
that we make no distinction in this definition between λp1- and λp2-abstractions, as both simply
indicate that the parameter may have a polymorphic type. Also notice that for each node in the
abstract syntax tree of the source term, there is precisely one inequality in the R-ASUP instance;
hence, a reverse mapping from inequalities in the R-ASUP instance to subterms of the original
term is easy to compute.

For a term E, the type of E is computed from NT (E) by applying the substitution that solves
NT (E) to the variable δE , and quantifying the parameter types.

3.1 Unsoundness

It turns out that the naive translation of source terms to SUP is unsound. Consider the following
term:

E = λmz.(λpy.yy)z .

Computing NT (E) produces the following SUP instance:

δE = γz → δ(λpy.yy)z

δλpy.yy = δz → δ(λpy.yy)z

δλpy.yy = βy → δyy

δy1 = δy2 → δyy

βy ≤ δy1

βy ≤ δy2

γz = δz .

Notice that we use the subscripts 1 and 2 to distinguish the two occurrences of the variable y in the
term, when necessary. Substituting the equalities in NT (E) yields the partially reduced instance,

δE = γz → δ(λpy.yy)z

βy → δyy = γz → δ(λpy.yy)z

βy ≤ δy2 → δyy

βy ≤ δy2 .

7

By matching subterms on either side of the second equality, we obtain the equivalent formulation,

δE = γz → δ(λpy.yy)z

βy = γz

δyy = δ(λpy.yy)z

βy ≤ δy2 → δyy

βy ≤ δy2 ,

whence further substitution yields

δE = γz → δyy

γz ≤ δy2 → δyy

γz ≤ δy2 ,

which is then solved. Hence, the naive translation to SUP leads to the conclusion that the source
term is typable. However, the source term β-reduces as follows:

λmz.(λpy.yy)z →β λ
mz.zz ,

which is clearly not typable because the monomorphic variable z is involved in a self-application.
On the other hand, the term is not in θ-normal form. To reach θ-normal form, we first perform

a θ2-reduction:
(λpv.λmz.(vz)(vz))(λmw.w) ,

and the resulting term is θ-normal. The standard R-ASUP translation of this term yields a problem
instance with no solution; hence we conclude that the term is, indeed, untypable. Hence, the naive
SUP translation is indeed unsound.

The key difference between the original term and its θ-normal form, which gives rise to the
unsoundness, is that it contains a λm-abstraction that outscopes a λp-abstraction. A broadly-
scoped monomorphic abstraction allows for the possibility that a polymorphic variable, like y in
our example, becomes bound, via β-reduction, to a monomorphic variable (z in our example).
Thus y, being polymorphic, could be used in an expression like yy in a completely valid way, but
by becoming bound to a monomorphic variable z, y effectively becomes monomorphic itself, thus
rendering an expression like yy invalid.

Our task is then to find a way to express the monomorphism inherited by polymorphic variables
like y above within a SUP (or SUP-like) setting. We develop a syntax-directed translation with
this property in the next section.

4 Unknowns

Consider again the reduced SUP instance that comes from the naive syntax-directed translation of
the term E = λmz.(λpy.yy)z:

δE = γz → δyy

γz ≤ δy2 → δyy

γz ≤ δy2 .

This reduced instance has a solution because the definition of SUP allows us to supply a different
substitution for γz between the second and third inequalities—but if γz represents the type of

8

a monomorphic variable, then it should not be available for specialization to multiple values at
different occurrences of the variable z. Perhaps, then, it would be better regarded as a constant.
In the context of SUP, the notion of “constant” is modelled by nullary functors like Int and Bool ,
which are certainly monomorphic types. Indeed, if γz were treated as a nullary constructor, rather
than as a variable, then we could immediately call the instance unsolvable, because the second
inequality would contain a functor mismatch between γz and →.

Ignoring the functor mismatch for the moment, another property of this instance (under the
assumption that γz is a nullary functor) is noteworthy. In particular, if γz is a nullary functor,
and therefore not a variable, then there is a redex-I in the last inequality, and the instance reduces
under redex-I reduction to

δE = γz → δyy

γz ≤ γz → δyy

γz ≤ γz .

Here we have retained the last inequality, even though it is solved, for illustrative purposes. Notice
how the redex-reduction has caused γz to propagate to both sides of both the second and third
inequalities. Such an occurrence would normally disqualify any instance from being either acyclic
or R-acyclic, and indeed might signal non-termination. Here, however, since γz is a functor, there
is no problem; other functors, like Int , Bool , and→, have no restrictions on where they may occur,
and the same must now be true for γz. On the other hand, we now have two reasons to call this
instance unsolvable: in addition to the functor mismatch we previously pointed out between γz and
→, we now also have an occurs-check violation in the second inequality, because a constant can
certainly not become an expression containing itself after substitution, especially since substitutions
have no effect on constants! Though this second disqualification of the instance—the occurs-check
violation—may seem trivial, especially in light of the first disqualification, it will turn out to be
the more important of the two.

Although treating γz as a constant correctly renders the SUP instance from our example un-
solvable, our previous experience with SUP and type inference suggests that this measure solves
one problem only to create another. Consider, for example, the expression

(λpy.yy)(λmz.z) .

If we worked through the corresponding SUP instance, we would find that the derived type of
the subexpression (λmz.z) is γz → γz. Equating βy with γz → γz gives rise to the following
partially-reduced instance:

γz → γz ≤ δy2 → δyy

γz → γz ≤ δy2 .

Reducing the redex-I in the second inequality and the redex-II in the first inequality yields

γz → γz ≤ (α→ α)→ (α→ α)
γz → γz ≤ α→ α .

This instance is solved, provided that γz is treated as a variable—the first inequality becomes an
equation via the substitution [α → α/γz], while the second inequality becomes an equation via
[α/γz]. If, on the other hand, γ was a constant, then the second inequality would force α = γz and

9

the first inequality would cause a functor mismatch between γz and → (and also an occurs-check
violation).

We have, therefore, an analogous situation to our previous example: a term involving a λm-
abstraction, whose SUP instance contains the monomorphic variable γz. In both cases, treating
γz as a constant yielded a SUP instance with no solution, while treating γz as a variable rendered
the instance solvable. In our previous example, we argued that treating γz as a constant yielded
a correct answer (i.e., no solution). In this case however, even though z is a monomorphic entity
represented by a monomorphic type variable γz, the abstraction λmz.z is a polymorphic entity, and
its type, γz → γz, is a polymorphic type. Further, if we look at the computation expressed by our
example term, (λpy.yy)(λmz.z), we see that we are simply applying an identity function, which is
polymorphic, to itself. Hence, this example, unlike the previous example, should type-check.

In summary, certain identifiers (the γ-variables) are sometimes more appropriately treated as
constants (i.e., nullary functors) and sometimes more appropriately treated as variables. This
observation itself strongly suggests that SUP may not be the right unification-like problem to
serve as the target of a syntax-directed translation from typability. However, before we consider a
generalization of SUP that fits our needs, we must examine more closely whether treating γz as a
constant is truly the right solution, even for our first example.

Consider now the following source program:

E = λmz.λmw.zw .

In this example, the types of the monomorphic term variables z and w are given by the monomorphic
type variables γz and γw, respectively. This source program gives rise to the following unreduced
SUP instance:

δE = γz → δλmw.zw

δλmw.zw = γw → δzw

δz = δw → δzw

γz = δz

γw = δw .

Here, γz and γw are used in reference to the variables z and w themselves; hence, consistency with
our previous example demands that we treat γz and γw as constants. We then reduce the instance
by first substituting out the variables δz and δw:

δE = γz → δλmw.zw

δλmw.zw = γw → δzw

γz = γw → δzw .

Our treatment of γz and γw as constants would now lead us to conclude that there is a functor
mismatch in the third inequality between γz and →, and therefore that the term is not typable.
However, we know from experience with rank 1 type inference that this term must be typable, and
indeed should have the type ∀α.∀β.(α → β) → (α → β). Further, the original ASUP translation
procedure would map the source term in this example to a solvable ASUP instance that yields
precisely this type. Hence, naively treating γ-variables as constants, even in contexts where they
refer to the term variables themselves, rather than the enclosing abstractions, creates incompleteness
in our translation procedure.

What we observe, then, is that even when γ-variables denote monomorphic entities, and there-
fore behave more as constants than as variables, their behaviour is not quite consistent with that

10

of constants either—unlike constants, γ-variables must be eligible for substitution, at least in some
limited fashion. We conclude that γ-variables, when acting as monomorphic entities, constitute a
new class of identifier, more constant than a variable, and more variable than a constant. In reality
their behaviour can be accurately described as constants whose identities are not yet known—the
substitutions we applied in our last example serve to reveal, step-by-step, more and more about the
identities of these constants, without ever requiring a constant to undergo mutually incompatible
substitutions (as in our second example, where γz acts as a variable). For this reason, we call these
identifiers unknowns.

5 SUP with Unknowns

Our investigation in the previous section culminates in the following extension of SUP to accom-
modate unknowns:

Definition 9 (USUP) An instance of USUP (i.e., SUP with Unknowns) is a set {〈τi ≤ µi, ~αi〉}Ni=1

of pairs, each consisting of an inequality τi ≤ µi and a (possibly empty) set ~αi of identifier names,
in some term algebra. A substitution σ is a solution of USUP if there exist substitutions σ1, . . . , σN
such that

τ1σσ1 = µ1σ

· · ·
τNσσN = µNσ ,

and for each i, dom(σi) ∩Vars(~αiσ) = ∅.

The sets ~αi in the definition represent the identifiers in each inequality that function as unknowns;
those identifiers not contained in ~αi function as ordinary variables. These sets ~αi capture our
observation that identifiers that function as unknowns (i.e., γ-variables) do so only within limited
contexts; elsewhere, they are simply ordinary variables. Hence, we associate a set of unknowns to
each inequality, rather than globally.

The final restriction on the domain of σi captures our previous discussion about what kinds of
substitutions unknowns may undergo. As outlined by this restriction, the key feature of unknowns
is that they may be replaced by the global solution substitution σ, but they may not be replaced
by the auxiliary substitutions σi. Moreover, an unknown replaced by substitution can only be
replaced with another unknown, or an expression with only unknowns at the leaves. In particular,
an unknown cannot become a variable (or an expression containing a variable) as a result of
substitution.

To avoid confusion, we will use the term “identifier” to refer to either unknowns or variables
in the ordinary sense. In addition, we will prefer the term “true variable” in the remainder of this
paper when referring to variables that are not unknowns. However, in keeping with our previous
use of the term and with the way it is used in Definition 9, the notation Vars(τ) will denote the
set of all identifiers in τ , and not merely the true variables in τ .

Before we explore USUP in detail, we introduce a notational convention. The sets ~αi are useful
for presenting USUP formally, but cumbersome when working with concrete USUP instances. For
this reason, we adopt the convention that identifiers denoting unknowns in a particular inequality
will be underlined. For example, in the inequality

α→ β ≤ (γ → γ)→ δ ,

11

the identifiers β and γ denote unknowns. Of course, consistency demands that within a single
inequality, either all occurrences of a given variable be underlined, or no occurrences be underlined.
For example, we would not be permitted to underline only one of the occurrences of γ above. In the
context of discussion, we will also adopt the convention (unless stated otherwise) that underlined
identifiers denote unknowns.

5.1 Reduction Rules

In order to actually solve instances of USUP, we introduce two new reduction rules to augment the
existing redex procedure. We first define some notation:

Definition 10 Let µ be a term. Denote by µ∗ the result of consistently replacing all true variables
in µ with fresh unknowns.

Then the following two reductions constitute our addition to the redex procedure to accommodate
unknowns (over an assumed USUP instance Γ = {〈τi ≤ µi, ~αi〉}Ni=1):

• (Redex-III reduction) Let 1 ≤ i ≤ N and Σ be a minimal path such that Σ(τi) contains only
unknowns at the leaves (i.e., Vars(Σ(τi)) ⊆ Vars(~αi)) and Σ(µi) exists, but is not equal to
Σ(τi). Then apply the substitution θ throughout the problem instance, where θ is the most
general unifier of Σ(τi) and Σ(µi).

• (Redex-IV reduction) Let Σ be a path and 1 ≤ i ≤ N be such that Σ(µi) is an unknown (i.e.,
Σ(µi) ∈ Vars(~αi)) and Σ(τi) is not a true variable (i.e., is either a functor application or an
unknown). Then apply the substitution [Σ(τi)∗/Σ(µi)] throughout the problem instance.

Implicit in Definition 9 and the above rules for redex-III’s and redex-IV’s is the notion of applying
a substitution σ to a list ~αi of inequalities. Formally, we define this operation as follows:

~αiσ :=
⋃
γ∈αi

{Vars(γσ)} .

In addition, the existing rules must be reinterpreted in the presence of unknowns. In the case of
Redex-I reduction, the phrase “not a variable” now includes not only functor applications, but also
unknowns (i.e., it means “not a true variable”). In the case of Redex-II reduction, the issue lies
with what it means to unify terms that might contain unknowns. For the purpose of unification,
we will treat unknowns simply as ordinary variables, so that no extensions to standard unification
algorithms are needed. Although this view of unknowns during unification may seem to allow an
unknown to be replaced by a true variable, it in fact does not—as defined above, when a substitution
is applied to the inequalities in the SUP instance, it is also applied to the lists of unknowns. Hence,
if an unknown γ is replaced during unification by a true variable β, then in the sets ~αi, occurrences
of γ will also be replaced by β, thus turning β into an unknown, and producing an instance identical
(up to renaming) to what would have resulted if we had insisted that γ replace β, rather than the
reverse.

Finally, the introduction of unknowns to the problem means that we must expand our applica-
tion of the occurs-check. Currently it only appears in the context of unification as part of redex-II
reduction. Now, however, we must include the following check, after every redex reduction: if Σ
and Π are paths, such that Σ(τi) = ΠΣ(µi) = γ or ΠΣ(τi) = Σ(µi) = γ, for some unknown γ, then
the algorithm fails due to occurs-check violation.

12

5.2 Examples Recast

Having formalized USUP and its associated reduction rules, we can now revisit our examples from
Section 4, this time treating the γ-variables as unknowns when they denote monomorphic entities.
Our motivating example was E = λmz.(λpy.yy)z. Its USUP instance is

δE = γz → δyy

βy = δz

δy1 = δy2 → δyy

βy ≤ δy1

βy ≤ δy2

γz = δz .

Although γz only occurs within the last inequality, the identifier γz would be regarded as an
unknown in all but the first inequality, since all of the last five inequalities arise from syntax
lying strictly within the λm-abstraction, where γz can only refer to the monomorphic variable z.
Therefore, reduction produces the following reduced instance:

δE = γz → δyy

γz ≤ δy2 → δyy

γz ≤ δy2 .

The above instance arises from simply reducing according to the redex-I and redex-II rules from
before. Now, applying the redex-III rule to final inequality equates δy2 with γz, thus producing the
instance

δE = γz → δyy

γz ≤ γz → δyy .

Notice that we can no longer conclude that the instance is unsolvable simply because there is a
functor mismatch between γz on the left and→ on the right, because these now simply indicate the
presence of a redex-III. Instead, we conclude that the instance is unsolvable because an unknown
is being compared with an expression involving itself, which is an occurs-check violation.

Also worth noting is that we could have reduced the second inequality before attempting to
reduce the third inequality. In this case, we would obtain

δE = (α1 → α2)→ δyy

α1 → α2 ≤ δy2 → δyy

α1 → α2 ≤ δy2 .

Redex-III reduction on the second inequality yields

δE = (α1 → α2)→ α2

α1 → α2 ≤ α1 → α2

α1 → α2 ≤ α1 ,

and now we have an occurs-check violation in the third inequality. Either way, we conclude that
the term is untypable.

