
ChronoCache: Predictive and Adaptive Mid-Tier
Query Result Caching

Brad Glasbergen, Kyle Langendoen, Michael Abebe, Khuzaima Daudjee
Cheriton School of Computer Science,

University of Waterloo
{bjglasbe,kjlangen,mtabebe,kdaudjee}@uwaterloo.ca

ABSTRACT
The performance of data-driven, web-scale client applica-
tions is sensitive to access latency. To address this concern,
enterprises strive to cache data on edge nodes that are closer
to users, thereby avoiding expensive round-trips to remote
data centers. However, these geo-distributed approaches
are limited to caching static data. In this paper we present
ChronoCache, a mid-tier caching system that exploits the
presence of geo-distributed edge nodes to cache database
query results closer to users. ChronoCache transparently
learns and leverages client application access patterns to
predictively combine query requests and cache their results
ahead of time, thereby reducing costly round-trips to the
remote database. We show that ChronoCache reduces query
response times by up to 2/3 over prior approaches on multi-
ple representative benchmark workloads.

CCS CONCEPTS
• Information systems→ Middleware for databases.

KEYWORDS
predictive caching; prefetching; distributed data manage-
ment

ACM Reference Format:
Brad Glasbergen, Kyle Langendoen, Michael Abebe, Khuzaima
Daudjee. 2020. ChronoCache: Predictive and Adaptive Mid-Tier
Query Result Caching. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (SIGMOD’20), June
14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3380593

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380593

1 INTRODUCTION
Data-driven applications continue to rise in popularity across
numerous domains, and databases are the primary means of
storing and querying their data [40]. Applications interact
with databases according to a client-server model; the appli-
cation (client) composes a request and issues it to the remote
database machine (server), after which the database server
processes the query and returns its response. Thus, each re-
quest incurs latency overheads due to network round trip
times. It is well known that these communication overheads
are considerable [8, 26], and are compounded as applica-
tions become increasingly geo-distributed to serve world-
wide clients.

Consider the queries in Figure 1a, which are taken from
the TPC-E benchmark’s Market-Watch transaction [15]. The
first query retrieves a set of market symbols, and subsequent
queries loop over each symbol to retrieve the number of
outstanding shares. As the first query retrieves an average
of 100 rows, dozens of subsequent queries are issued to the
remote database. Each of these remote requests incur costly
network round trips and greatly increase the latency of the
overall transaction.

The number of remote requests, and hence expensive net-
work round-trips, can be reduced by combining these sep-
arately issued queries together into a single query that re-
trieves their combined result sets (Figure 1b). For example,
a client could issue the entire transaction as a stored proce-
dure, or they could obtain a combined result for the queries
using a join. Combining the queries results in a tremendous
reduction in latency — our experiments show that intelli-
gently combining queries in a trans-continental wide-area
network (WAN) setting cuts the average query response
time of the entire TPC-E workload by nearly 2/3 – but comes
with a substantial downside: the application developer must
manually inspect the application’s code and replace queries
amenable to these optimizations with more complicated com-
bined queries or stored procedure logic. Furthermore, com-
bining queries presents complex software engineering chal-
lenges [34]: a combined query or stored procedure is less
composable than individual queries, and more difficult to
update when the application changes.

https://doi.org/10.1145/3318464.3380593
https://doi.org/10.1145/3318464.3380593

Figure 1: An example of ChronoCache exploiting query patterns by combining queries. The boxes with SQL text
represent submitted queries; the associated result sets are adjacent. (a) shows the original query texts and (b)
shows the combined query.

Many workloads contain query patterns similar to the
TPC-E example that can be exploited for response time reduc-
tion [9, 15, 18, 22]. In this paper, we present ChronoCache,
a shared middleware caching layer that automatically dis-
covers patterns among client application queries, exploiting
them to predictively cache query results ahead of time and
minimize query response times. Importantly, ChronoCache
obviates the need for manual code inspection and does not
modify application logic: clients obtain these response time
reductions simply by submitting queries to ChronoCache
instead of directly to the database.

ChronoCache models client workloads, learning patterns
among queries and exploiting them by combining queries
into a single request that captures all of their result sets.
Afterward, ChronoCache decodes the combined result into
result sets for each of the original queries and caches them on
edge nodes near clients ahead of time. In doing so, the client
avoids costly round trips to a remote database for all of these
queries and thus experiences large reductions in response
time. Importantly, ChronoCache performs these optimiza-
tions transparently and in an online fashion — clients inter-
actingwith ChronoCache need not be aware of its query com-
bination optimizations and ChronoCache itself requires no
offline training or static analysis. ChronoCache shares cached
results among clients using intuitive consistency semantics
and supports a wide range of common query patterns. These
design decisions ensure that ChronoCache scales well to
serve clients in a geo-distributed setting.

Detecting queries that would benefit from being combined,
determining an appropriate combination strategy that pre-
serves the semantics of the original queries, and decoding the
combined result set are challenging objectives. Performing
these tasks while the system is executing, with information

available only at the middleware layer, and without any of-
fline training further increases their difficulty. In this paper,
we present how ChronoCache meets all of these challenges
by addressing the following questions:

• How can we detect queries that should be predictively
combined while the system is executing?

• How should we model query relationships to exploit
optimization opportunities while avoiding predictive
query redundancy?

• How can we combine queries in a way that preserves
the semantics of the original queries while supporting
a broad class of query patterns?

• Howdowe effectivelymaintain and share cache results
between clients with intuitive consistency semantics?