13

Our second example was E = (λpy.yy)(λmz.z). The full USUP instance for this term is as
follows:

δλpy.yy = δλmz.z → δE

δλpy.yy = βy → δyy

δy1 = δy2 → δyy

βy ≤ δy1

βy ≤ δy2

δλmz.z = γz → δz

γz = δz

In this case, γz is only regarded as an unknown in the last inequality. In all other inequalities, γz
occurs in a context in which it refers to the abstraction λmz.z, which is polymorphic; hence γz is
simply a variable. Reduction of the last inequality replaces δz with γz throughout the instance; we
are left with

δλpy.yy = δλmz.z → δE

δλpy.yy = βy → δyy

δy1 = δy2 → δyy

βy ≤ δy1

βy ≤ δy2

δλmz.z = γz → γz .

Now the only inequality in which γz acts as an unknown is solved, and removed from the presen-
tation. We are left with an instance that reduces, just as before, to

γz → γz ≤ (α→ α)→ (α→ α)
γz → γz ≤ α→ α ,

which, as before, is solvable.
Our third example was E = λmz.λmw.zw. Its USUP instance is

δE = γz → δλmw.zw

δλmw.zw = γw → δzw

δz = δw → δzw

γz = δz

γw = δw ,

in which w is an unknown in all but the first two inequalities, and z is an unknown in all but the
first inequality. Ordinary redex-I and redex-II reduction yields

δE = γz → (γw → δzw)
γz = δw → δzw

γw = δw .

The last two inequalities now contain a redex-III’s, whose reduction yields

δE = γz → (γw → δzw)
γz = γw → δzw ,

14

and then

δE = (γw → δzw)→ (γw → δzw)
γw → δzw = γw → δzw .

Reading off the first inequality gives us precisely the type we would have obtained from ordinary
ML type inference.

6 Properties of USUP Reduction

In this section we prove several properties of USUP and the USUP reduction procedure, in order
to establish USUP as a viable basis for translation from ML0.

Our first observation is straightforward:

Theorem 1 USUP is undecidable.

The result follows simply because SUP may be viewed as a subset of USUP in which there are no
unknowns, or equivalently in which ~αi = ∅ for all i.

Before we pursue questions of termination and decidability any further, however, we first es-
tablish some basic correctness results about our reduction procedure.

6.1 Soundness and Completeness

There are two notions of soundness and completeness surrounding our presentation of USUP. The
first is whether the USUP translation of a source term faithfully and completely captures the
typability of the term. The second is whether the solutions output by the reduction procedure
are consistent with the definition of a solution of USUP. We treat the latter in this section, and
defer the former until Section 7.2, once we have formally specified the translation from typability
to USUP.

6.1.1 Soundness of the Reduction Procedure

In order to establish soundness for the reduction procedure, we must show that it never outputs
wrong answers. In other words, when it produces a solution, it must be a solution according
Definition 9, and it must not produce a solution for an instance that does not have one.

Lemma 1 Suppose an instance Γ of USUP is not solved. Then, in the absence of functor mis-
matches, Γ contains either a redex-I, redex-II, redex-III, or redex-IV.

Proof If Γ = {〈τi ≤ µi, ~αi〉}Ni=1 is not solved, then for some i, τi is not a substitution instance
of µi via a substitution whose domain only contains true variables. Let Σ be as large as possible
such that Σ(τi) is not a substitution instance of Σ(µi) (again, considering only substitutions whose
domains contain only true variables). Let τ = Σ(τi) and µ = Σ(µi). Then τ is not a true variable
(otherwise, τ is trivially a substitution instance of µ). On the other hand, µ can be one of:

• a true variable—then there is a redex-I reduced by [τ ′/µ].

• a functor application f(µi1 , . . . , µin)—then because there are no functor mismatches, if τ is
also a functor application, then τ = f(τi1 , . . . , τin), for some τi1 , . . . , τin . By maximality of Σ,
each τij is a substitution instance of µij via a substitution σij whose domain only contains true

15

variables. Now, if all of the σij are compatible for 1 ≤ j ≤ n, then τ itself is a substitution
instance of µ, via, for example, σi1 , which is a contradiction. Hence at least two of the σij
are not compatible. For notational convenience, suppose σi1 and σi2 are incompatible. Then
there exists a variable β such that βσi1 6= βσi2 . Let Σ1 and Σ2 be paths that, when applied
to τ , produce these two occurrence of β. If Σ1(µ) and Σ2(µ) both exist, then Σ1(µ) 6= Σ2(µ),
otherwise, βσi1 = βσi2 . Hence, there is a redex-II, reduced by MGU(Σ1(µ),Σ2(µ)). If, for
example, Σ1(µ) does not exist, then let Π be the largest prefix of Σ1 such that Π(µ) exists.
Then Π(µ) is an identifier, and Π(τ) is a compound expression. If Π(µ) is a true variable, we
have a redex-I, reduced by [Π(τ)′/Π(µ)]. If Π(µ) is an unknown, we have a redex-IV, reduced
by [Π(τ)∗/Π(µ)].

On the other hand, if τ is not a functor application, then τ must be an unknown. In this
case, let Σ′ be the smallest possible prefix of Σ such that Σ′(τi) contains only unknowns at
the leaves (possibly Σ′ is Σ itself). Then there is a redex-III at Σ′(τi), reduced by the most
general unifier of Σ′(τi) and Σ′(µi).

• an unknown—if τ is a functor application, then there is a redex-IV, reduced by [τ∗/µ].
Otherwise, τ is an unknown. We cannot have τ = µ, by construction of Σ. Hence, τ 6= µ,
and again there is a redex-IV, reduced by [τ∗/µ], which is simply [τ/µ].

As there are no other possibilities, the result follows—if an instance with no functor mismatches is
not solved, it contains a redex. �

Theorem 2 If, for a USUP instance Γ, the USUP redex procedure outputs a substitution σ on
termination, then σ is a solution of Γ.

Proof If the USUP instance terminates, then Γσ, the result of applying the returned substitution
σ throughout Γ, must not contain any redexes. Further, it contains no functor mismatches, as
otherwise, the procedure, upon encountering no redexes, would have signalled a functor mismatch.
Then by Lemma 1, Γσ must be a solved instance (i.e., it has the identity substitution as solution).
Hence, σ is a solution of Γ. �

The following statement is immediate, but worth noting:

Corollary 1 If a USUP instance is unsolvable, the redex procedure either loops forever, or outputs
an error.

Proof This is simply the contrapositive of Theorem 2.

These results together establish soundness for our reduction procedure—it never reports a so-
lution when one does not exist, and any substitution it produces is guaranteed to be a solution of
the problem instance.

6.1.2 Completeness of the Reduction Procedure

In considering the notion of completeness for our procedure with respect to the definition of USUP,
we must be careful, as we already know USUP to be undecidable—hence, the redex procedure,
being sound, cannot also be complete.

Instead, we restrict our attention to the set of USUP instances upon which the reduction proce-
dure terminates (itself an undecidable set), and prove completeness on that set. Our completeness
results are consequences of the following general theorem:

16

Theorem 3 Let Γ = {〈τi ≤ µi, ~αi〉}Ni=1 be a solvable USUP instance, upon which the USUP redex
procedure terminates, and let σ0 be a substitution performed by one iteration of the redex procedure.
Then Γσ0 = {〈τiσ0 ≤ µiσ0,Vars(~αiσ0)〉}Ni=1 is solvable. Moreover, if σ is any solution of the
problem instance, then, when the domains are restricted to identifiers in Γ, we have σ = σ′ ◦ σ0 for
some substitution σ′. More precisely, σ|Vars(Γ) = (σ′ ◦ σ0)|Vars(Γ).

Proof Let Γ be solvable. Then there is a substitution σ for which there are substitutions σi such
that for all i,

τiσσi = µiσ and dom(σi) ∩Vars(~αiσ) = ∅ .

There are four cases to consider:

• Redex-I reduction. For some i and path Σ, Σ(τi) = τ for some expression τ , where τ is
not a true variable, and Σ(µi) = α for some true variable α. Since τiσσi = µiσσi, we have
ασ = τσσi. ασ must be at least as big as τσ, otherwise there is no solution. Therefore,
σ, restricted to Vars(Γ), can be written as (σ′ ◦ [τ ′/α])|V ars(Γ) (where τ ′ is the consistent
replacement of variables in τ by fresh ones) for some σ′. Since [τ ′/α] is the reduction σ0 our
procedure performs, the result follows for this case.

• Redex-II reduction. For some i and paths Σ1 and Σ2, we have Σ1(τi) = Σ2(τi) = α, and
Σ1(µi) 6= Σ2(µi). Call these µi1 and µi2 , respectively. We have µ1σ = ασσi = µ2σ, so σ
unifies µi1 and µi2 . Therefore, σ = σ′ ◦ σU , where σU = MGU(µi1 , µi2). Since σU is the
reduction σ0 we perform, the result holds for redex-II reduction.

• Redex-III reduction. For some i and minimal path Σ, we have Σ(τi) = τ and Σ(µi) = µ,
where τ is an expression containing only unknowns at the leaves and µ is any expression not
equal to τ . Then τσσi = µσ. Since σ cannot map an unknown to any expression containing
true variables, and σi cannot have unknowns in its domain, we have τσσi = τσ. Therefore,
σ unifies γ and µ. As a result, σ = σ′ ◦ σU for some substitution σ′, where σU = MGU(τ, µ).
Since σU is the reduction σ0 we perform, the result holds for redex-III reduction.

• Redex-IV reduction. For some i and path Σ, we have Σ(µi) = γ and Σ(τi) = τ , where γ is
an unknown and τ is any expression. Then τσσi = γσ. γσ must be at least as big as τ , and
must be an expression involving only unknowns. Therefore σ, when restricted to Vars(Γ), can
be written as some substitution composed with σ0 = [τ∗/γ] (both sides restricted, as usual,
to Vars(Γ)), which is what the reduction rule prescribes. Hence, the result holds for redex-IV
reduction.

Since this is the entire set of redex forms we reduce, our procedure does not render a solvable
instance unsolvable. �

Corollary 2 Let Γ be a solvable USUP instance, on which the USUP redex procedure terminates.
Then the procedure produces a solution for Γ.

Proof By repeated application of the theorem, each reduction results in a solvable instance. There-
fore, when the procedure terminates upon finding no more redexes, the instance is solvable. There-
fore, there will be no functor mismatches (and there can be no occurs-check violations in the absence
of a redex). Then the only other possibility is that the redex procedure succeeds and returns a
substitution on termination. Therefore, the procedure produces a solution for all solvable instances
on which it terminates (correctness of this solution follows from soundness). �

17

Corollary 3 Let Γ be a solvable USUP instance on which the redex procedure terminates and let σ
be the solution produced by the procedure (whose existence is guaranteed by the previous corollary).
Let σ′ be any other solution of Γ. Then there exists a substitution σ′′ such that σ′|Vars(Γ) = (σ′′ ◦
σ)|Vars(Γ).

To aid in the proof of the corollary, we introduce the following notation:

Definition 11 (Range of a Substitution) Given a substitution σ define

ran(σ) =
⋃

α∈dom(σ)

Vars(ασ) .

Proof of Corollary 3 Given a set V of identifiers and a substitution σ such that dom(σ) ⊆ V ,
define a function f on σ and V as follows:

f(σ, V) = ran(σ) ∪ (V \ dom(σ)) .

The application f(σ, V) denotes the set of values upon which a substitution σ′ may act such that
(σ′ ◦ σ)|V 6= σ. Now, let σi denote the substitution performed by the i-th iteration of the redex
procedure. Let V0 = Vars(Γ). Then, from the theorem, we have

σ|V0 = (σ′ ◦ σ1)|V0 ,

i.e.,
σ|V0 = (σ′|f(σ1,V0) ◦ σ1|V0)|V0 .

Now, for all i > 0, define Vi = f(σi, Vi−1), so that the equation becomes

σ|V0 = (σ′|V1 ◦ σ1|V0)|V0 .

Now, since σ solves Γ, so does σ|V0 , and therefore, σ′V1
solves Γσ1 (note that σ1|V0 = σ1, by

construction). Therefore, by a second application of the theorem,

σ′|V1 = (σ′′|V2 ◦ σ2|V1)|V1 ,

for some substitution σ′′. A third application of the theorem gives

σ′′|V2 = (σ′′′|V3 ◦ σ3|V2)|V2 ,

for some substitution σ′′′. If the procedure performs n reductions before terminating, then the n-th
application of the theorem gives

σ(n−1)|Vn−1 = (σ(n)|Vn ◦ σn|Vn−1)|Vn−1 ,

for some substitution σ(n). Substituting these equations into one another yields

σ|V0 = (((· · · (σ(n)|Vn ◦ σn|Vn−1)|Vn−1 ◦ · · · ◦ σ3|V2)|V2 ◦ σ2|V1)|V1 ◦ σ1|V0)|V0

= (((· · · (σ(n) ◦ σn)|Vn−1 ◦ · · · ◦ σ3|V2)|V2 ◦ σ2|V1)|V1 ◦ σ1|V0)|V0

= · · ·
= (((σ(n) ◦ σn ◦ · · · ◦ σ3)|V2 ◦ σ2|V1)|V1 ◦ σ1|V0)|V0

= (σ(n) ◦ σn ◦ · · · ◦ σ1)|V0

= (σ(n) ◦ (σn ◦ · · · ◦ σ1))|V0 .

Since σn ◦ · · · ◦ σ1 is the substitution returned by the procedure, we obtain the desired result. �

Thus, the USUP redex procedure is not only complete for the set of instances on which it terminates,
but the solutions it outputs are most general semiunifiers (MGSU’s) for the problem instance.

18

6.2 Termination

Having established soundness and completeness of the USUP redex procedure for instances on
which it terminates, we now turn our attention to characterizing the set of instances on which the
procedure terminates. As this set is not decidable, our goal will, of course, be to produce large,
interesting, decidable subsets of the full set.

Our first termination result is that, in analogy to SUP, the redex procedure for USUP terminates
on all USUP instances that possess a solution:

Theorem 4 Let Γ be a USUP instance that possesses a solution. Then the USUP redex procedure
terminates when applied to Γ.

Proof Given two substitutions σ1 and σ2, and a USUP instance Γ, we define σ1 >Γ σ2 iff∑
α∈Vars(Γ)

|ασ1| >
∑

α∈Vars(Γ)

|ασ2| ,

or ∑
α∈Vars(Γ)

|ασ1| =
∑

α∈Vars(Γ)

|ασ2| and |Vars(Γσ1)| < |Vars(Γσ2)| ,

where, for an expression τ , |τ | denotes it size:

|α| = 1

|f(τ1, . . . , τn)| = 1 +
n∑
i=1

|τi| .

We show that the procedure must maintain the invariant that σ ≥Γ σk, where σ is any solution
of the instance Γ, and σk is the accumulated substitution after k iterations of the procedure, and
moreover, σk >Γ σk−1 for all k > 1. Since >Γ may be rephrased as simply a lexicographic ordering
on the tuple 〈 ∑

α∈Vars(Γ)

|ασk|, |Vars(Γσ)| − |Vars(Γσk)|

〉
,

it is a well-ordering, and therefore the above conditions are sufficient to guarantee termination.
Let V = Vars(Γ). For the first part of the claim, suppose σ is a solution of the instance and

σk is the result of k iterations of the algorithm. Then by k-fold application of Theorem 3, we have
that there exists a substitution σ′ such that

σ|V = (σ′ ◦ σk)|V .

Suppose σ 6≥Γ σk. Then there are two possibilities:

•
∑

α∈V |ασ| <
∑

α∈V |ασk|. Since composing an additional substitution σ′ onto σk can only
replace identifiers at the leaves of ασk, for each α, with other identifiers or with compound
expressions, composing σ′ onto σk cannot reduce σk’s total size over identifiers in V ; hence
it cannot reduce σk’s total size over V to that of σ, and therefore it cannot satisfy σ|V =
(σ′ ◦ σk)|V , which contradicts our previous assertion.

•
∑

α∈V |ασ| =
∑

α∈V |ασk|, and |Vars(Γσ)| > |Vars(Γσk)|. Composing an additional substitu-
tion σ′ onto σk replaces identifiers at the leaves of ασk, for each α, with compound expressions
or identifiers. The former would increase the total size over V of σk beyond that of σ, which,

19

as we have already seen, is impossible. In the latter case, the total size of σk over V remains
unchanged, as identifiers are simply replaced with other identifiers. In doing so, a substitu-
tion may unify two identifiers, thus reducing the total number of identifiers in the reduced
instance, but it cannot split two occurrences of the same identifier into two different identi-
fiers. Thus, composing a substitution σ′ onto σk cannot decrease the number of variables in
the reduced instance, and therefore |Vars(Γσkσ′)| cannot be equal to |Vars(Γσ)|. Thus, σ′

cannot satisfy σ|V = (σ′ ◦ σk)|V , which contradicts our previous assertion.

Thus, indeed, any solution σ of Γ satisfies σ ≥Γ σk for all k.
It remains to show that each redex reduction makes positive progress towards a solution σ,

according to >Γ, i.e., that for all k > 1, σk >Γ σk−1, where σk and σk−1 denote, respectively, the
accumulated substitutions produced by k and k− 1 iterations of the algorithm. We then have that
σk = σk,k−1 ◦ σk−1, where σk,k−1 is the redex reduction performed by the k-th iteration of the
procedure. The proof then proceeds according to the type of replacement performed by σk,k−1:

• σk,k−1 replaces a variable α with a compound expression. Then α ∈ Vk, since the algorithm,
on the k-th iteration, only replaces variables in Vk. Hence, there is a variable β ∈ V such
that |βσk| > |βσk−1|; hence σk > Γσk−1.

• σk,k−1 replaces an identifier α with an identifier. Then the total size of σk over V is the same as
that of σk−1. Note that σk,k−1 will not replace α with a fresh identifier—the only reductions
that generate fresh identifiers are redex-I and redex-IV reductions, and even within these,
fresh variables are only generated when α is replaced by a functor application. Moreover, the
identifier with which σk,k−1 replaces α is not α itself—the redex procedure never outputs an
identity substitution. The only remaining possibility is that ασk,k−1 is an identifier β ∈ Vk.
Thus σk,k−1 unifies the identifiers α and β, so that |Vars(Γσk)| = |Vars(Γσk−1)|−1. Therefore,
σk >Γ σk−1.

• σk,k−1 is an MGU from redex-II or redex-III reduction. Then σk,k−1 may be viewed as a
sequence of substitutions, each of which has one of the two forms above, and the result
follows by the above arguments.

Having exhausted the possible forms of σk,k−1, we conclude that in all cases, σk >Γ σk−1. This,
combined with the fact that any solution σ of Γ bounds all σk from above under >Γ, and that the
double induction is well-ordered, implies termination of the USUP redex procedure on all solvable
instances. �

This last result implies that the USUP instances that give rise to non-termination all have no solu-
tion. Our task is now to prove that, even among the unsolvable instances, we still have termination
for subsets of interest.

The problem of termination for unsolvable instances is considerably more subtle than for solv-
able instances—this is at least partly because USUP is undecidable, and therefore infinitely many
unsolvable instances must cause the reduction procedure to loop forever.

We would ultimately like to find a graph-theoretic treatment of USUP instances, analogous to
our treatment of SUP, upon which to base our termination argument. The principal difficulty in
establishing such a formulation lies in deciding how to account for unknowns in the structure of
the graph of a given USUP instance. While we might like, for example, to treat unknowns like
true variables, such a treatment would mean that inequalities like α → γ ≤ γ → β, in which an
unknown γ appears on both sides, would contain self-loops, and therefore violate all notions of
acyclicity heretofore considered. We would, however, like to be able to allow an unknown to appear

20

on both sides of the same inequality—in fact, redex-I, redex-III, and redex-IV reduction, which by
definition involve copying unknowns across an inequality, depend on this ability. At the same time,
we must have a notion of acyclicity (one that is pertinent to our intended application, namely type
inference for ML0) to go with our formulation of USUP graphs.

One possible approach to treating unknowns in a graph-theoretic setting might be to exclude
them from consideration—since they are not strictly variables, they would not be allowed to con-
tribute edges to the graph. An intuitive justification for this approach might be that since unknowns
are meant to model constants (i.e., nullary functors like Int and Bool), which do not contribute
edges to the graph, unknowns should similarly be excluded. This approach is not completely satis-
factory, however, because unlike true constants, unknowns can be replaced during reductions, and
therefore information can flow from one vertex to another via the replacement of an unknown.

As an example of an unknown reduction triggering an infinite reduction sequence, consider the
following instance:

α→ α ≤ β

β ≤ α .

If unknowns are not permitted to contribute edges, then the USUP graph for this instance is simply
a single edge pointing from the first inequality to the second inequality, and is clearly R-acyclic.
The first inequality contains a redex-I, whose reduction yields

α→ α ≤ γ → γ

γ → γ ≤ α .

There is now a redex-IV in the second inequality, whose reduction yields

(δ → δ)→ (δ → δ) ≤ γ → γ

γ → γ ≤ δ → δ ,

and the re-emergence of redex-I’s in the first inequality makes it clear that this sequence of reduc-
tions will not terminate. On the other hand, if the unknown α had been allowed to contribute an
edge, then the graph would have exhibited a cycle between the two vertices, and the instance would
have been rejected as a consequence.

A key feature of unknowns, not possessed by true variables, is that they permit bidirectional
information flow across an inequality. With true variables, conditions on the left-hand side of an
inequality can cause replacements on the right-hand side, but not vice versa. The same is possible
for unknowns. Consider, for example, the following inequality:

α→ β ≤ γ .

In this inequality, there is a redex-IV, whose reduction yields the following solved inequality:

α→ β ≤ δ → ε ,

where δ and ε are fresh unknowns.
With unknowns, however, information flow in the reverse direction is also possible. Consider

the same inequality, reversed:
γ ≤ α→ β .

This inequality contains a redex-III, whose reduction yields

α→ β ≤ α→ β .

21

This time, it is a condition on the right-hand side of the inequality that leads to a replacement
on the left-hand side. Any graph-theoretic formulation of USUP, one would expect, then, must
somehow be able to capture this kind of bi-directional information flow that can arise during
unknown reduction.

One possible approach to constructing the graph of an instance containing unknowns might be
to take each inequality τ ≤ µ, in which an unknown appears, and add both the vertex τ ≤ µ and
its reversal µ ≤ τ to the graph. In this way, since the inequality is present in both directions,
the bidirectional information flow of unknowns is definitely captured. However, this approach also
implies a bidirectional information flow for ordinary variables, which is simply not the case. The
resulting graph, therefore, would be overly pessimistic about non-termination. Furthermore, by
including both a vertex and its reversal in the graph, cycles will surely be introduced into the
graph structure, and these would somehow need to be explained away as harmless (if this is indeed
the case).

Alternatively, we might consider mapping a USUP instance into several graphs, each of which
contains either τ ≤ µ or µ ≤ τ as a vertex, for each inequality τ ≤ µ that features an unknown.
This approach, however, leads to an exponentially large number of graphs for a USUP instance of
even modest size. Though USUP graphs are primarily a theoretical tool to facilitate reasoning,
it may be advantageous to some program analysis applications to actually construct the graphs,
which would prove intractable with an exponentially large number of USUP graphs. Further, such
a formulation is overly optimistic—within a single given inequality, unknown information may flow
in both directions. Hence, we could not be certain of catching all non-terminating instances with
an acyclicity argument.

The correct approach is to treat all unknowns as occurring on right-hand sides when constructing
the edges of the USUP graph:

Definition 12 (Graph of a USUP instance) Let Γ = {〈τi ≤ µi, ~αi〉}Ni=1 be a USUP instance.
The graph of Γ, denoted G(Γ), is defined as follows:

• the inequalities τi ≤ µi are the vertices vi in G;

• vi → vj iff (RVars(vi) ∪ (LVars(vi) ∩ ~αi)) ∩ (LVars(vj) \ ~αj) 6= ∅ .

In the absence of unknowns (i.e., if each ~αi = ∅), this definition is identical to the original for SUP.
When unknowns are present, however, regardless of which side of the inequality actually contains
them, they are treated as if they occur on the right-hand side.

Having defined the graph of a USUP instance, we now obtain definitions of acyclic semiuni-
fication with unknowns (AUSUP) and R-acyclic semiunification with unknowns (R-AUSUP) for
free.

Under this characterization, the USUP instance in our first example,

α→ α ≤ β

β ≤ α ,

would have a graph in which each vertex had an edge leading to the other; hence, the graph would be
cyclic, and therefore rejected. If we reversed the second inequality, thereby obtaining the instance

α→ α ≤ β

α ≤ β ,

reduction of the redex-III in the second inequality would immediately create an occurs-check vio-
lation, and terminate the redex procedure. What is noteworthy about this example is that if we

22

had simply treated unknowns as ordinary variables for the purpose of constructing the graph, the
resulting graph would have had no edges, and therefore would have been trivially R-acyclic. As it
is, there is now an edge from the second inequality to the first (since the unknown α is regarded as
being on the right-hand side, but the variable α remains on the left). Since the variable β occurs
on the right-hand sides of both inequalities, which are connected by an edge, the graph cannot be
R-acyclic, and is therefore rejected before the occurs-check violation arises.

Under this graph-theoretic characterization of USUP, we can allow unknowns to occur on both
sides of the same inequality without creating a self-loop in the graph—since the left-hand side
occurrences of the unknown are regarded as right-hand side occurrences for the purposes of the
graph, there is no longer any basis for constructing an edge from the vertex to itself.

The most important property of R-acyclicity under USUP is that, like its counterpart under
SUP, it is an invariant under redex reduction:

Theorem 5 (Invariance of R-acyclicity for USUP) Let Γ be a USUP instance, and let Γ′ be
the result of performing one iteration of the USUP redex procedure on Γ (i.e., the result of reducing
one redex in Γ). If G(Γ) is R-acyclic, then G(Γ′) is R-acyclic.

Proof The proof dispatches on the kind of redex reduced in Γ. Suppose the redex occurs in the
inequality τi ≤ µi. Then the argument proceeds as follows:

• redex-I. Then all occurrences of some true variable α are replaced with some expression τ ′,
containing only fresh variables, along with whatever unknowns are present in the correspond-
ing expression τ on the left-hand side. If τ contains no unknowns, then all vertices that
contained α now contain the variables (if any) of τ ′, and no other vertices contain these vari-
ables because they are all fresh—therefore no edges are created by this reduction. Hence,
no R-cycles can be created, and G remains R-acyclic. If, on the other hand, τ contains an
unknown γ, then there are two possibilities:

– the reduction [τ ′/α], where τ ′ contains the unknown γ induces, by the creation of edges,
the relations β1R · · ·Rβm, and such that βmR′β1, for some β1, . . . , βm. The introduction
of γ in replacement of α can only create edges if there is an inequality τj ≤ µj , in which
γ appears on the left-hand side (i.e., within τj) as a true variable. Then an edge is
created from any vertex τk ≤ µk which contains α on the right-hand side, to τk ≤ µk.
The introduction of this edge produces δR′β for any δ ∈ Vars(µk) and β ∈ Vars(µj).
However, in the inequality τi ≤ µi, which contains the redex, we have γR′β, and since µi
and µk both contain α, we have δRαRγR′β before reduction. Hence the introduction of
δR′β cannot introduce an R-cycle that was not already there. Thus G(Γ′) is R-acyclic.

– we had βiR · · ·Rβj and βkR · · ·Rβl, for some βi, βj , βk, and βl, and the redex reduction
unifies βj and βk, thus linking the two R-chains. In this case, if a redex-I reduction
unifies βj and βk, then one of these two identifiers (say βj) is the variable α, which
occurs within µi. The other identifier (say βk) is an unknown within τ ′ (without loss
of generality, the unknown γ), and occurs within τi. But since α occurs in µi, and γ
is unknown and occurs in τi, we have αRγ, i.e., βjRβk. Thus, the variables βk and
βk are R-related anyway, and any R-acyclicity violation involving these variables would
have existed before they were unified. Thus, unifying these variables only results in a
non-R-acyclic instance if the instance already was not R-acyclic.

• redex-II. If reduction causes G to lose R-acyclicity, then as in the case of redex-I reduction,
there are two possibilities:

23

– there is a variable replacement [τ/α] that occurs during reduction, which induces, for
some β1, . . . βn, the relations β1R · · ·Rβn, and such that βnR′β1. Since [τ/α] caused the
violation, it created an edge that completed one of the paths from βi to β(i mod n)+1. For
such an i, there is an edge from some vj → vk lying along this path, that was created by
the substitution [τ/α]. Hence, one of RVars(vj) and LVars(vk) contains the identifier α;
the other contains an identifier from τ , say γ. Now, the redex [τ/α] exists because of the
inequality vi = (τi ≤ µi) that satisfies the conditions for this redex-II; hence α and γ are
both in RVars(vi). Since one of α and γ is in LVars(vk) (note that whichever of α or γ
is in LVars(vk) cannot be an unknown in vk, otherwise the edge from vj to vk could not
have existed in the first place), we have vi → vk. Since either α or γ is in RVars(vj), and
both are in RVars(vi), the transitive closure of R connects the path ending with vj to
the path beginning with vi, and followed by vk. Hence, the removal of the edge from vj
to τk ≤ µk does not restore R-acyclicity. Thus, removing edges introduced by redex-II
reductions cannot convert graphs that are not R-acyclic to graphs that are.

– we had βiR · · ·Rβj and βkR · · ·Rβl, for some βi, βj , βk, and βl, and the redex reduction
unifies βj and βk, thus linking the two R-chains. In this case, if a redex-II reduction
unifies βj and βk, then these two identifiers must occur together on the right-hand side
of the inequality vi = (τi ≤ µi), in which the redex occurs. Hence βjRβk, and we
already had βiR · · ·RβjRβkR · · ·Rβl, i.e., the two R-chains were already linked. Again,
the redex-II reduction can only result in a non-R-acyclic instance if the instance was
non-R-acyclic to begin with.

In both cases, we see that redex-II reduction cannot reduce a graph that is R-acyclic to one
that is not.

• redex-III. A redex-III reduction, which unifies an expression containing unknowns on the left
with an arbitrary expression on the right, may be viewed as a sequence of substitutions of
the form [τ∗/α] for unknowns α on the left, and redex-I reductions on the right. As we have
already completed the argument for redex-I reductions, we can focus our attention on a single
replacement [τ∗/α] on the left-hand side. Then, as before, there are two possibilities:

– Suppose a reduction [τ∗/α] in the vertex vi = (τi ≤ µi) creates an edge from a vertex vj
to a vertex vk. Let γ be an unknown in τ∗ (if τ∗ contains no unknowns, then it contains
no identifiers and the replacement [τ∗/α] cannot create edges). Then one of α and γ is
in RVars(vj) (or unknown in vj and in LVars(vj)), and the other is in LVars(vk) and is
therefore not an unknown in vk. On the other hand, α ∈ LVars(vi) and γ ∈ RVars(vi).
Thus, vi → vk, and therefore either αR′γ or γR′α, depending on which is in LVars(vk).
But this gives, for any β ∈ RVars(vj), either βRαR′γ or βRγR′α. Hence, the edge
created by the reduction is of no consequence in terms of creating non-vacuous R-cycles,
and therefore, the reduced instance remains R-acyclic.