In the next section, we describe how ChronoCache detects
query combination and prefetching opportunities with only
the information available in a middleware caching layer. Sec-
tion 3 describes how ChronoCache stores and manages dis-
covered combination opportunities, with a focus on avoiding
redundant predictive query combinations. Section 4 presents
two strategies for combining queries into a single request
and then decoding their result sets into that of the original
queries, all while retaining their original semantics. Section
5 discusses system details of ChronoCache, and Section 6
empirically demonstrates ChronoCache’s superiority over
existing approaches. We discuss related work in Section 7
and conclude in Section 8.

2 DETECTING QUERY RELATIONSHIPS
ChronoCache (Figure 2) monitors client query submissions
and builds models that capture relationships among queries
through structures that we call dependency graphs. When a
query arrives, ChronoCache uses these dependency graphs

Figure 2: ChronoCache’s system architecture.

to determine if the query should be combined with a set of
predicted upcoming queries (Section 3). If so, ChronoCache
predictively combines the queries using one of its combina-
tion strategies (Section 4), after which the combined query is
submitted to the database server. The server then executes
the combined query and returns its result set. ChronoCache
splits this result set into multiple result sets, one for the
original query and one for each of the predicted upcoming
queries (Section 4.1.1), caching these results on an edge node
near the client ahead of time. Asynchronously, ChronoCache
updates models that describe client application query sub-
mission behaviour and extracts query relationships from
them on-the-fly in the form of dependency graphs to power
future predictive caching.
ChronoCache subsumes Apollo’s [22] monitoring and

query relationship extraction components, building on them
by supporting nested/loop queries and complex query de-
pendency hierarchies. These components view a client’s
workload as a stream of query submissions 𝑄1, 𝑄2, . . . to the
remote database. This stream of queries is encoded into a
query transition graph [22], a model that describes client
query behaviour and enables ChronoCache to predict which
queries a client is likely to execute next (Figure 3). The nodes
in the transition graph correspond to constant-agnostic rep-
resentations of queries called query templates [22]. An edge
between two nodes (𝑄1, 𝑄2) is labelled with a probability
denoting the likelihood that 𝑄2 will be submitted by the
client within a small time interval Δ𝑡 of 𝑄1 (Figure 3). When
the probability of executing 𝑄2 within Δ𝑡 of 𝑄1 exceeds a
predefined threshold parameter 𝜏 , we say that 𝑄2 is tempo-
rally correlated to 𝑄1. ChronoCache constructs the query
transition graph entirely while the system is online. At the
same time, ChronoCache examines the graph’s structure to
uncover relationships among a client’s queries.

Figure 3: A client’s query transition graph and depen-
dency graph for the queries shown in Figure 1.

In the following sections, we simplify our explanations
by describing how ChronoCache extracts and exploits query
relationships for a single client. In practice, ChronoCache
discovers relationships and predictively caches query results
in parallel for concurrent clients.

2.1 Discovering Query Patterns
ChronoCache uses a client’s query transition graph to model
temporal query relationships and predict which queries the
client is likely to execute next. To demonstrate this capabil-
ity, consider the query transition graph in Figure 3, which
captures the relationships among the queries from Figure 1.
Recall that 𝑄1 executes and returns 100 rows, so 𝑄2 subse-
quently executes 100 times — once for each row in𝑄1’s result
set. After executing all of these loop queries, the client exe-
cutes a query 𝑄3. Because 𝑄2 always executes after 𝑄1, the
edge from𝑄1 to𝑄2 has probability 1. There are 99 transitions
from𝑄2 to𝑄2 out of its 100 executions, so𝑄2 has a self-edge
labelled with probability 99/100 and an edge to 𝑄3 labelled
with probability 1/100. Using its enhanced transition graph,
ChronoCache predicts that 𝑄2 is likely to execute after 𝑄1
and that 𝑄2 will execute multiple times in a row.

High transition probabilities indicate strong relationships
among queries, suggesting that they may be good candidates
for query combination. Thus, once ChronoCache has deter-
mined that a set of queries is temporally correlated, it looks
for data dependencies between them. Concretely, for the
relationship between 𝑄1 and 𝑄2, it considers whether 𝑄1’s
result set contains values that are used as input parameters
for 𝑄2. If all of 𝑄2’s parameters can be determined from 𝑄1,
then ChronoCache will also retrieve𝑄2’s result set whenever
the client issues 𝑄1.

ChronoCache determines whether a query 𝑄𝑖 ’s result set
contains values used as input parameters for a query 𝑄 𝑗 by
recording the last result set returned for each query template,
as in prior work [9, 22]. If 𝑄 𝑗 is temporally correlated to 𝑄𝑖 ,
then ChronoCache checks the rows in 𝑄𝑖 ’s result set to de-
termine if any column’s value matches an input parameter
of 𝑄 𝑗 . ChronoCache records each matching value from 𝑄𝑖 ’s
result set as a mapping from a column in 𝑄𝑖 ’s select list to

an input parameter in 𝑄 𝑗 . For example, consider the queries
from Figure 1: the symb column’s value in the first row of
𝑄1’s result set matches the first input parameter of the first
iteration of 𝑄2. If all of 𝑄 𝑗 ’s input parameters can be deter-
mined from this row in 𝑄𝑖 ’s result set, then ChronoCache
records that 𝑄𝑖 should be combined with 𝑄 𝑗 . A client may
issue𝑄 𝑗 again before issuing𝑄𝑖 , in which case ChronoCache
looks for mappings in the next row of 𝑄𝑖 : this corresponds
to a loop structure in which an instance of 𝑄 𝑗 is executed
for each row in 𝑄𝑖 (as in Figure 1).
The validity of these parameter mappings is re-evaluated

each time ChronoCache observes a set of queries match-
ing a query pattern [22]. If a mapping does not hold, then
ChronoCache deems it spurious because an input parame-
ter’s value coincidentally matched an output column value;
the mapping is blacklisted and never used in the future.