– Suppose instead that an R-acyclicity violation arises because we had βiR · · ·Rβj and
βkR · · ·Rβl, for some βi, βj , βk, and βl, and the redex reduction unifies βj and βk, thus
linking the two R-chains. Then these two identifiers occur in corresponding positions
on opposite sides of the inequality vi, and both are unknown. Hence, βjRβk anyway,
and any R-acyclicity violation would therefore have already existed. Hence, the reduced
instance is R-acyclic.

• redex-IV. The argument for redex-IV reduction is identical to the argument for redex-III
reduction, except that τ∗ (hence γ) and α now occur, respectively on the left-hand and right-

24

hand sides of vi. However, since unknowns are considered to reside on right-hand sides for
the purpose of constructing USUP graphs, we still obtain either αR′γ or γR′α, depending on
whether α or γ is in LVars(vk).

In summary, then, the USUP redex procedure preserves R-acyclicity. �

Corollary 4 Let α and β be variables in an R-AUSUP instance Γ, with αR′β. Let α′ ∈ Vars(ασ),
β′ ∈ Vars(βσ). Then no reduction σ of Γ will produce β′Rα′.

Proof Consider the instance

Γ′ := Γ ∪ {x1 ≤ f(α, x2), x2 ≤ β} ,

where x1 and x2 are fresh true variables. Then this extra inequality gives us αR′β, which we
already had, and x2R

′β, which is of no consequence because x2 does not occur anywhere else.
Therefore, this instance is R-acyclic iff Γ is. If Γ reduces such that we obtain β′Rα′, then in Γ′,
we have α′R′β′Rα′ (because no reduction will affect the two extra inequalities). Hence Γ′ is now
non-R-acyclic. But this contradicts the invariance of R-acyclicity. Therefore, Γ cannot reduce so
as to produce β′Rα′.

Note that this argument presumes the existence of at least one binary functor, f . But without
a binary functor, there can be no redex-II’s, and the other reductions cannot create edges. Thus,
the result follows either way. �

Corollary 5 Let v1 and v2 be vertices in the graph of an R-AUSUP instance Γ, such that v1

precedes v2 in the partial order induced by the graph. Suppose that after k iterations of the redex
procedure (i.e., after reduction of k redexes), Γ reduces to an instance Γk. Let σk be the substitution
that converts Γ to Γk (i.e., σk is the accumulated substitution encapsulating the k redex reductions).
Then v2σk cannot precede v1σk in the graph of Γk.

Proof Let v1 = τ1 ≤ µ1, v2 = τ2 ≤ µ2. Let α ∈ Vars(µ1), β ∈ Vars(µ2). If v1 precedes v2 in
the partial order induced by the graph, then we have αR′β. If, after reduction, the graph has
v2 preceding v1, then we would have variables α′ ∈ Vars(ασ), β′ ∈ Vars(βσ) such that β′R′α′,
contradicting the previous claim.

This argument presumes that µ1 and µ2 each contain at least one identifier. We know that µ1

must contain an identifier; otherwise v1 could not precede anything (it would have no out-edges).
Further if µ2 had no identifiers, then no reduction could make v2 precede anything. Hence, the
case where either inequality contains no identifiers on the right-hand side poses no difficulty. �

To complete our proof of termination, we must show that an infinite redex reduction sequence
cannot flow through an R-acyclic graph. We first establish termination for single-inequality USUP
instances. As a first step, we present the following result:

Definition 13 We use the term unknown reduction to denote a redex-III or redex-IV reduction.
We use the term variable reduction to denote a redex-I or redex-II reduction.

Lemma 2 Let Γ = {〈τi ≤ µi, ~αi〉}Ni=1 be a USUP instance. Then the number of unknown reductions
that can occur between successive variable reductions in Γ is finite.

Proof Suppose an unknown reduction in Γ replaces an unknown γ. The proof dispatches on the
image of γ under the reduction:

25

• γ is replaced by a functor application τ∗. Then the total number of unknowns in the instance
increases by |Vars(τ)| − 1. This kind of reduction can only occur when there is a path Σ
such that for some i, Σ(µi) is a functor application and Σ(τi) is an unknown (i.e., redex-III
reduction) or vice versa (i.e., redex-IV reduction). Thus, the number of opportunities for this
kind of reduction is bounded above by the number of paths Σ for which this condition holds,
which is finite. Furthermore, reductions of this kind cannot create further opportunities for
reduction, as no variables are replaced with larger expressions under this reduction (only un-
knowns are replaced). Thus, the paths Σ leading to unknowns grow in size, and consequently
the size of corresponding variable expressions shrinks. Therefore, only finitely many of this
kind of reduction can occur.

• γ is replaced by some other unknown γ′. In this case, the total number of distinct unknowns
in the instance decreases by one. As there are only finitely many unknowns at any given
time, the number of replacements by unknowns that can occur between replacements by
functor applications is finite. Further, replacing unknowns with unknowns cannot create
an opportunity for further replacement by functor application because, as argued above, no
variables are replaced. Therefore, the number of reductions of the first kind is finite in an
absolute sense (assuming no variable reductions).

Since the number of reductions in the second category that can occur between reductions of the
first kind is finite, and the total number of reductions in the first category is finite, we conclude that
the total number of unknown reductions that can take place in the absence of variable reductions
is finite. �

Before proceeding, it will be convenient to distinguish between two types of redex-I:

Definition 14 (Redex-I of the first and second kind) A redex-I in an inequality τ ≤ µ, given
by a path Σ such that Σ(µ) is a variable and Σ(τ) is not a variable is said to be of the first kind if
Σ(τ) contains at least one variable that is not an unknown, and of the second kind if Σ(τ) contains
no variables other than unknowns.

Note that any redex-I of the second kind may also be viewed as part of a redex-III. We now show
that a single inequality can only give rise to finitely many reductions:

Lemma 3 Every instance of USUP comprising a single inequality τ ≤ µ, with unknowns ~α, and
(Vars(τ) ∩ Vars(µ)) \ ~α = ∅, is solvable by the USUP redex procedure (that is, the USUP redex
procedure will terminate on such an input).

Proof We bound the number of redex reductions that can be performed in τ ≤ µ:

• The number of redex-I reductions of the first kind in τ ≤ µ is bounded by the number of leaf
nodes in τ (i.e., by the number of variable occurrences in τ). Every redex-I reduction causes
at least one variable α in τ to be matched against a variable in µ. No further reduction will
ever again cause this occurrence of α to be part of a redex-I. Hence there can be no more
redex-I’s of the first kind than leaves in τ . (Note that, because Vars(τ) ∩Vars(µ) = ∅, redex
reduction does not change τ .)

• The number of redex-II reductions that can occur in τ ≤ µ before a redex-I reduction must
occur is bounded by |Vars(µ)|. This is because each redex-II reduction replaces at least one
variable in µ; hence it decreases |Vars(µ)| by at least 1.

26

• The number of unknown reductions that can take place between successive variable reductions
is finite. This is simply Lemma 2.

• The number of redex-I reductions of the second kind in τ ≤ µ that can occur before an redex-I
reduction of the first kind must occur is bounded by |Vars(µ) \ ~α|. Each redex-I reduction of
the first kind replaces a true variable (i.e., not an unknown) in Vars(µ) with an expression
containing only unknowns; hence, |Vars(µ) \ ~α| decreases by 1.

Since the number of unknown reductions that can occur between variable reductions is bounded, the
number of redex-II reductions and redex-I reductions of the second kind that can occur between
redex-I reductions of the first kind is bounded, and the total number of redex-I reductions is
bounded, the USUP redex procedure must eventually terminate. �

The following result states that redexes can only be induced along edges in the USUP graph:

Lemma 4 Let Γ = {〈τi ≤ µi, ~αi〉}Ni=1 be an instance of USUP, and suppose a redex reduction σ in
an inequality vi = (τi ≤ µi) induces a redex in an inequality vj = (τj ≤ µj). Then there is an edge
from vi to vj in G(Γ).

Proof We proceed according to the kind of redex induced:

• redex-I. If a redex-I is created in vj then for some path Σ, Σ(µjσ) is a variable, and Σ(τjσ)
is not a variable. Since the redex-I did not exist previously, Σ(τj) must be a variable. Hence,
σ contains the replacement [Σ(τjσ)/Σ(τj)]. Since redex reductions indicate replacements of
variables on the right-hand sides of inequalities in which they originate, or of unknowns on
either side, it follows that either Σ(τj) ∈ Vars(µi) or Σ(τj) is unknown. Either way, there is
an edge from vi to vj .

• redex-II. If a redex-II is created in vj , then for some paths Σ1, Σ2, Σ1(τjσ) = Σ2(τjσ) = α
for some variable α and Σ1(µjσ) 6= Σ2(µjσ). Since substitutions cannot “un-unify” two
expressions, it follows that Σ1(µj) 6= Σ2(µj), or at least one of these does not exist. In the
former case, since the redex did not exist previously, we must have Σ1(τj) 6= Σ2(τj). Hence,
at least one of these was replaced during the redex reduction, and therefore either occurs
in µj or is unknown. Either way, there is an edge from vi to vj . In the latter case, the
non-existence of either Σ1(µj) or Σ2(µj) indicates that there is already at least one redex-I
at that site, and reduction of this redex-I within vj itself would create the redex-II anyway.
Hence this redex-II does not arise strictly as a result of a reduction in vi. In those cases in
which it does, however, we always have vi → vj .

• redex-III. If a redex-III is created in vj , then for some path Σ, Σ(τjσ) contains only unknowns
at the leaves, Σ(µjσ) exists and is not equal to Σ(τjσ), and no prefix of Σ has this property.
Since the redex did not exist previously, and reductions cannot “un-unify” expressions, we
conclude that Σ(τj) must contain a variable α. Then α is replaced in vi, which implies that
α ∈ Vars(µi). Hence vi → vj .

• redex-IV. If a redex-IV is created in vj , then for some path Σ, Σ(µjσ) is an unknown γ, and
Σ(τjσ) exists, is not a variable, and is not equal to Σ(µjσ). Since the redex did not exist
previously, either Σ(µj) is a variable, or Σ(τjσ) is a variable α. In the latter case, α is replaced
in vi; hence α ∈ Vars(µi), and therefore vi → vj . In the former case, if the latter case does
not also hold, then there is a redex-I between Σ(τj) and Σ(µj). In this case, the reduction
in vi only changes the form of the redex in vj (i.e., from redex-I to redex-IV), rather than
introduce a new one.

27

�

We are now ready to establish our main result:

Theorem 6 Let Γ be an instance of USUP such that G(Γ) is R-acyclic. Then the USUP redex
procedure terminates on input Γ.

Proof The proof is similar to the termination proof for R-ASUP [8]—the invariance of R-acyclicity
establishes a partial order v on the vertices in G(Γ) that will not be violated by any reduction. Let
≤ be any total order consistent with v and number the vertices in Γ according to this order. Then
for any vertex vi, the only vertices vj in which vi can induce redexes are those for which j > i (this
is Lemma 4). We then proceed by induction on (n1, . . . , nN), under lexicographic ordering, where
N is the number of inequalities in Γ, and for each i, ni represents the number of redexes present in
the inequality vi considered in isolation (each ni is finite by arguments mirroring those in [8]). The
lexicographic ordering of (n1, . . . , nN) is a well-ordering of the N -tuple. If a reduction occurs in
vertex vi, then ni decreases by one, and all nk for k < i are unchanged. Thus the ordinal approaches
(0, . . . , 0) with each redex reduction. If the procedure does not abort early due to an error, the
ordinal will inevitably reach (0, . . . , 0), whereupon the entire instance contains no redexes, and the
procedure terminates. �

Theorem 6 establishes the decidability of the problem R-AUSUP, consisting of R-acyclic USUP
instances. As a consequence, the problem AUSUP, consisting of column-acyclic USUP instances,
is also decidable.

7 Syntax-Directed Translation to USUP

We have formally established a generalization of SUP, which we have named USUP, together with
a reduction procedure that is both sound and complete, outputs most general semiunifiers, and
terminates on all solvable instances and on all R-acyclic instances. These developments were done
for the purpose of formulating a syntax-directed translation from ML typability to a set of SUP-like
constraints. We establish the translation in this section.

7.1 Translation Rules

Figure 3 presents our translation, which derives statements of the form E ⇒ Γ, where E is a
labelled λ-term, and Γ is a set of USUP inequalities. Note that, because of our introduction of
unknowns, it is no longer formally necessary to treat monomorphic variables and polymorphic vari-
ables differently during translation. In particular, we no longer have to be careful to translate
polymorphic variable occurrences as inequalities and monomorphic variable occurrences as equa-
tions. Instead, because unknowns will propagate, via redex-III and redex-IV reductions, across
inequalities anyway, we can simply translate all variable occurrences as inequalities. A side-effect
of this simplification is that we now formally label the type variable associated with a given term
variable as a subscripted β, irrespective of whether the variable is monomorphic or polymorphic.
In the context of discussion, however, we may continue to assign monomorphic term variables type
variables labelled as subscripted γ’s, for the sake of clarity.

Our translation for monomorphic abstractions makes use of the notation “Γ + x”, which we
use to denote the addition of x as an unknown to each inequality in Γ. This notation is defined
formally as follows:

28

x⇒ {〈βx ≤ δx, {}〉}

M ⇒ Γ1 N ⇒ Γ2

MN ⇒ {〈δM = δN → δMN , {}〉} ∪ Γ1 ∪ Γ2

E ⇒ Γ
λpx.E ⇒ {〈δλpx.E = βx → δE , {}〉} ∪ Γ

E ⇒ Γ
λmx.E ⇒ {〈δλmx.E = βx → δE , {}〉} ∪ (Γ + x)

Figure 3: Syntax-directed translation from rank-2 typability to USUP.

Definition 15 (Γ + x-notation) Given a USUP instance Γ over a term algebra whose set V of
variables contains the identifier x, we use the notation Γ+x to denote the USUP instance Γ′, which
is identical to Γ, except that the identifier x is regarded as an unknown throughout Γ′:

∅+ x = ∅
({〈τ ≤ µ, ~α〉} ∪ Γ) + x = {〈τ ≤ µ, ~α ∪ {x}〉} ∪ (Γ + x)

With this definition in place, the rule for monomorphic abstractions now simply reads that we
translate a monomorphic abstraction by translating its body, adding x as an unknown to the
resulting inequalities, and then adding an additional inequality relating the parameter and body
type of the abstraction to the type of the abstraction itself.

Finally, the syntax-directed translation does not directly address type annotations on free vari-
ables. Under the original, non-syntax-directed translation procedure, free variables obtain their
types through a programmer-supplied type environment, which we translate into ASUP constraints
simply by creating an equality between the type variable assigned to the free term variable, and
its assigned type. This step has been omitted from our presentation, simply because the type
environment is external to the program, and therefore cannot be treated in a syntax-directed way.
However, the type environment is easily accommodated by adding equations for the free variables’
types to the instance at the end (accompanied by an empty set of unknowns).

For convenience in later sections, we introduce notation to capture the translation from typa-
bility to USUP:

Definition 16 Let E be a labelled λ-term and ∆ a type environment with FTV (E) ⊆ dom(∆). We
define USUP(E,∆) to be the USUP instance obtained by applying our translation procedure to the
term E under the type environment ∆. When ∆ is understood without ambiguity, or unimportant
to the discussion, we simply write USUP(E) to denote USUP(E,∆).

Comparing our new translation procedure with the original procedure, we see that our procedure
is considerably more concise, easier to understand, and fully syntax-directed—there is a one-to-one
correspondence between inequalities and the syntax elements they represent. Further, the size of
the USUP instance is linear1 in the size of the source program. In the remaining sections, we
show that the USUP instance output by our translation procedure actually captures the intended
semantics of ML typability, and produces terminating instances.

1Strictly speaking, the size of the USUP instance is not quite linear in the size of the term, because each variable

29

7.2 Soundness and Completeness

In Section 6.1, we showed that the USUP redex procedure is sound and complete (when it termi-
nates) with respect to the definition of a solution of a USUP instance. The other relevant notion
of soundness and completeness for USUP concerns whether the USUP representation of an ML
program faithfully represents the typability of the program. It is this question that we address in
this section.

Before we address questions of soundness and completeness, however, we first present type rules
for ML0, so that we have a semantics with which to compare our translation. These rules are
presented in Figure 4. We assume that a labelling step for λ-abstractions has taken place before

τ ::= α | τ → τ

π ::= τ | ∀α.π

∆ ` x : ∆(x)
[var]

∆ `M : τ1 → τ2 ∆ ` N : τ1

∆ `MN : τ2
[app] (M not an abstraction)

∆, x : τ1 ` E : τ2

∆ ` λmx.E : τ1 → τ2
[m-abs]

∆ ` N : π ∆, x : π `M : τ
∆ ` (λpx.M)N : τ

[redex]

∆ ` E : ∀α.π
∆ ` E : π[τ/α]

[spec]
∆ ` E : π

∆ ` E : ∀α.π [gen] (α not free in ∆)

Figure 4: Type rules for ML0.

the type rules are applied. The metavariables τ and π run, respectively, over open types and
polymorphic types. Also note that we disregard the order in which quantified variables are listed
on a quantified type, and will freely specialize them in any order we wish. This convenience can
be justified by repeated application of rules [spec] and [gen]; however it is simpler to merely adopt
the convention that the list of quantified variables in a type is unordered.

7.2.1 Soundness of the Translation

To establish soundness, intuitively we must show that, for an expression E, if USUP(E) is solved by
a substitution σ, which, when applied to the type variable δE , representing the type of E, produces
a type τ , then ∀.τ is derivable as a type for E from the type rules for ML0.

Note that since (by definition) the polymorphic abstractions in the ML0 program are all paired
with arguments, even though the type system above includes quantifiers nested to the left of the
→-functor, such types will have been eliminated by the end of the type inference process.

The soundness of our translation procedure is a consequence of the following theorem:

Theorem 7 Let E be a labelled λ-term in which each variable x ∈ FV (E) is labelled as either
monomorphic or polymorphic. Let ∆ be a type environment such that FV (E) ⊆ dom(∆), and for

that plays the role of unknown is listed with every inequality in which it is an unknown. Hence, the size of the
representation is dependent on the number of unknowns times the size of their scope. However, this non-linearity can
be removed using a tree-based representation of the problem instance, so that the repetition of unknowns is avoided.

30

each monomorphic (resp. polymorphic) x ∈ FV (E), ∆(x) = τ (resp. ∆(x) = ∀.τ) for some (open)
type τ . Suppose that USUP(E,∆) possesses a solution σ. Then the statement ∆σ ` E : δEσ
is derivable from the rules in Figure 4, where for every x ∈ FV (E), (∆σ)(x) = βxσ if x is
monomorphic and (∆σ)(x) = ∀.βxσ if x is polymorphic (throughout the above, the notation ∀.τ
denotes quantification over all of FTV (τ) \ FTV (∆)).

Proof The proof is by structural induction, dispatching on the form of the expression E:

• E is a variable x. Since x is necessarily a free variable, then by hypothesis, x has a binding
in ∆. Then, depending on whether x is monomorphic or polymorphic, we proceed as follows:

– x is polymorphic, i.e., βx is a true variable, and not an unknown. Then ∆(x) = ∀.τ for
some open type τ . The instance Γ := USUP(x,∆) contains the inequalities βx ≤ δE
and βx = τ . It suffices to show that ∆σ ` E : δEσ is derivable for every σ that
solves Γ. Now, if σ solves Γ, then there is a substitution σ1 such that βxσσ1 = δEσ
and βxσ = τσ. Then τσσ1 = δEσ. By rule [var], ∆ ` E : ∀~α.τ is derivable, where
~α = FTV (τ) \ FTV (∆). Then ∆σ ` E : ∀. ~α′τσ (i.e., ∆σ ` E : ∀. ~α′βxσ) is derivable,
where ~α′ = FTV (τσ)\FTV (∆σ). Since the action of σ1 on βxσ is completely determined
by its action on ~α′ (all other identifiers in Vars(βxσ) are unknowns), we can apply rule
[spec] and specialize each α ∈ ~α′ to ασ, and arrive at ∆σ ` x : βxσσ1, and since
βxσσ1 = δEσ, we obtain the desired result.

– x is monomorphic, i.e., βx is an unknown. Then ∆(x) = τ for some open type τ . The
instance Γ := USUP(x,∆) contains the inequalities βx ≤ δE and βx = τ . It suffices to
show that ∆ ` E : δEσ is derivable for every σ that solves Γ. Now, if σ solves Γ, then
there is a substitution σ1 such that βxσσ1 = δEσ and βxσ = τσ. Since dom(σ1) contains
no unknowns, the first equation becomes βxσ = δEσ. Then we obtain τσ = δEσ. By
rule [var], ∆ ` E : τ is derivable. Then ∆σ ` E : τσ, i.e., ∆σ ` E : δEσ is derivable.

• E is an application MN , where M is not an abstraction. Then USUP(E,∆) contains the
equality δM = δN → δE . Then for any solution σ of USUP(E,∆), we will have δMσ = δNσ →
δEσ. By induction, the statement ∆σ ` M : δMσ is derivable, and for each x ∈ FV (M),
(∆σ)(x) = βxσ if x is monomorphic and (∆σ)(x) = ∀.βxσ if x is polymorphic. Hence, the
statement ∆σ `M : δNσ → δEσ is derivable. Also by induction, the statement ∆σ ` N : δNσ
is derivable, and for each x ∈ FV (N), (∆σ)(x) = βxσ if x is monomorphic and (∆σ)(x) =
∀.βxσ if x is polymorphic. Since the statements ∆σ ` M : δNσ → δEσ and ∆σ ` N : δNσ
are derivable, it follows by rule [app] that ∆σ ` E : δEσ is derivable.

• E is a monomorphic abstraction λmx.M . Then USUP(E,∆) contains the equality δE =
βx → δM , and βx is unknown (i.e., monomorphic) throughout USUP(M,∆M), where ∆M =
(∆, x : βx).. Thus, for any solution σ of USUP(E,∆), we have δEσ = βxσ → δMσ. By
induction, the statement ∆Mσ ` M : δMσ is derivable. Then by rule [m-abs], we can derive
∆σ ` λmx.M : βxσ → δMσ. Since δEσ = βxσ → δMσ, we obtain ∆σ ` E : δEσ.

• E is a redex (λpx.M)N . Let σ be a substitution that solves USUP(E,∆). The instance
USUP(E,∆) contains the equalities δλpx.M = δN → δE and δλpx.M = βx → δM , and βx is
variable (i.e., polymorphic) throughout USUP(M,∆M), where ∆M = (∆, x : ∀.βxσ). Thus,
for any solution σ of USUP(E,∆), we have δλpx.Mσ = δNσ → δEσ and δλpx.Mσ = βxσ →
δMσ. By induction, the statement ∆Mσ `M : δMσ is derivable, where for each y ∈ FV (M),
(∆Mσ)(y) = βyσ if y is monomorphic, and (∆Mσ)(y) = ∀.βyσ if y is polymorphic. Similarly,
the statement ∆σ ` N : δNσ is derivable, where for each y ∈ FV (N), (∆σ)(y) = βyσ if

31

y is monomorphic, and (∆σ)(y) = ∀.βyσ if y is polymorphic. By rule [gen], the statement
∆σ ` N : ∀.δNσ is derivable. Since δNσ → δEσ = δλpx.Mσ = βxσ → δMσ, we have
βxσ = δNσ and δMσ = δEσ. Then the statement ∆σ ` N : ∀.δNσ is equivalent to ∆σ ` N :
∀.βxσ. Then by rule [redex], we can derive ∆σ ` (λpx.M)N : δMσ, which is equivalent to
∆σ ` (λpx.M)N : δEσ.

Having exhausted all cases, we conclude, by structural induction, that every solution σ of USUP(E)
yields a valid type derivation of E, in the manner laid out in the statement of the theorem. �

In particular, the theorem implies that whenever USUP(E) is solvable, then E is typable; moreover,
if σ solves USUP(E), then ∀.δEσ is a derivable type for E. This is the soundness result we sought.

7.2.2 Completeness of the Translation

Establishing completeness for our translation is a matter of showing that whenever an ML0 program
E is typable with type τ , then there is a substitution σ that solves USUP(E), such that δEσ = τ .

We introduce the following notation:

Definition 17 Let π be a polytype. We denote by |π| the monotype obtained by stripping all
quantifiers from π.

We shall also need the following definition and technical result:

Definition 18 Let Γ = {τi ≤ µi}ni=1 be a SUP instance with solution σ. σ is called canonical if

dom(σ) ⊆
n⋃
i=1

Vars(µi) .

The following result shows that any SUP solution has a “canonical core” that is also a solution:

Theorem 8 (Canonical Solutions) If a SUP instance Γ = {τi ≤ µi}Ni=1 has a solution σ, then
σ can be written as σ′C ◦ σC , where σC is canonical, dom σC ∩ dom σ′C = ∅, and σC solves Γ.
Moreover, for any α ∈ Vars(µi) for some i, ασC = ασ.

Proof For each inequality τi ≤ µi in Γ, there is a substitution σi such that τiσσi = µσ. Let

V =
n⋃
i=1

V ars(µi) .

Let σC = σ|V (the restriction of σ to variables in V) and σ′C = σ\σC (i.e., the restriction of σ to varia
bles not in V). Then σC is canonical by construction, σ = σ′C ◦σC , and dom σC∩dom sigma′C = ∅.
It remains to show that σC solves Γ. We have

τiσσi = µσ .

Hence, since σC and σ′C commute (their domains are disjoint),

τiσCσ
′
Cσi = µσ′CσC .

Sin ce dom σ′C ∩ V = ∅, we have
τiσCσ

′
Cσi = µσC .

Grouping σ′C and σi together as σi ◦ σ′C , we see that sigmaC solves each inequality in Γ; hence, it
solves Γ. The final claim, ασC = ασ, follows immediately from the construction SC = σ|V and the
fact that α ∈ V . �

The completeness theorem is as follows:

32

Theorem 9 Let E be a labelled λ-term, in which each free variable is labelled as either monomor-
phic or polymorphic. Suppose there exists a type environment ∆ whose domain contains FV (E),
such that each monomorphic variable in FV (E) has a monomorphic binding in ∆, and each poly-
morphic variable in FV (E) has a polymorphic binding in ∆. Furthermore, suppose there is a type
π such that ∆ ` E : π is derivable from the rules in Figure 4. Then there exists a substitution σ
such that the following conditions hold:

1. σ is a solution of USUP(E,∆);

2. σ is an identity on FTV (∆);

3. δEσ = |π| (up to variable renaming);

4. for each variable α ∈ Vars(δEσ): all occurrences of α on the left-hand sides of inequalities in
USUP(E,∆)σ (i.e., the result of reducing USUP(E,∆)) are unknown occurrences.

Proof The proof is by induction on the type derivation for ∆ ` E : ρ. We dispatch based on the
last rule applied in the derivation:

• Rule [var]. If rule [var] is at the root of the derivation, then the derivation must consist solely
of the application of rule [var], and therefore, E is a variable x. Then by rule [var], ∆(x) = |π|.
USUP(E,∆) contains the inequalities βx ≤ δE (since E = x, δE and δx are identical) and
βx = |π|. Then there are two possibilities:

– βx is a true variable. Then take σ = [|π|′/δE , |π|/βx] (recall that |π|′ is the result of
consistently replacing the variables in |π| with fresh ones), and let σ′ be the substitution
that maps |π| to |π|′. Then βxσσ

′ = δEσ and βxσ = |π|σ; hence σ solves USUP(E,∆),
and since dom(σ) = {βx, δE}, σ is an identity on FTV (∆). Furthermore, δEσ = |π|, up
to renaming, as required. Finally, since the variables in |π|′ are fresh, they do not occur
on any left-hand sides.

– βx is an unknown. Then take σ = [|π|/δE , |π|/βx], and take σ′ to be the identity
substitution. Then βxσσ

′ = δEσ, βxσ = |π|σ, and dom(σ′) contains no unknowns.
Hence, σ solves USUP(E,∆), dom(σ) ∩ FTV (∆) = ∅, and δEσ = |π|, as required.
Finally, since βx is an unknown, every identifier in τ is an unknown in USUP(E,∆)σ;
hence, the final requirement of the theorem is satisfied vacuously.

• Rule [app]. If rule [app] is at the root of the derivation, then E is an application MN
and M is not an abstraction. Then π is a monotype τ2 and there is a monotype τ1 such
that ∆ ` M : τ1 → τ2 and ∆ ` N : τ2. By induction, there are substitutions σM and
σN that solve USUP(M,∆) and USUP(N,∆) respectively, are identity maps on FTV (∆),
and satisfy δMσM = |τ1 → τ2| = τ1 → τ2 and δNσN = |τ2| = τ2. By restricting their
domains, if necessary, we may assume that dom(σM) ⊆ Vars(USUP(M,∆)) and dom(σN) ⊆
Vars(USUP(N,∆)). Since bound variables in E are assumed to be distinctly named, the
only variables that occur in both M and N are those that are free in both M and N . If
a variable x lies in FV (M) ∩ FV (N), then x is either globally free, or it is bound in an
abstraction whose body contains both M and N . Either way, x ∈ dom(∆), and therefore,
βxσM = |∆(x)| = βxσN , i.e., σM and σN agree where their domains intersect. Then the set
σE defined by σE = σM ∪ σN is a substitution, with σE |dom(σM) = σM and σE |dom(σN) =
σN , so that σE solves both USUP(M,∆) and USUP(N,∆) and is an identity on FTV (∆).
The instance USUP(E,∆) is made up of both USUP(M,∆) and USUP(N,∆), as well as

33

the additional inequality δM = δN → δE . Since δE occurs in neither Vars(USUP(M,∆))
nor Vars(USUP(N,∆)), let σ = [τ2/δE] ◦ σE . Then σ also solves both USUP(M,∆) and
USUP(N,∆), and is also an identity on FTV (∆). We then have δMσ = δMσM = τ1 → τ2,
and δNσ = δNσN = τ1. Also, by construction, δEσ = τ2. Putting these together, we obtain
δMσ = δNσ → δEσ; therefore σ solves USUP(E,∆), with δEσ = |π|, as required.