In practice, multiple queries may provide parameter map-
pings for an upcoming query. To accommodate these rela-
tionships, ChronoCache considers whether any queries that
are temporally correlated with 𝑄 𝑗 provide parameter map-
pings. Each query providing input parameters to 𝑄 𝑗 may in
turn have its parameters provided by another set of prior
queries, forming a hierarchical structure of parameter shar-
ing relationships. ChronoCache uncovers these structures
by applying the above technique recursively, synthesizing
the hierarchical nature of parameter sharing into dependency
graphs.

2.1.1 Representing Query Patterns. Dependency graphs de-
scribe the dependency-like nature of parameter sharing among
queries. A directed edge in a dependency graph from a node
for 𝑄𝑖 to a node for 𝑄 𝑗 indicates that 𝑄𝑖 supplies an input
parameter value for𝑄 𝑗 . This directed edge contains informa-
tion describing which column(s) from 𝑄𝑖 ’s result set maps
to which parameter position(s) in 𝑄 𝑗 . For the queries from
Figure 1, there is a directed edge from 𝑄1 to 𝑄2 and a map-
ping from the symb field to the first parameter position in𝑄2
(Figure 3). The dependency graph tells ChronoCache when
and how the involved queries should be combined; in this
example, ChronoCache determines that 𝑄2’s first input pa-
rameter relies on the values in the symb column in𝑄1’s result
set, and thus predictively combines𝑄1 with𝑄2 and executes
them as one request whenever the client submits 𝑄1.
Constructed dependency graphs are passed to Chrono-

Cache’s dependency graph manager and predictive combiner
modules, which exploit them to decide when and how to
combine queries for predictive caching (Sections 3 and 4).

2.2 Discovering Complex Loops
Thus far, we have considered combining 𝑄 𝑗 with its prior
queries only if those prior queries’ result sets determine all of
𝑄 𝑗 ’s parameters. However, loop query-patterns often contain

Figure 4: An example of a per-loop fixed constant
(dm_date) that cannot be determined from the result
set of a prior query.

constants that are not part of these result sets. For example,
we simplified the TPC-E benchmark’s Market-Watch trans-
action in Figure 1; in reality, the loop consists of multiple
queries, some of which rely on a per-loop constant not con-
tained in any of the queries’ result sets (Figure 4) such as
the dm_date predicate. The value for this predicate varies
per loop invocation, but is constant within a loop. Conse-
quently, the above approach would not detect these queries
in the loop as candidates for combination. It is imperative,
however, that these queries are detected and optimized: for
every such query in a loop iterating over a result set of size
𝑁 , ChronoCache’s combination strategies eliminate 𝑁 − 1
network round trips.

ChronoCache analyzes a client’s query transition graphs
to detect and extract loops of queries. We present the intu-
ition behind this extraction process using the query transi-
tion graph (Figure 5) for the loop queries in Figure 4. Note
that if the loop has 𝑁 iterations, then 𝑄2 will transition 𝑁

times to 𝑄3 and 𝑄3 will transition 𝑁 − 1 times to 𝑄2. As
𝑁 grows, the transition probability among the queries in
the loop (𝑄2 and 𝑄3) approaches the value 1. Consequently,
there is a directed edge from 𝑄2 to 𝑄3, as well as a directed
edge from 𝑄3 to 𝑄2, both with probability greater than the
temporal correlation threshold 𝜏 for a sufficiently large 𝑁 . In
other words,𝑄2 and𝑄3 form a strongly connected component
over temporally correlated queries in the graph. As such,
ChronoCache can identify loop structures from the query
transition graph by searching for strongly-connected com-
ponents over edges between temporally correlated queries.
Mathematically, loops will remain if they have more than
⌈ 1
1−𝜏 ⌉ iterations.

1

1In our experiments, we use 𝜏 = 0.8, which means ChronoCache finds loops
with more than 5 iterations. The sensitivity of 𝜏 is discussed in Section 6.7.

Figure 5: A stream of loop queries translated into a
query transition graph.

ChronoCache employs this strongly-connected compo-
nents strategy to find loops. In particular, for a query 𝑄 𝑗

under consideration, it relaxes the parameter mapping con-
straint from the prior section and searches for strongly-
connected components containing𝑄 𝑗 ’s node in the 𝜏-pruned
query transition graph. To find these components efficiently,
ChronoCache uses Tarjan’s algorithm [41]. ChronoCache
verifies that the extracted components conform to true loops
by checking if each node within a component relies on a
parameter mapping from some source query outside of the
component, corresponding to the query over whose result
set the loop is iterating. In the example in Figure 5, the source
query is 𝑄1.
ChronoCache encodes extracted loops and their source

queries into dependency graphs, as in the previous section,
and passes the dependency graphs to the dependency graph
manager module (Section 3). However, it marks queries in the
loop that contain per-loop constants. These marked queries
are used by ChronoCache’s dependency manager and query
combination strategies to indicate that ChronoCache should
wait for at least one iteration of the loop before trying to
optimize it by combining the loop’s queries. In doing so,
constants not supplied by parameter mappings will become
known through client-supplied query texts for the first itera-
tion of the loop. For example, in Figure 4, ChronoCache will
wait for the first instance of𝑄3 to observe the dm_date pred-
icate constant, before optimizing the combined loop queries.
As before, loop structures can be composed into hierarchies
of loops to enable more complex predictive caching.