It remains to show that the variables in τ2 do not occur on any left-hand sides in USUP(E,∆)σ,
except possibly where they are unknowns. By induction, the variables in τ1 → τ2 do not
occur in any left-hand sides (except for unknown occurrences) in USUP(M,∆)σM , and sim-
ilarly for τ1 and USUP(N,∆)σN . The non-rank-2 variables in τ1 → τ2 form a superset of
those in τ2 (note that all variables in τ1 are non-rank-2); hence, unknown occurrences aside,
the non-rank-2 variables in τ2 do not occur on left-hand sides in USUP(M,∆)σM , except
for unknown occurrences. Let α be a variable in τ2. If α has a non-unknown occurrence
on a left-hand side in USUP(N,∆)σN (indeed, any occurrence at all in USUP(N,∆)σN),
then since α would then occur in both USUP(M,∆)σM and USUP(N,∆)σN , α must origi-
nate higher in the term’s parse tree than the entire application. Suppose, then, that α is a
subexpression of some βxσM (= βxσN), where x is a variable with a monomorphic binding
occurrence. Then βx is an unknown, and the result follows vacuously—α is then also an
unknown throughout USUP(M,∆)σM and USUP(N,∆)σN and therefore has no occurrences
of interest. If, instead, x has a polymorphic binding occurrence, then βx only occurs on
left-hand sides throughout USUP(MN,∆), except for an equality βx = τ that sets βx by
environment lookup. The variables in τ are distinct from all variables in USUP(MN,∆).
Let σ1 = [τ/βx]. Then USUP(MN,∆) is solvable with solution σ2 ◦ σ1 for some σ2 if and
only if USUP(MN,∆)σ1 is solvable with solution σ2. By Theorem 8 (the Canonical Solu-
tions Theorem), σ2 can be assumed to be canonical without affecting its operation on any
variable on a right-hand side. Hence, we can take σN = σ2 ◦ σ1 with no effect on the value of
δNσN . Since the variables of τ are distinct from all those in the rest of USUP(MN,∆), they
occur only on left-hand sides in USUP(MN,∆)σ1. Hence σN (and also σM , from previous
reasoning) do not replace any variable in τ ; hence apart from replacing βx with τ , they do not
replace βx. In particular, then, δNσ does not contain βx, or any other variable on a left-hand
side throughout USUP(MN,∆). Thus, variables in |π| do not occur on any left-hand sides
in USUP(E,∆)σE . Since σ only adds to σE a replacement of δE (which has exactly one
occurrence—on a right-hand side) with |π|, the same holds for σ, as required.

• Rule [m-abs]. If rule [m-abs] is at the root of the derivation, then E is a monomorphic
abstraction λmx.M and x is monomorphic in M (i.e., βx is unknown in USUP(M, (∆, x : τ))
for any τ). Then there are monotypes τx and τM such that |π| = π = τx → τM , and
∆, x : τx ` M : τM is derivable. Let ∆M denote the type environment (∆, x : τx). By
induction, there is a substitution σM that solves USUP(M,∆M), such that δMσM = τM , up
to renaming, and σM is an identity on FTV (∆M). The instance USUP(E,∆) contains all
of USUP(M,∆M), as well as the equality δE = βx → δM . If x has at least one occurrence
in M , then USUP(M,∆M) contains the equality βx = τx. Then βxσM = τxσM . Otherwise,
βx has no occurrences in USUP(M,∆M) and we can let σM,x = [τx/βx] ◦ σM , and continue
the argument using σM,x. For simplicity, and without loss of generality, however, we will
simply assume that βx ∈ Vars(USUP(M,∆M)), and therefore, βx ∈ dom(σM). Since δE
has no occurrences in USUP(M,∆M), define the substitution σ as [|π|/δE] ◦ σM . Then
σ also solves USUP(M,∆M), and since dom(σ) = dom(σM) ∪ {δE}, σ is an identity on
FTV (∆M), and therefore also on FTV (∆). Since σ and σM are identities on FTV (∆M), we

34

have τxσ = τxσM = τx. Finally, we have

δEσ = π

= τx → τM

= βxσM → δMσM

= βxσ → δMσ ,

as required.

We now show that the variables in |π| = τx → τM do not occur on any left-hand sides in
USUP(E,∆), unknown occurrences aside. By induction, the variables in τM have only un-
known occurrences on left-hand sides in USUP(M,∆M)σM . Since σ only adds a replacement
of δE (whose only occurrence is on a right-hand side) to σM , and since USUP(E,∆) does not
introduce onto any left-hand sides any variable whose only occurrences in USUP(M,∆M)
(unknown occurrences aside) are on right-hand sides, the variables in τM do not occur on
any left-hand sides in USUP(E,∆)σE . As for βx, since E is a monomorphic abstraction,
any occurrences of βx in USUP(M,∆M) are unknown occurrences, which we may disregard.
Further, βx’s only other occurrence in USUP(E,∆) is within the equality δE = βx → δM ,
which is a right-hand side occurrence. Thus, |π| contains no variables with left-hand side
occurrences as true variables, as required.

• Rule [redex]. If rule [redex] is at the root of the derivation, then E has the form (λpx.M)N
and x is polymorphic in M (i.e., βx is variable in USUP(M, (∆, x : ∀.τ)) for any τ). Then
there is a polytype ∀.τN and a monotype τM such that π = |π| = τM , and the statements
∆ ` N : τN and ∆, x : (∀.τN) ` M : τM are derivable. Let ∆M denote the type environment
(∆, x : ∀.τN). By induction, there is a substitution σM that solves USUP(M,∆M), such that
δMσM = τM , and σM is an identity on FTV (∆M). Also by induction, there is a substitution
σN that solves USUP(N,∆), such that δNσN = τN , and σM is an identity on FTV (∆). The
instance USUP(E,∆) contains all of USUP(M,∆M) and USUP (N,∆), plus the equalities
δλpx.M = βx → δM and δλpx.M = δN → δE . If x has at least one occurrence in M , then
USUP(M,∆M)) contains the equality βx = τx. Then βxσM = τxσM . Otherwise, βx has
no occurrences in USUP(M,∆M) and we can let σM,x = [τx/βx] ◦ σM , and continue the
argument using σM,x. For simplicity, and without loss of generality, however, we will simply
assume that βx ∈ Vars(USUP(M,∆M)), and therefore, βx ∈ dom(σM). Since δλpx.M , and
δE have no occurrences in USUP(M,∆M) and USUP(M,∆), define the substitution σ as
[δMσM/δE , βxσM → δMσM/δλpx.M] ◦ (σM ∪ σN) (see the case for rule [app] for proof that
σM ∪σN is a well-defined substitution). Then σ also solves USUP(M,∆M) and USUP(N,∆),
and since dom(σ) = dom(σM) ∪ dom(σN) ∪ {δE , δλpx.M}, σ is an identity on FTV (∆). By
construction, δλpx.Mσ = βxσM → δMσM = βxσ → δMσ; hence σ solves the equality δλpx.M =
βx → δM . Also by construction, δEσ = δMσM , and since USUP(M,∆M) contains the
equality βx = τx, we have βxσM = τxσM , and therefore βxσ = τxσ. Thus, the equality
δλpx.M = δN → δE is solved as well. have τxσ = τxσM = τx. Therefore, σ solves USUP(E,∆),
with δEσ = δNσN = τN = |π|, as required.

The argument that the variables in |π| have only unknown occurrences on left-hand sides
mirrors the arguments for rule [m-abs] (for λpx.M) and [app] (for the entire expression).

• Rule [spec]. If rule [spec] is at the root of the derivation, then there is a polytype πE ,
a monotype τ , and a type variable α such that |π| = |πE |[τ/α] and ∆ ` E : ∀α.πE is
derivable. By induction, there is a substitution σE that solves USUP(E,∆), such that δEσ =

35

|πE |, and σE is an identity on FTV (∆) and α has no occurrences on any left-hand sides in
USUP(E,∆)σE . We can write USUP(E,∆) = {〈τi ≤ µi, ~αi〉}i=1N for some N , τ1, . . . , τN ,
µ1, . . . , µN . Then there exist substitutions σE1 , . . . , σEN such that

τ1σEσE1 = µ1σE

· · ·
τNσEσEN = µNσE .

Therefore, we have

τ1σEσE1 [τ/α] = µ1σE [τ/α]
· · ·

τNσEσEN [τ/α] = µNσE [τ/α] .

Since α does not occur on any left-hand sides in USUP(E,∆)σE , we can introduce [τ/α] on
each left-hand side without affecting the equalities:

τ1σE [τ/α]σE1 [τ/α] = µ1σE [τ/α]
· · ·

τNσE [τ/α]σEN [τ/α] = µNσE [τ/α] .

But this system now says that [τ/α] ◦ σE solves USUP(E,∆). Furthermore,

δE([τ/α] ◦ σE) = δEσE [τ/α] = |πE |[τ/α] = |π|.

Since α is a quantified variable in ∀α.ρE , and quantification can only be introduced by ap-
plication of rule [gen], it follows that α is not free in ∆. By induction, σE is an identity on
FTV (∆). Since σ only adds to σE a replacement of α, which is not free in ∆, it follows that
σ is also an identity on FTV (∆). Also by induction, each variable in |π| has only unknown
occurrences on left-hand sides in USUP(E,∆). Any variables τ has in common with |π| obvi-
ously have this property as well. For any variables in τ but not in |π|, either these variables,
or the variables in USUP(E,∆) can be renamed such that the two sets of variable names are
disjoint. As a result, any variables in |π|[τ/α] have only unknown occurrences on left-hand
sides in USUP(E,∆)σE [τ/α], which is the needed result.

• Rule [gen]. If rule [gen] is at the root of the derivation, then there is polytype π such that
∆ ` E : π is derivable. By induction, there is a substitution σE that solves USUP(E,∆),
such that δEσ = |π|, σ is an identity on FTV (∆), and the variables in Q−1(ρ) have only
unknown occurrences on left-hand sides in USUP(E,∆)σE . Then, since |∀α.π| = |π|, the
same substitution σE can be used to satisfy the theorem for the statement ∆ ` E : ∀α.π, and
the result follows immediately.

Having exhausted the possible forms of a valid type derivation for an expression E, we conclude
by induction that a solution σ exists for USUP(E,∆), according to the conditions laid out in the
statement of the theorem. �

The statement and proof of the completeness theorem are long and technical—much of the
technical awkwardness arises from the need to properly handle quantifiers and the [spec] and [gen]
rules. However, despite its complexity, the completeness theorem implies a relatively straightfor-
ward result: any type π derivable for an expression E arises as a solution for USUP(E), which is
the result we sought.

36

7.3 Termination

Our syntax-directed translation from ML0 to USUP is sound and complete. In order to establish
USUP, together with the associated translation procedure, as a viable alternative to the original
SUP translation, it remains to establish termination—that for any ML0 program E, the USUP
redex procedure terminates on input USUP(E).

In Section 6.2, we showed that the USUP redex procedure terminates on all USUP instances that
possess a solution; hence, whenever an ML0 program E is typable, the USUP redex procedure will
terminate on input USUP(E), and we will obtain a valid type for E. For the general case, however,
we need a more general result. In Section 6.2, we also showed that the USUP redex procedure
terminates on all R-acyclic instances of USUP. Hence, establishing R-acyclicity for G(USUP(E)),
for an arbitrary E, would give us the result we seek.

It turns out, however, that even for a simple, θ-normal, source term, this result (that is, R-
acyclicity in the graph of the corresponding USUP instance) is false. Consider the following exam-
ple:

E = (λpy.y)(λmz.z) .

Then USUP(E) contains the following inequalities2:

α→ α ≤ δλpy.y → (δλmz.z → δE)
α→ α ≤ δλpy.y → (βy → δy)

βy ≤ δy

α→ α ≤ δλmz.z → (βz → δz)
βz ≤ δz .

Consider now the graph G = G(USUP(E)). The relevant portion of G for our purposes is the
subgraph containing the second and third inequalities. This subgraph appears in Figure 5. The

q q-
α→ α ≤ δλpy.y → (βy → δy) βy ≤ δy

Figure 5: Portions of the USUP graph for the expression E = (λpy.y)(λmz.z).

edge in Figure 5 exists because the variable βy occurs on the right-hand side of α→ α ≤ δλpy.y →
(βy → δy) and on the left-hand side of βy ≤ δy. Hence every variable on the right-hand side of
α → α ≤ δλpy.y → (βy → δy) is R′ related to every variable on the right-hand side of βy ≤ δy.
In particular, δyR′δy. Since every variable is R-related to itself, via a path of length 0, we have
δyR

′δyRδy, which is a violation of the condition for R-acyclicity. In general, whenever identifier
occurs on the right-hand sides of two distinct inequalities that are joined by a directed path, there
is an R-acyclicity violation.

The following propositions make explicit the idea that, under the right circumstances, an un-
known is indistinguishable from a variable.

Proposition 1 If γ is an unknown, then for every expression τ , the inequalities γ ≤ τ and γ = τ
have the same set of solutions.

2For illustrative purposes, equalities are explicitly written here as inequalities.

37

Proof Let σ be a substitution, and suppose σ solves γ ≤ τ . Then there is a substitution σ′ such
that γσσ′ = τσ, where dom(σ′) contains no unknowns. In the context of this inequality, then, we
have dom(σ′) ∩ Vars(γσ) = ∅. Hence, γσσ′ = γσ, and therefore, γσ = τσ. The second inequality
is, in fact, α → α ≤ γ → τ , where α is a fresh inequality (hence α 6∈ dom(σ)). Applying σ gives
ασ → ασ ≤ γσ → τσ, which simplifies to α → α ≤ γσ → τσ. Taking σ′ = [γσ/α], we have
ασ′ → ασ′ = γσ → τσ; hence σ solves γ = τ . Conversely, if σ solves γ = τ , then there is a
substitution σ′ such that ασσ′ → ασσ′ = γσ → τσ. Then we have γσ = ασσ′ = τσ. Applying σ
to γ ≤ τ gives γσ = τσ, and since γσ = τσ, we can take σ′ = [], and we have γσσ′ = τσ. Since
dom(σ′) = ∅, it contains no unknowns. Hence, σ solves γ ≤ τ . �

Proposition 2 If an unknown γ within an R-AUSUP instance Γ only occurs on right-hand sides
within the inequalities in which it is an unknown, then γ may be simply treated as a variable,
without affecting the principal solution (if one exists) of Γ; moreover γ is indistinguishable from an
ordinary variable by the USUP redex procedure.

Proof Let Γ = {〈τi ≤ µi, ~αi〉}Ni=1. Let ΓS denote the R-ASUP instance derived from Γ by treating
all unknowns as ordinary variables. Then a substitution σ solves Γ iff for all i, there is a substitution
σi, such that τiσσi = µiσ, and dom(σi) ∩Vars(~αiσ) = ∅, and a substitution σS solves ΓS iff for all
i, there is a substitution σSi, such that τiσσSi = µiσ. We show that if σS is a principal solution
for ΓS , then σS solves Γ. Suppose, for some i, that γ ∈ ~αi, but γ 6∈ Vars(τi). If some variable
α ∈ Vars(γσS) has an occurrence in τi, then some variable β ∈ Vars(τi) was at some point replaced,
via redex reduction, by an expression containing α. Hence, βRα and αRβ. Also, we have γRα
and αRγ. Now, if β has no occurrences on a right-hand side, then there is a solution σ′S of Γ that
does not replace β and is otherwise equivalent to σ in terms of its actions on right-hand sides.
Assume, therefore, that β does have an occurrence on a right-hand side. Then βR′γ, which gives
βR′γRαRβ, which contradicts R-acyclicity. Hence, no variable in Vars(γσS) has an occurrence in
τi. Therefore, σSi can be chosen such that its domain contains no occurrences of any variable in
Vars(γσ), and we find that σS solves Γ. The reverse direction (i.e., that σ solves ΓS) is trivial, as
USUP is a superset of SUP.

For the second part of the claim, consider the actions of the four kinds of redex reduction
on an unknown γ that only has occurrences on right-hand sides within inequalities in which it is
an unknown. In the case of a redex-I, any occurrence γ on the right-hand side will be ignored,
because it is not strictly a variable. Redex-II reductions do not distinguish between unknowns and
variables; hence γ will be treated the same under redex-II reduction, whether or not it is labelled
as an unknown. Redex-III reduction does not apply, as it only treats unknown occurrences on
left-hand sides. Redex-IV reduction reduces an unknown occurrence on the right-hand side with a
structural copy of the corresponding expression on the left-hand side—this is precisely the reduction
performed under redex-I reduction for ordinary variables. Hence, redex-IV reduction makes up for
the behaviour that is lacking in redex-I reduction, so that, indeed, the redex procedure treats γ in
the same way as γ. �

Because of Proposition 2, for subexpressions Ei of the source program E, such that USUP(Ei)
only contains unknown occurrences on right-hand sides (in particular, after applying the conve-
nience transformation afforded by Proposition 1), we can regard the USUP instance USUP(Ei) as
equivalent to the underlying SUP instance, and dispense with discussion of unknowns in the con-
text of Ei. We call the simplifying assumptions afforded by Propositions 1 and 2 the convenience
assumptions.

In the case of the edge in Figure 5, because βy is not an unknown, the inequality βy ≤ δy
is not equivalent to the equality βy = δy, and the R-acyclicity violation is not easily eliminated.

38

Note, however, that the R-acyclicity violation in the upper edge does not lead to non-termination.
Instead it reduces as follows. Reduction of the redex-I in the last inequality (which then becomes
solved) yields

α→ α ≤ δλpy.y → (δλmz.z → δE)
α→ α ≤ δλpy.y → (βy → δy)

βy ≤ δy

α→ α ≤ δλmz.z → (βz → βz) .

Reduction of the redex-II in the fourth inequality (which then becomes solved) yields

α→ α ≤ δλpy.y → ((βz → βz)→ δE)
α→ α ≤ δλpy.y → (βy → δy)

βy ≤ δy .

Reduction of the redex-II in the second inequality (which then becomes solved) yields

α→ α ≤ (βy → δy)→ ((βz → βz)→ δE)
βy ≤ δy .

Reduction of the redex-II in the first inequality (which then becomes solved) yields

α→ α ≤ ((βz → βz)→ δE)→ ((βz → βz)→ δE)
βz → βz ≤ δE .

Finally, a redex-I reduction yields

α→ α ≤ ((βz → βz)→ (β → β))→ ((βz → βz)→ (β → β))
βz → βz ≤ β → β ,

at which point the entire instance is solved. The image of δE under the solution yields the final
type, ∀β.β → β, as expected. Thus, even though we do not have R-acyclicity for this problem
instance, we do have termination.

In general, any time a polymorphic abstraction E = λpx.M actually makes use of its argument
x, this kind of R-acyclicity violation will occur. If E makes use of x, then there will be at least one
inequality βx ≤ δx in USUP(E). But then M ’s type will in general be dependent upon x’s type,
so that δx and δM are R-related. Further, because of the equality δE = βx → δM , δM and δx will
be R′-related, thus yielding an R-cycle comprising at least one non-trivial path. Our task, then, is
to show that these violations can never lead to non-termination.

It is worth pointing out that the original ASUP translation does not suffer from this acyclic-
ity violation, because it never actually represents the type of a polymorphic abstraction in the
translation; for an expression

(λpy1.(· · · ((λpyn.En+1)En) · · ·)E2)E1 ,

the ASUP translation only translates each subexpression Ei into ASUP, and then adds additional
equalities to match up the parameter and argument types for each λp-abstraction. The final result
type is given as the image of En+1 under the translation, and the final parameter types are added
on at the end by prepending the bindings for each xj in a user-supplied environment. By never

39

explicitly including the types of the λp-abstractions in the translation, the ASUP translation avoids
the kind of acyclicity violation we have encountered above; had they explicitly translated the
polymorphic abstractions, the acyclicity violations (which violate not only R-acyclicity, but, as a
consequence, ASUP-acyclicity as well) would indeed have surfaced.

To begin our analysis, we will assume that the expression E to be typed is θ-normal (i.e., in the
form presented above, in which no expression Ei contains a redex), and then relax this assumption
as our analysis progresses. Our first observation is the following:

Proposition 3 For an θ-normal expression

E = (λpy1.(· · · ((λpyn.En+1)En) · · ·)E2)E1

in some environment, each USUP(Ei) is R-acyclic. Further, the concatenation of all USUP(Ei) is
also R-acyclic.

Proof The proof follows immediately from the R-acyclicity of the original R-ASUP translation
(proof can be found in [7])—aside from the introduction of unknowns (which have no effect on
an instance’s graph structure) and some variable name changes, the two translation procedures
produce identical (U)SUP instances for each Ei. �

Thus, termination is assured for the parts of USUP(E) corresponding to each Ei. Now, for each
redex (λpyi.M)Ei, in addition to the inequalities in USUP(Ei) and USUP(M), we also have the
following two inequalities:

δλpyi.M = δEi → δ(λpyi.M)Ei

δλpyi.M = βyi → δM .

All other occurrences of βyi are in inequalities of the form βyi ≤ δyi,k. In particular, all other
occurrences of βyi are on left-hand sides, and none of them are unknown occurrences, as λpyi.M is
a polymorphic abstraction.

Now, we claim that, if this R-acyclicity violation leads to an infinite reduction sequence, then
that reduction sequence must include substitutions that replace βyi . To see this, consider the
replacement of βyi in δλpyi.M = βyi → δM (or indeed in each of the βyi ≤ δyi,k) by some fresh
variable β0, so that the edge created by βyi is broken. Under the assumption that Ei and M are
already R-acyclic, the graph as a whole then becomes R-acyclic, and termination is then assured.
The only difference between this USUP instance and the original is the ability of a substitution
to propagate across the edge between δλpyi.M = βyi → δM and βyi ≤ δyi,k, which the former
possess and the latter lacks. Hence an infinite reduction sequence must involve the propagation of
a substitution along one such edge. In particular, an infinite reduction sequence must involve a
replacement of some βyi . But the redex procedure only replaces variables that have an occurrence
on a right-hand side. Hence, a replacement of βy can only take place via the two inequalities
presented above. The effect, however, of such reductions, is that (after solved vertices are removed)
the R-acyclicity violation disappears, and along with it, the potential for non-termination.

We formalize the situation as follows:

Proposition 4 Let
E = (λpy1.(· · · ((λpyn.En+1)En) · · ·)E2)E1

be a θ-normal, labelled λ-term. Then the USUP redex procedure terminates on input USUP(E).

40

Proof For each i ∈ {1, . . . , n+ 1}, let Γi = USUP(Ei), and let Γ′i be the corresponding underlying
SUP instance. By the convenience assumptions, we may regard each Γi as equivalent to the
corresponding Γ′i. Then each Γi is R-acyclic, and so is the concatenation Γ1 · · ·Γn+1. Hence,
termination is assured for the instance Γ1 · · ·Γn+1. To this instance, for each i, the instance
USUP(E) adds the following inequalities:

δλpyi.Mi
= βyi → δMi

δλpyi.Mi
= δEi+1 → δ(λpyi.Mi)Ei+1

,

for each λp.-abstraction, where Mn = En+1 and Mi = (λpyi+1.Mi+1)Ei+1. If the redex procedure
never reduces these inequalities, then they are effectively not present, and the procedure terminates.
Hence, non-termination implies that the procedure must reduce at least one of these inequalities.
Whatever the choice of i, however, there is only one possible replacement:

• for some value of i, the reduction replaces δλpyi.Mi
. This reduction can either come from

the inequality δλpyi.Mi
= βyi → δMi or the inequality δλpyi.Mi

= δEi+1 → δ(λpyi.Mi)Ei+1
. In

the former case, we obtain the substitution [βyi → δMi/δλpyi.Mi
], and in the latter case, we

obtain the substitution [δEi+1 → δ(λpyi.Mi)Ei+1
/δλpyi.Mi

]. Since the only two occurrences of
δλpyi.Mi

are within these two inequalities, reduction either way renders the originating in-
equality solved, and the other inequality becomes βyi → δMi = δEi+1 → δ(λpyi.Mi)Ei+1

. All
other inequalities in USUP(E) remain unchanged. Thus, an infinite reduction in USUP(E)
is still impossible, unless further reduction of one of the added inequalities takes place. If, for
some i′, the additional reduction replaces δλpyi′ .Mi′ , then the reduction proceeds as outlined
here, and still the remainder of the instance is unchanged. The additional substitution re-
duces the newly-established inequality, βyi → δMi = δEi+1 → δ(λpyi.Mi)Ei+1

, thereby yielding
[δEi+1/βyi , δ(λpyi.Mi)Ei+1

/δMi]. By the end of this substitution, however, both of the inequali-
ties δλpyi.Mi

= βyi → δMi and δλpyi.Mi
= δEi+1 → δ(λpyi.Mi)Ei+1

will now be solved, and thus
of no further interest. Furthermore, in the remainder of the instance, we will have equated
βyi with δEi+1 and δ(λpyi.Mi)Ei+1

with δMi . This, however, is precisely the way in which the
original R-ASUP translation treats β-redexes. Hence by the termination property for that
translation, this reduction cannot produce a non-terminating USUP instance.

In summary, none of the additional inequalities from USUP(E), over and above those in Γ1 · · ·Γn+1

can bring about an infinite reduction, without requiring more of the additional inequalities to be
reduced as well. Since they are only finite in number, we conclude that an infinite reduction in
USUP(E) is simply not possible. �

Proposition 4 establishes termination for the USUP redex procedure on input USUP(E), for any
θ-normal, labelled expression E. We now expand on this result to accommodate expressions that
are not θ-normal.

Proposition 5 Let E be a labelled λ-term such that the USUP redex procedure terminates on input
USUP(E). Suppose E′ →θ3 E. Then the USUP redex procedure terminates on input USUP(E′).

Proof There exists a context C, with a single hole, and subexpressions N and P , such that E =
C[(λpy.NP)Q], and E′ = C[N((λpy.P)Q)]. The context being the same in both cases, it is sufficient
to show termination for (λpy.NP)Q. Let us assume instead, therefore, that E = (λpy.NP)Q, and
E′ = N((λpy.P)Q). Let USUPE(N) and USUPE′(N) denote, respectively, the USUP translation
of N in the context of E and E′, and similarly for P and Q. Since P and Q have the same scope in

41

both E and E′, we have USUPE(P) = USUPE′(P) and USUPE(Q) = USUPE′(Q). As for N , it
lies within y’s scope in E, but not in E′. Since E′ is the source term, however, by our unique naming
assumption, N can contain no occurrences of y; hence USUPE(N) contains no occurrences of an
inequality of the form βy ≤ δyi for some occurrence yi of y. Thus, USUPE′(N) = USUPE(N) as
well. By termination for USUP(E), the concatenated instance USUPE(N)USUPE(P)USUPE(Q),
which is common to both USUP(E) and USUP(E′), cannot give rise to an infinite reduction
sequence. The following inequalities are unique to USUP(E):

δλpy.NP = δQ → δ(λpy.NP)Q

δλpy.NP = βy → δNP

δN = δP → δNP ,

and the following inequalities are unique to USUP(E′):

δN = δ(λpy.P)Q → δN((λpy.P)Q)

δλpy.P = δQ → δ(λpy.P)Q

δλpy.P = βy → δP .

Any reduction in USUP(E′) that gives rise to an infinite reduction sequence must occur as a result
of reducing at least one of these three inequalities. Because the variable δλpy.P has no occurrences
other than above, we can replace it and thereby simplify the remaining inequalities:

δN = δ(λpy.P)Q → δN((λpy.P)Q)

βy → δP = δQ → δ(λpy.P)Q .

If we reduce the second inequality, we obtain the replacement [δQ/βy, δ(λpy.P)Q/δP]. The replace-
ment [δQ/βy] is available in USUP(E), by reducing the first two inequalities presented above; hence,
this replacement cannot lead to non-termination. The variable δ(λpy.P)Q only has occurrences
within the above inequalities; hence replacing it can neither single-handedly cause nor prevent
non-termination in the expression as a whole. The replacement yields a single remaining unsolved
inequality:

δN = δP → δN((λpy.P)Q) .

If there is to be a non-terminating reduction sequence in USUP(E′), then it must be a reduction
of this inequality—in particular, the replacement [δP → δN((λpy.P)Q)/δN]—that creates it. Within
USUP(E), the inequality δN = δP → δNP gives rise to the similar replacement, [δP → δNP /δN].
The difference between these is merely that the replacement for E′ has an occurrence of δN((λpy.P)Q,
where the replacement for E has an occurrence of δNP . This difference is not surprising, as E does
not contain N((λpy.P)Q) as a subexpression, and E′ does not contain NP as a subexpression.
However, these two variables actually denote the same type. As we have seen via the replacement
[δ(λpy.P)Q/δP], the variables δ(λpy.P)Q and δP have the same value in USUP(E′). Further, every
reduction we have performed in E′ has also been available in E; thus, if σ represents the substitu-
tions performed so far, then δPσ has the same value in both USUP(E) and USUP(E′). Therefore,
δPσ in USUP(E) is equal to δ(λpy.P)Qσ in USUP(E′). Similarly, δNσ has the same value in both
USUP(E) and USUP(E′) (before reduction of this last inequality). Therefore, N((λpy.P)Q) has
the same type in E′ as NP has in E, and δN((λpy.P)Q) in USUP(E′) is equal to δNP in USUP(E).
Hence, the reduction [δP → δN((λpy.P)Q/δN] is performed in E, though using different names, and
therefore, by termination in USUP(E), the instance USUP(E′) must terminate as well. �

42

Thus, an expression that is some number of θ3-reductions away from θ-normal form still gives rise
to a terminating USUP instance. We continue in a similar vein for the other forms of θ-reduction.

Proposition 6 Let E be a labelled λ-term such that the USUP redex procedure terminates on input
USUP(E). Suppose E′ →θ1 E. Then the USUP redex procedure terminates on input USUP(E′).

Proof As in Proposition 5, we can ignore the surrounding context, and simply assume that E =
(λpy.NQ)P , and E′ = ((λpy.N)P)Q. Let USUPE(N) and USUPE′(N) denote, respectively, the
USUP translation of N in the context of E and E′, and similarly for P and Q. Since N and P
have the same scope in both E and E′, we have USUPE(N) = USUPE′(N) and USUPE(P) =
USUPE′(P). As for Q, it lies within y’s scope in E, but not in E′. Since E′ is the source term,
however, by our unique naming assumption, Q can contain no occurrences of y; hence USUPE(Q)
contains no occurrences of an inequality of the form βy ≤ δyi for some occurrence yi of y. Thus,
USUPE′(Q) = USUPE(Q) as well. By termination for USUP(E), the concatenated instance
USUPE(N)USUPE(P)USUPE(Q), which is common to both USUP(E) and USUP(E′), cannot
give rise to an infinite reduction sequence. The following inequalities are unique to USUP(E):

δλpy.NQ = δP → δ(λpy.NQ)P

δλpy.NQ = βy → δNQ

δN = δQ → δNQ .

and the following inequalities are unique to USUP(E′):

δ(λpy.N)P = δQ → δ((λpy.N)P)Q

δλpy.N = δP → δ(λpy.N)P

δλpy.N = βy → δN .

Any reduction in USUP(E′) that gives rise to an infinite reduction sequence must occur as a result
of reducing at least one of these three inequalities. As before, because the variables δλpy.N and
δ(λpy.N)P have no occurrences other than above, we can replace them and thereby simplify the
remaining inequalities:

βy → δN = δP → (δQ → δ((λpy.N)P)Q) .