ChronoCache’s loop detection techniques may find depen-
dency graphs discoverable by the simpler detection method,
resulting in duplicates. Moreover, some of the extracted de-
pendency graphs may subsume others; that is, one depen-
dency graph includes all of the information available in an-
other. Next, we describe how ChronoCache addresses these

challenges by efficiently managing and exploiting these de-
pendency graphs for predictive caching, thereby avoiding
predictive optimization redundancy and reducing load on
the remote database server.

3 DEPENDENCY GRAPH MANAGEMENT
ChronoCache inspects dependency graphs to determine i)
when a dependency graph is ready to be used for predictive
caching, and ii) which dependency graphs are redundant
and should be precluded from use.

Algorithm 1 ChronoCache Query Processing
Require: Incoming query 𝑄𝑖 for client 𝑐
1: dep_table = get_client_dep_table(𝑐)
2: ready_graphs = dep_table.mark_text_avail(𝑄𝑖)
3: // In parallel:
4: for graph ∈ ready_graphs do
5: new_text = combiners.optimize(graph)
6: rs = send_to_db_and_cache(new_text, graph)
7: dep_table.split_mark_text_avail(𝑄𝑖, rs)
8: end for
9: if ready_graphs.empty() then
10: rs = send_to_db_and_cache(get_text(𝑄𝑖))
11: end if

ChronoCache stores extracted dependency graphs in a per-
client dependency table that is used to determine when the
queries in the dependency graph are ready to be predictively
combined, executed, and have their results cached. An entry
in the dependency table is a mapping from a query to a
dependency graph, corresponding to a query whose text
must be available before the dependency graph’s queries
can be predictively executed. To determine these dependency
queries, ChronoCache simply checks which queries in the
dependency graph have input parameters that cannot be
determined from other queries in the dependency graph. In
our running example from Figure 3,𝑄1 is the sole dependency
of the dependency graph.
When the last dependency query 𝑄𝑖 arrives for a depen-

dency graph (Algorithm 1, line 2), then the graph is satisfied.
ChronoCache forwards a satisfied dependency graph and
the query 𝑄𝑖 to the query combiner (Section 4), which opti-
mizes the query by combining it with other queries in the
dependency graph given parameter mappings and previ-
ously executed queries’ texts (line 5). If 𝑄𝑖 is not the last
dependency query to arrive for any dependency graph, then
ChronoCache submits the query to the database unaltered,
and caches the query result set for future requests (line 10).
If 𝑄𝑖 ’s query text is needed for parameter mappings to other
queries, then it is stored for use during query combination.
As previously mentioned, some dependency graphs may

subsume others. For example, in Figure 6, dependency graph

Figure 6: An example of dependency graph relation-
ships.

𝐴 contains all the same parameter mappings as dependency
graph 𝐶 , in addition to a mapping from 𝑄1 to 𝑄3. If Chrono-
Cache retains both graphs in the dependency table, then both
will become ready for predictive caching when 𝑄1 arrives.
Because a combination of the queries in 𝐴 retrieves a result
set that is a superset of the combination of queries’ result set
in 𝐶 , retaining both graphs leads to redundant optimization
overhead and additional database queries. To avoid this re-
dundancy, ChronoCache removes dependency graph𝐶 from
consideration for predictive optimization. However, graphs
that contain a loop-constant dependency are not considered
supersets of graphs without such a dependency, because
loop-constant relationships force ChronoCache to wait for
an iteration of the loop before predictively executing the
queries in the graph (Section 2.2). Therefore, neither𝐴 nor 𝐵
is a superset of the other, and the client’s dependency table
will retain dependency graphs 𝐴 and 𝐵 but not 𝐶 .

To retain only these superset dependency graphs, Chrono-
Cache uses the following merge procedure when it has ex-
tracted a dependency graph𝑔 from a client’s query transition
graph. If the dependency graph has already been added to
the client’s dependency table, then ChronoCache discards
the dependency graph without further processing. Other-
wise, ChronoCache searches the table for dependency graphs
that contain any of the nodes in 𝑔, checks to see if they sub-
sume 𝑔 or vice versa, and if so merges the graphs together. If
none of the graphs subsume the dependency graph (or vice
versa), then ChronoCache adds the new dependency graph
unchanged to the table.

4 QUERY COMBINATION STRATEGIES
When ChronoCache receives a query from a client, it checks
to see if the query is the last dependency query for a depen-
dency graph. If so, Chronocache employs one of the follow-
ing two strategies to generate a query that combines all of
the queries in the dependency graph together, predictively
executes the combined query, splits the returned result into
result sets for each of the queries in the dependency graph,
and caches them. ChronoCache decides which strategy to
use based on characteristics of the queries in the dependency
graph.
The first strategy, which uses left joins over common ta-

ble expressions, is superior for select-project-join queries
with simple filtering conditions. The second strategy is ef-
fective for a broader class of queries, but results in more
complex SQL query text and is thus slower to generate. We
now describe these approaches.

4.1 Left Joins over Common Table
Expressions

For dependency graphs that contain select-project-join queries
without ordering conditions or aggregate clauses, Chrono-
Cache builds on strategies that left-join the queries together
using the parameter mappings between them [9].