If there is to be a non-terminating reduction sequence in USUP(E′), therefore, it must be a re-
duction of this inequality—in particular, the replacement [δP /βy, δQ → δ((λpy.N)P)Q/δN]—that
creates it. The replacement [δP /βy] arises from reducing the first two inequalities particular to
USUP(E), presented above. Hence, by termination for USUP(E), this replacement cannot, on
its own, lead to non-termination. Thus, non-termination can only come from the replacement
[δQ → δ((λpy.N)P)Q/δN]. Within USUP(E), there is the similar replacement [δQ → δNQ/δN], aris-
ing from reduction of the third inequality. From the inequalities for USUP(E′), we can derive
δN = δ(λpy.N)P . Then by the same reasoning as in the proof of Proposition 5, the reduced value of
δ((λpy.N)P)Q in USUP(E′) is equal to that of δNQ in USUP(E). Therefore, a replacement equiva-
lent to [δQ → δ((λpy.N)P)Q/δN] is performed in USUP(E). Hence, by the assumed termination for
USUP(E), we conclude that the redex procedure must terminate on input USUP(E′). �

Proposition 7 Let E be a labelled λ-term such that the USUP redex procedure terminates on input
USUP(E). Suppose E′ →θ2 E. Then the USUP redex procedure terminates on input USUP(E′).

43

Proof As in Proposition 5, we can ignore the surrounding context, and simply assume that E =
(λpv.λmz.N ′)(λmw.P ′), and E′ = λmz.(λpy.N)P , where N ′ = N [vz/y] and P ′ = P [w/z]. Let
USUPE(N ′) and USUPE′(N) denote, respectively, the USUP translation of N ′ in the context of
E and N in the context of E′, and similarly for P and P ′. In the context of E′, P lies within the
scope of the monomorphic variable z; hence the variable βz is unknown throughout USUPE′(P).
In the context of E, P lies within the scope of the monomorphic variable w, so that the variable
βw is unknown throughout USUPE(P). Thus, since P ′ = P [w/z], we have that USUPE(P ′)
and USUPE′(P) are the same, except that every occurrence of βz in USUPE′(P) becomes βw in
USUPE(P ′), and similarly for each δzi and δwi , accounting for each respective occurrence zi of z
in E′ and wi of w in E. Thus, modulo these variable renamings, the result of running the USUP
redex procedure on input USUPE′(P) is identical to that of running it on input USUPE(P ′). More
importantly, termination for E implies that the USUP redex procedure will not fall into an infinite
reduction on input USUPE′(P). Similarly, USUPE′(N) and USUPE(N ′) are the same, except that
for each occurrence yi of y in N , the corresponding inequality βy ≤ δyi in USUPE′(N) becomes the
trio of inequalities

δvi = δzi → δvizi

βv ≤ δvi

βz ≤ δzi

in USUPE(N ′). (Note that βz is unknown throughout USUPE′(N).) Further, any remaining oc-
currences of δyi in USUPE′(N) become δvizi in USUPE(N). Thus, if any reduction in USUPE′(N)
is to cause non-termination, it can only be the inequality βy ≤ δyi , as this is the only inequality
particular to USUPE′(N). However, this inequality, as it currently exists, contains no redexes.
Further, as N lies entirely within y’s scope, not reduction in USUPE′(N) will cause a replacement
of βy; hence a redex will not be induced in βy ≤ δyi as a result of reduction in USUPE′(N). Hence,
the USUP redex procedure terminates on USUPE′(N).

Now, in addition, the following inequalities are particular to USUP(E):

δλpv.λmz.N ′ = δλmw.P → δE

δλpv.λmz.N ′ = βv → δλmz.N ′

δλmz.N ′ = βz → δN ′

δλmw.P ′ = βw → δP ′ ,

and the following inequalities are particular to USUP(E′):

δE′ = βz → δ(λpy.N)P

δλpy.N = δP → δ(λpy.N)P

δλpy.N = βy → δN .

Thus, if non-termination is to arise, it must come as a result of reducing one or more of these three
latter inequalities. The variable δλpy.N has no occurrences outside these three inequalities; hence
reducing it cannot cause non-termination without further reduction. We therefore replace it in the
above inequalities to obtain the simpler system

δE′ = βz → δ(λpy.N)P

βy → δN = δP → δ(λpy.N)P .

44

The variable δE′ has no other occurrences in USUP(E′); hence, replacing it via the reduction
in the first inequality has no effect on the rest of the instance, and in particular, no effect on
termination. Thus, if non-termination is to result, it must come as a result of the replacement that
arises from reducing the inequality βy → δN = δP → δ(λpy.N)P—namely, [δP /βy, δ(λpy.N)P /δN].
The effect of the replacement [δP /βy] is to replace every inequality βy ≤ δyi in USUP(E′) with
δP ≤ δyi ; more precisely, if σ denotes the replacements performed so far, then the inequalities
become δPσ ≤ δyiσ. The effect of this replacement is the possible creation of additional redex-I’s
in these inequalities. Within USUP(E), reducing the first two inequalities presented above gives
βv = δλmw.P . Performing this replacement has an effect on the inequalities

δvi = δzi → δvizi

βv ≤ δvi

βz ≤ δzi

for each occurrence vi of v. Specifically, if σ denotes the replacements performed so far, then each
inequality βv ≤ δvi becomes δλmw.P ′σ ≤ δviσ. Then, since δλmw.P ′ reduces to βw → δP ′ , we obtain
βwσ → δP ′σ ≤ δviσ. Then by the first inequality (δvi = δzi → δvizi), we get βwσ → δP ′σ ≤ δziσ →
δviziσ. Since βw replaces βy in USUP(E), and δvizi replaces δyi in USUP(E), the replacement of
what stands for βy with what stands for δP (i.e., δP ′) is reflected in USUP(E). Note, however,
that β

z
is an unknown in USUP(E′); hence, any occurrence of δzi in USUP(E′), representing the

corresponding occurrence zi of z in E′, is also unknown. Hence, after the replacement [δP /βy], the
subexpressions in each δyiσ corresponding to unknowns in δPσ themselves become unknown. Within
USUP(E), the occurrences of δzi in USUP(E′) correspond to occurrences of δwi , which are also
unknown. After the replacement [δλmw.P ′/βv], we eventually obtain βwσ → δP ′σ ≤ βzσ → δviziσ.
However, the occurrences of δziσ in δP ′σ, which were unknown within USUPE′(P), are no longer
unknown at this higher scope. On the other hand, each occurrence of δviσ is matched with δP ′σ and
then applied to the monomorphic variable z, whose occurrences δzi in USUP(E) are all unknown.
In particular, the expression

(λpv.λmz.N [vz/y])(λmw.P [w/z])

gives rise to the following inequalities involving the variable βv:

βv = βw → δP [w/z]

βv = βz → δN [vz/y] .

Thus, we obtain βw = βz, so that βw becomes an unknown. Then for each occurrence wi of w, we
obtain the inequality

βw ≤ δwi ,

from which each δwi becomes an unknown, and in particular, each δwi is equal to βw. Hence,
the occurrences of δwiσ get matched with unknowns and become unknowns once again. Then
occurrences of δvizi corresponding to these unknowns in δP ′ are also unknown. Thus, the behaviour
of the reduction [δP /βy] in USUP(E′) is exactly reflected in USUP(E). Hence, by termination
for USUP(E), this replacement cannot result in non-termination for USUP(E′). The remaining
possibility is the replacement [δ(λpy.N)P /δN]. The variable δ(λpy.N)P , however, only has occurrences
in the three inequalities particular to USUP(E′), and the variable δN only has a single occurrence
in USUPE′(N). Furthermore, this single occurrence is on a right-hand side. Therefore, it can only
induce a redex if if occurs in a position corresponding to an unknown on the left-hand side. Since

45

the single inequality in which δN occurs within USUPE′(N) is an equality, however, the identifiers
on the left-hand side are actual variables, and therefore, no redex in USUPE′(N) is induced by
the replacement of δN by δ(λpy.N)P , or vice versa. Thus, this replacement cannot bring about non-
termination either, and we conclude, from termination in USUP(E), that termination in USUP(E′)
is guaranteed as well. �

What we have shown, by Propositions 5, 6, and 7, is that if we start with any expression E for
which USUP(E) is guaranteed to make the USUP redex procedure terminate, then any step of θ-
expansion will yield an expression E′, for which USUP(E′) also makes the USUP redex procedure
terminates. By iterating these results over several steps of θ-expansion, we have the following result:

Theorem 10 (Termination) For any labelled λ-term E, the USUP redex procedure will terminate
on input USUP(E).

Proof Every labelled λ-term E is a finite number of θ-reductions from a θ-normal form Eθ. By
Proposition 4, the USUP redex procedure terminates on input USUP(Eθ). Then by Propositions 5,
6, and 7, each θ-expansion of Eθ yields a USUP instance for which the redex procedure terminates.
Further θ-expansions then yield further terminating USUP instances. Eventually, θ-expansion
produces the original term E, at which point we conclude that, indeed, the USUP redex procedure
terminates on input USUP(E). �

Theorem 10 is the main result we sought in this section—that, like the ASUP and R-ASUP trans-
lation procedures we discussed previously, the USUP translation procedure also produces problem
instances (now USUP problem instances) for which the redex procedure (now the USUP redex
procedure) is guaranteed to terminate.

8 Implementation

An implementation of USUP can be found at http://plg.uwaterloo.ca/~bmlushma/usup/.

9 Related Work

Constraint solving has become a popular mechanism for implementing type inference in ML-like
languages. An overview of constraint-solving techniques and their advantages can be found in
Pottier and Rémy [16]. Comon [2] gives a survey of earlier work on constraint systems. We outline
some well-known and recent contributions here.

Odersky and Läufer’s annotation-based type inference system for System F [11] is based on
translation to a system of constraints (based on unification under a mixed prefix [9]). The recent
adoption into the Glasgow Haskell Compiler of programmer-assisted higher-rank type inference is
based, in part, on their ideas [14].

Odersky, Sulzmann, and Wehr’s HM(X) [12] is a well-known, generalized constraint system
that, in its simplest formulation, is equivalent to the type system of ML, but is easily extended
to accommodate richer type systems. The language of constraints in HM(X) resembles that of
predicate logic, and obey a rather complex set of algebraic equivalences. HM(X) has been extended
and generalized in several works over the years (e.g., [17]).

Pierce and Turner’s system of local type inference [15] is a System for eliminating certain type
annotations from higher-order, typed languages; it is based on accumulating type information in
localized areas of a program as constraints, which are then passed to a constraint solver to complete

46

the type inference process. This system is extended in later work to accommodate a richer set of
types [4] and non-local propagation of partial type information [13].

Historically, the association between semiunification and type inference has often been in neg-
ative contexts. Polymorphic recursion, as found in the Milner-Mycroft calculus [10] was shown to
be equivalent to SUP, which was subsequently shown to be undecidable. Similarly, type inference
for System F was proved undecidable via its connections to semiunification. A subset of System
F that corresponds to a modest generalization of ML was shown to be equivalent to ASUP [6],
and therefore admitted decidable type inference. However, technical limitations (some of which
are relieved by this work) hindered the use of this system in practice. Semiunification has, how-
ever, appeared in other program analysis contexts. For example, Birkedal and Tofte [1] employ a
constraint system for region inference that is similar to semiunification.

Perhaps for this reason, the use of semiunification as the foundational constraint system in
polymorphic type inference for ML and related languages remains largely unexplored. However,
semiunification offers certain clear advantages over many of the other systems discussed here. Chief
among these is simplicity. The correspondence between a source program and its corresponding
ASUP or USUP instance is clear, and SUP-like problems are solved via the application of only
a small number of rules. Furthermore, with the advent of USUP, as presented in this paper,
the severe technical limitations of the original SUP translation for ML programs (in particular,
non-syntax-directedness and the need for θ-reduction) no longer exist.

It remains to be seen whether SUP and USUP are flexible enough to be easily extended to
accommodate more sophisticated type systems, as is the case with HM(X). This question represents
a definite avenue for further research.

10 Conclusion

Motivated by the desire to formulate a truly syntax-directed translation from ML typability to a
SUP-like problem, we found in this paper that SUP on its own is inadequate for expressing the
difference in behaviour between variables with monomorphic binding occurrences and those with
polymorphic binding occurrences. Rather, the original SUP-based translation relies heavily on an
expression being translated to θ-normal form before the translation begins. Once a term is in this
form, the differences in behaviour between these two classes of variables do not manifest themselves
and the SUP translation suffices.

If we truly want a syntax-directed translation, however, we need a SUP-like problem to act
as the target of the translation, in which there is some accommodation for monomorphic type
variables. In this paper, we presented USUP, which is an extension of SUP to include a new class
of type variable, which we called unknown, whose purpose is precisely to capture the behaviour of
monomorphic variables. We presented a solution semi-procedure for USUP, analogous to the redex
procedure for SUP, and showed it to be sound and complete (when it terminates) with respect to
the definition of a USUP solution. We showed termination for all solvable instances, and for the
USUP analogue of R-acyclicity, which we called R-AUSUP.

By making USUP the target of a new translation procedure from typability, we obtain a pro-
cedure that is truly syntax-directed, and affords us several other simplifications over the original
procedure as well. The new translation procedure is sound and complete with respect to the type
rules for ML, and always produces terminating USUP instances.

By virtue of being syntax-directed, the USUP translation procedure provides simply one rule for
every element of abstract syntax. The translation procedure now has an elegant, highly compact
presentation, as presented in Figure 3. Compared to the original, the new translation is certainly

47

easier to understand, and to state.
Furthermore, by virtue of being syntax-directed, there is a reverse mapping between individual

inequalities in a USUP instance USUP(E) and the elements of syntax in E that generated them.
Thus, if an error is found in some inequality (say, an occurs-check violation) that renders the
instance unsolvable, then the error can be traced directly back to an element of syntax in the
original expression and then reported to the user. A similar error-reporting mechanism for the
original SUP translation, while not technically impossible, would require a significant amount of
bookkeeping, and be far from straightforward.

References

[1] Lars Birkedal and Mads Tofte. A constraint-based region inference algorithm. Theoretical
Computer Science, 258:299–392, 2001.

[2] Hubert Comon. Constraints in term algebras (short survey). In Conference on Algebraic
Methodology and Software Technology (AMAST), Workshops in Computing, pages 97–108.
Springer-Verlag, 1994, June 1994.

[3] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceed-
ings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 207–212. ACM Press, 1982.

[4] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. In Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 281–292.
Association for Computing Machinery, ACM Press, 2004.

[5] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification problem.
Information and Computation, 102:83–101, 1993.

[6] A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of
the second-order λ-calculus. In 1994 ACM Conference on LISP and Functional Programming,
pages 196–207. ACM Press, 1994.

[7] Brad Lushman and Gordon V. Cormack. A more direct algorithm for type inference in the
rank-2 fragmentof the second-order λ-calculus. Technical Report CS2006-08, University of
Waterloo Cheriton School of Computer Science, March 2006.

[8] Brad Lushman and Gordon V. Cormack. A larger decidable semiunification problem. In
Proceedings of the 9th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP ’07), pages 143–152. ACM Press, 2007.

[9] Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14:321–358,
1992.

[10] A. Mycroft. Polymorphic type schemes and recursive definitions. In Paul and Robinet, editors,
International Symposium on Programming, pages 217–228, 1984.

[11] Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
54–67. ACM Press, 1996.

48

[12] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained types.
Theory and Practice of Object Systems, 5(1):35–55, January/March 1999.

[13] Martin Odersky, Chritoph Zenger, and Matthias Zenger. Colored local type inference. In ACM
Symposium on Principles of Programming Languages, pages 41–53, New York, NY, USA, 2001.
ACM Press.

[14] Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank types.
Submitted to Journal of Functional Programming, April 2004.

[15] Benjamin C. Pierce and David N. Turner. Local type inference. In Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 252–265.
Association for Computing Machinery, ACM Press, January 1998.

[16] François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce,
editor, Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489.
The MIT Press, Cambridge, Massachusetts, 2005.

[17] Vincent Simonet and François Pottier. A constraint-based approach to guarded algebraic data
types. ACM Transactions on Programming Languages and Systems, 29(1):1–56, January 2007.

49