Given a ready dependency graph 𝑔 that contains predicted
queries, ChronoCache uses Algorithm 2 to generate the com-
bined query for predictive execution and caching. We use the
queries from our running example to illustrate the process in
Figure 7. First, ChronoCache topologically sorts the depen-
dency graph to get an ordered list of queries (line 1), shown
as 𝑄1, 𝑄2 in box 1 in Figure 7. This topologically ordered list
indicates the join order for queries in the combined query.
Next, ChronoCache writes out each query in topological or-
der as a common table expression (CTE) (lines 10-20), adding
a candidate key to the select list of each query to uniquely
identify its rows (line 15), as shown in boxes 2 and 3 of Figure
7. ChronoCache forms this candidate key by concatenating
row identifiers from each of the tables that the query ac-
cesses. ChronoCache strips filter conditions from each CTE
that contain parameter mappings from other queries (line
14), e.g., the filter condition in 𝑄2 on s_symb is extracted
and stripped. Finally, ChronoCache writes out a query that
left-joins all of the CTEs together in topological order using
the stripped-out conditions as join conditions (line 21-27), as
in box 4.

This combined query is then executed against the database,
returning a result set that contains the results necessary for
each query in the dependency graph. Next, ChronoCache
splits the combined query’s result set into result sets for each
of the queries in the dependency graph.

Figure 7: ChronoCache’s CTE-join procedure for a dependency graph. ChronoCache topologically sorts the
queries in the dependency graph, writes each query as a CTE, then left-joins the queries together on their shared
parameters.

Algorithm 2 CTE-Join Strategy
Require: A ready dependency graph 𝑔
1: ordered_queries = topological_sort(𝑔)
2: combined_text = ""
3: first_query = ordered_queries.pop()
4: text = add_candidate_key(first_query)
5: combined_text += "WITH q1 AS ("
6: combined_text += text
7: combined_text += ")"
8: join_conds = []
9: i=2
10: while !ordered_queries.empty() do
11: q = ordered_queries.pop()
12: uconds = q.uncontained_conds()
13: join_conds.append(uconds)
14: text = q.strip_uncontained_conds()
15: text = add_candidate_key(q, text)
16: text = add_sel_fields(uconds, text)
17: combined_text += ", q" + i + " AS ("
18: combined_text += text + ")"
19: i += 1
20: end while
21: combined_text += "SELECT * FROM q1 "
22: for j = 2; j < i; j++ do
23: combined_text += "LEFT JOIN q" + j
24: combined_text += " ON "
25: c = write_join_conds(join_conds[j-2])
26: combined_text += c + " "
27: end for

4.1.1 Decoding Result Sets. After executing the combined
query, ChronoCache receives a result set that contains all
of the values that would have been returned by the original
queries in the dependency graph. ChronoCache iterates over

Figure 8: ChronoCache splitting a CTE-joined query’s
result set into that of the original queries.

the combined result set and splits it into result sets that match
the result sets of sequential non-predictive query execution.
These result sets are then cached. Thus, when the client
submits the queries predicted by ChronoCache, the results
are returned from the local cache instead of using costly
remote database accesses.
We describe how ChronoCache splits CTE-combined re-

sult sets using the combined result set from Figure 8. First,
ChronoCache creates an empty result set for each query
in the dependency graph as well as a list of result sets for
each query. The former is used as a running result set to
which ChronoCache adds rows as it iterates through the
combined result set, and the latter contains completed result
sets corresponding to each iteration of each of the queries.
ChronoCache iterates over each row and splits it into

result sets for the original queries. For a given row, Chrono-
Cache determines which column-values belong to each query
using the select-lists of the original queries. For example, in
Figure 8, the symb field belongs to 𝑄1 and num_out belongs
to 𝑄2. ChronoCache adds these values as rows to the ongo-
ing result sets for each query. ChronoCache now considers
the next row, and determines the values for each row in the
same way. If any of the queries on which a query depends
have a changed candidate key, then the row should be part
of a new result set, and the old result set should be added

to the list of finished result sets. In the example in Figure
8, 𝑄1 does not have any queries on which it depends, so
ChronoCache adds the extracted row for 𝑄1 to the ongoing
result set, which now contains 2 rows. Because 𝑄2 depends
on 𝑄1 and 𝑄1’s candidate key has changed, ChronoCache
determines that the extracted row for 𝑄2 forms a new result
set corresponding to the iteration of 𝑄2 defined by the new
row from 𝑄1. Thus, ChronoCache adds the old result set for
𝑄2 to the list of completed result sets, and adds the extracted
row for 𝑄2 to a new result set.
ChronoCache uses candidate keys to avoid adding dupli-

cate rows to a result set. These duplicate rows can occur
because the left join for a row from 𝑄1 matches multiple
rows in 𝑄2. For example, ChronoCache does not add 𝑄1’s
extracted row for row 3 to its ongoing result set because the
candidate key for 𝑄1 is the same in rows 2 and 3 (Figure 8).
By contrast, ChronoCache does add the fourth row, which
contains the same symbol, to the ongoing result set for 𝑄1
because it has a different candidate key. Upon completion,
ChronoCache returns a result set for𝑄1 containing the three
blue rows in Figure 8. ChronoCache returns three result sets
for 𝑄2 corresponding to each iteration of 𝑄2 executed us-
ing parameters from 𝑄1. These result sets are shown in the
non-blue colours in the figure.
Once ChronoCache has constructed the result sets for

each query in the dependency graph, it caches the results.
Cached result sets are keyed by the string of the query that
would have generated them. For example, the single result
set for 𝑄1 is keyed by 𝑄1’s text, and the 𝑖 th result set for 𝑄2
is keyed by the text for 𝑄2 parameterized by the 𝑖 th row of
𝑄1’s result set.

4.2 Lateral Union
Queries with aggregates, ordering conditions, limit clauses,
and other advanced SQL query constructs cannot be handled
using the CTE-join strategy and are instead handled using a
lateral union strategy. Although the lateral union strategy
can combine queries optimizable via the CTE-join, it gener-
ates more complex SQL queries. Thus, ChronoCache uses
the CTE-join strategy wherever possible, falling back to the
lateral union strategy only when necessary.
ChronoCache builds on a lateral union strategy for com-

bining queries from previous work [9], but addresses two
limitations. The lateral union strategy described in [9] can-
not be used to combine queries where multiple prior results
determine the result set of a subsequent query, unless the
prior queries themselves have no dependencies. E.g., for four
queries 𝑄1, 𝑄2, 𝑄3, 𝑄4, where 𝑄1’s result set determines 𝑄2
and𝑄3’s input parameters, and𝑄2 and𝑄3 in turn define𝑄4’s
input parameters, the strategy cannot be applied. Fundamen-
tally, this problem occurs when there are multiple queries

at the same topological height — that is, if we topologically
sort the dependency graph for 𝑄1, . . . , 𝑄4, both 𝑄2 and 𝑄3
have the same path length to 𝑄4. 𝑄2 and 𝑄3 do not share
parameters, but both of their result sets are used by 𝑄4. The
second limitation is that this lateral union strategy requires
that each relation have a defined and known candidate key.

ChronoCache overcomes these limitations by inducing its
own candidate keys on intermediate result sets and joining
queries at the same topological depth by their row number.
In particular, ChronoCache uses the ROW_NUMBER() generic
SQL window function to assign a row number to each row
in a query’s result set, which acts as a candidate key for that
result set. When ChronoCache detects that there are multiple
queries at the same topological height, it transforms the
dependency graph by combining queries at the same height
together via a join on their ROW_NUMBER(). After applying
this process such that every topological level has exactly one
query, it employs the lateral union strategy [9]. ChronoCache
iterates over each query in the transformed dependency
graph and writes them as a lateral derived table over their
dependency queries, thereafter selecting all the necessary
fields from each of these tables to form the combined query.
Once ChronoCache has received a result set for a query
combined using this strategy, it employs a split algorithm
similar to the one described for CTE-combined queries [9].

5 THE CHRONOCACHE SYSTEM
We implemented ChronoCache as a middleware caching
layer between application clients and the remote database.
Clients issue queries to ChronoCache, which then interacts
with the cache and remote database on the client’s behalf
to return a result set. ChronoCache uses Memcached [1], a
popular industrial caching solution, as its query result cache.
ChronoCache communicates with a remote PostgreSQL data-
base [23] using JDBC, though any ANSI SQL compliant [6]
relational database management system may be used instead
of PostgreSQL.

When a client submits a query to ChronoCache, Chrono-
Cache parses the query using the PlSql grammar [2] for the
ANTLR 4 parser [33]. After parsing the query, ChronoCache
builds a constant-agnostic version of the query’s parse tree
to identify its query template, storing a copy of this parse
tree for later use. Next, ChronoCache uses the query tem-
plate’s identifier to check if it is the last dependency query
for any of the client’s dependency graphs. If so, Chrono-
Cache retrieves the parse trees for each of the queries in the
dependency graph, and combines them using the CTE-join
(Section 4.1) or Lateral Union (Section 4.2) strategy. The raw
query text output from the query combiner is then forwarded
to PostgreSQL using JDBC, which returns a result set for the
combined query. ChronoCache splits this result into result

sets for each of the queries in the dependency graph, con-
sidering their parse trees to determine which fields in the
result set are relevant to each query (Section 4.1.1). Finally,
ChronoCache caches all of these result sets in Memcached
and returns to the client the result set corresponding to the
original query.

ChronoCache exploits asynchronous execution tomitigate
query processing overheads. When the queries in multiple
dependency graphs become simultaneously ready for pre-
dictive execution, ChronoCache will combine their queries
and cache their results in parallel. As these result sets are
cached, more dependency graphs may become ready as a
consequence of retrieving these new result sets. The queries
in these dependency graphs will be predictively combined
and cached as a background process, thereby minimizing the
overheads on client-submitted queries.

Although ChronoCache could predictively execute queries
that update the database state, doing so results in consider-
able overheads to account for possibly incorrect predictions.
If an update query is incorrectly predicted, it must be rolled
back. Also, to ensure that clients do not observe updates
from an incorrectly predicted update, ChronoCache would
need to preclude clients from viewing the results of any pre-
dicted update query until it is certain that its prediction is
correct. Given the overheads involved in managing these
requirements, ChronoCache focuses on predictively caching
read queries.

Because ChronoCache’s query combinations are predictive,
it is possible for ChronoCache to incorrectly predict that a
query 𝑄2 will follow the current query 𝑄1 and submit a
combined query on these queries’ behalf. However, doing
so does not affect the correctness of applications interacting
with ChronoCache. As submitted queries, and not predicted
queries, are used to update ChronoCache’s predictive model,
the probability of𝑄2 following𝑄1 will be adjusted downward
accordingly to avoid mispredicting in the future.
Conditional logic in client applications affects the proba-

bility of queries following each other. For example, 𝑄1 may
be followed by 𝑄2 with probability 0.8 and 𝑄3 with prob-
ability 0.2 based on an if condition in the application. As
ChronoCache operates in middleware, program source code
is unavailable and cannot be exploited to determine with
certainty when queries will follow one another. However,
the 𝜏 threshold parameter ensures that 𝑄1 is combined with
its subsequent queries only if they follow𝑄1 with probability
at least 𝜏 . Therefore, an appropriate value of 𝜏 trades-off be-
tween increasing load on the database by combining queries
from multiple branches in exchange for more cache hits, or
vice versa. Consequently, ChronoCache remains effective on
workloads with many conditional statements.

5.1 Avoiding Redundant Predictions
When ChronoCache receives a query from a client, it checks
to see if a dependency graph is ready to be predictively exe-
cuted and cached. However, if the predicted queries’ result
sets are already cached, then combining the queries in the
graph, executing the combined query, and caching the split
queries is redundant. Moreover, doing sowill introduce query
processing overheads and hamper performance.
To avoid this redundant work, ChronoCache determines

if result sets are available for each of the predicted upcoming
queries. Using the queries from Figure 1, if a result set for𝑄1
is available, then ChronoCache verifies that a result set for
each of the 𝑄2 queries generated by the rows in the cached
result of𝑄1 are also available in the cache. If so, ChronoCache
does not combine the queries, and submits 𝑄1 unchanged,
which results in a cache hit.

Multiple clients may also wish to execute the same (pos-
sibly combined) read query against the remote database si-
multaneously. In such cases, ChronoCache will submit the
query only once, and block all other clients executing the
same query until the result set is returned [22]. The result
set is then forwarded to the waiting clients. By employing
this procedure, ChronoCache further reduces the load on the
remote database.

5.2 Session Semantics
Sharing cached results among clients can provide substantial
performance gains (Section 6). However, a naïve implemen-
tation of shared cached results may introduce undesirable
effects, like a client retrieving a stale result set from the
cache for relations it has since updated. Thus, cached re-
sults in ChronoCache are shared based on session semantics
[16] over client query submissions: using strictly serializable
databases and when query result return order represents
commit order, the caching scheme ensures that a client never
observes a result set that corresponds to a database state
older than what it had accessed before. Otherwise, returned
results correspond to consistent snapshots.

To provide consistent session semantics, ChronoCache lo-
cally maintains a version vector 𝑉𝑑 indicating the database’s
state. An entry in the vector, 𝑉𝑑 [𝑖], corresponds to the ob-
served version of a relation 𝑅𝑖 ; thus, 𝑉𝑑 has dimension equal
to the number of relations in the database schema. Initially,
the version of each relation in𝑉𝑑 is 1. When a client updates
a relation 𝑅𝑖 , ChronoCache atomically increments 𝑉𝑑 [𝑖].

Each client 𝑐 has its own session, and ChronoCache main-
tains a version vector𝑉𝑐 for each client indicating the version
of the relations that it has most recently accessed. When a
client submits a read query to the database, ChronoCache
sets 𝑉𝑐 = 𝑉𝑑 . The result set for that query is tagged with the
client’s version and cached. A result set in the cache can only

be used by a client if the result set’s version is greater than
or equal to the client’s version. Concretely, for all relations
𝑅𝑖 accessed in the associated query, Chronocache ensures
that 𝑉𝑟 [𝑖] ≥ 𝑉𝑐 [𝑖], where 𝑉𝑟 is the cached result’s version
vector. Upon accessing the cached result, ChronoCache sets
∀𝑖 : 𝑉𝑐 [𝑖] =𝑚𝑎𝑥 (𝑉𝑐 [𝑖],𝑉𝑟 [𝑖]).

The above approach provides session semantics for a single-
node ChronoCache deployment. In a multi-node deployment,
the database state may advance without each ChronoCache
instance updating its database version vector𝑉𝑑 , as these vec-
tors are maintained locally. To remedy this problem, Chrono-
Cache instances can be configured to always increment each
index of 𝑉𝑑 whenever a client accesses the remote database,
rather than relying on the node’s stored value of𝑉𝑑 to encap-
sulate all of the previous updates. Cached result sets must
then additionally be keyed by a ChronoCache node identifier
to preclude sharing results across nodes as version vectors
cannot be compared across nodes.

5.2.1 Access Control. It is not always appropriate to share
cached query results between clients. Access control schemes
such as row-level security may cause a query issued by one
client to return different results than when it is executed
by another. Sharing results between such clients would vio-
late security policies. These considerations can be addressed
through a straightforward extension of the version vector
access mechanisms.

Each client is grouped with other clients according to their
security policies. In particular, a client 𝑐𝑖 is in the same group
SG𝑘 as 𝑐 𝑗 if and only if they have the same security policies
and thus would return the same result set for any query 𝑄
on a fixed database state (snapshot). We assign an integer
identifier 𝑘 to each security group SG𝑘 and additionally tag
the version vectors for cached results and clients to include
the security group identifier. When reading a result from
the cache, a client must ensure that its security group identi-
fier matches that of the cached result in addition to meeting
the other requirements in Section 5.2. Doing so ensures that
each client sees a result only if it does not violate security re-
quirements. Even in cases where every client has its own set
of security rules, predictive caching results in considerable
performance improvements, as we show in the subsequent
section.

6 PERFORMANCE EVALUATION
In this section, we empirically evaluate the effectiveness
of the ChronoCache system at reducing end-to-end query
response times as a geo-distributed edge caching system. By
default, each experiment uses four machines: a benchmark
machine that drives the workload, the query result cache
(Memcached 1.5.14 [1]), the ChronoCache (or comparative)
system, and the remote database (PostgreSQL 12.1 [23]). The

benchmark, ChronoCache, and database are each deployed
on m4.4xlarge instances on Amazon AWS EC2, which have
16 virtual CPUs and 64 GB of RAM. The database instance
is configured with a 200 GB SSD, while the other instances
use a 50 GB SSD. The Memcached machine is deployed on a
c3.large instance with 2 virtual CPUs and 4 GB of RAM. In
all experiments, we allocate 3 GB of memory for caching.

Systems: We compare ChronoCache against the industry-
standard LRU caching scheme and two state-of-the-art pre-
dictive caching techniques (Section 7). We implement these
alternative designs within the ChronoCache system to en-
sure an apples-to-apples comparison.

• LRU is the industry-standard approach for query re-
sult caching. We configured ChronoCache to act as an
LRU cache by retrieving results from Memcached if
available and querying the remote database when nec-
essary. In this mode, none of ChronoCache’s modelling
or predictive caching capabilities are used.

• Apollo is a predictive query caching system devel-
oped by Glasbergen et al. [22]. As Apollo cannot ex-
ploit loop query patterns or combine queries to reduce
round trips, we configure ChronoCache not to rec-
ognize these types of patterns and submit predicted
queries to the database sequentially, rather than using
the combining strategies in Section 4.

• Scalpel: is a client-side prefetching tool [9] that re-
quires a training period before its predictive system
can be used, caches query results only within the
scope of a transaction and without sharing results
between clients. We remove these limitations from
Scalpel by comparing against an augmented Scalpel
in two ways: (i) Scalpel-E is an enhanced version that
shares cached query results across transaction bound-
aries, and (ii) Scalpel-CC is an advantaged version
enhanced with ChronoCache’s full client query result
sharing framework. Both systems are augmented with
ChronoCache’s adaptive learning framework to dis-
cover and model client query patterns.

Each of these systems is executed using the same client
session consistency level (Section 5.2) and the same size
cache. Before gathering results, we warmed up the database
by executing the query workload for 20 minutes. Since we
wanted to assess the effectiveness of ChronoCache’s predic-
tive caching, each of our experiments is initialized with an
empty cache. In all experiments, each result is the average
over five 5-minute runs. 95% confidence intervals are shown
as error bars around each data point.

Workloads: We compare the systems using four popular
workloads representative of geo-distributed applications:

• TPC-E [15] is a large, complex, online transaction
processing workload (OLTP) that emulates the activ-
ities of a brokerage firm. The TPC-E schema defines
33 tables with 188 columns, and more than 50 unique
query templates within 12 transactions [12], making
it a challenging workload for ChronoCache’s query
pattern detection and predictive caching framework.
We consider the full workload, except for a periodic
data maintenance transaction to ensure consistency
in our performance results. The database size is 70 GB
per the workload’s default scale factors. We drive the
workload using DBT5 [3]. The TPC-E mix contains
approximately 75% read-only transactions.

• Wikipedia [18] is a real Wikipedia workload based
on a transaction and data distribution trace [18] con-
taining the site’s most popular transactions. We use
100,000 pages and 200,000 users resulting in a default
database size of 22 GB and select page accesses accord-
ing to a Zipf(𝜌 = 1) distribution. We drive this work-
load using OLTPBench [18]. The Wikipedia workload
contains 92% read-only transactions.

• SEATS [18] models an airline ticketing system where
remote clients book reservations on flights. We config-
ure the system with 80% read-only transactions and
consider booking flights with up to 200 units of dis-
tance of their desired destination to increase workload
complexity. We use an increased scale factor of 50 re-
sulting in an initial database size of 12 GB. We drive
this workload using OLTPBench [18].

• AuctionMark [18] emulates an online auction work-
load in which remote clients create auctions for items
and bid on them. We configure the system with 85%
read-only workload to represent a realistic auction
workload as in [5], and such that each worker coop-
eratively closes auctions on average every 20 seconds
(with 10 second variance). To demonstrate the impor-
tance of handling per-loop constants, we query the
seller’s average feedback rating over the last 30 days
during the CloseAuctions transaction. On closing an
auction, this useful feedback is attached to email corre-
spondence between sellers and buyers [14, 19]. We in-
crease the scale factor to 50 giving an initial database of
size 12 GB. We drive this workload using OLTPBench
[18].

Methodology: We start by considering the performance
impact of ChronoCache on TPC-E query response times in
its targetedWAN setting (Section 6.1). Afterward, we demon-
strate a key feature of ChronoCache — its ability to learn
over time (Section 6.2). Next, we evaluate ChronoCache’s
performance on the Wikipedia, SEATS and AuctionMark
benchmarks (Sections 6.3-6.5). We present ChronoCache’s

scalability characteristics in Section 6.6. Finally, we conduct
a sensitivity analysis of ChronoCache’s configuration param-
eters (Section 6.7).

6.1 TPC-E Results
Weevaluate ChronoCache’s performance as a geo-distributed
edge cache for dynamic data by deploying the benchmark
machine, ChronoCache, and Memcached in the US-East re-
gion on AWS, and the database machine in the US-West
region. Thus, the average round-trip time between the client
machine and the database is 70 ms.

Figure 9a shows how the average query response time in
milliseconds on the full TPC-E workload (for each system)
varies while scaling the client load. ChronoCache reduces
average query response time by nearly 2/3 compared to the
LRU and Apollo systems, and by nearly 1/2 compared to
Scalpel-CC and Scalpel-E. This large response time reduc-
tion is achieved by ChronoCache detecting and predictively
caching a variety of query patterns ahead-of-time, result-
ing in up to 10x more cache hits than the other systems.
In particular, ChronoCache maintains a 75% cache hit rate,
while Scalpel-CC maintains 50%, Scalpel-E 45%, and LRU and
Apollo 20% cache hit rates, respectively. Although Apollo has
its own predictive caching capabilities, it does not support
loop patterns like those shown in Figure 1 and submits its
predicted queries sequentially. Therefore, Apollo does not sig-
nificantly increase cache hits over LRU and does not reduce
the number of round trips to the remote database. Scalpel-CC
benefits from the online learning and shared caching seman-
tics of the ChronoCache infrastructure, but is limited by its
support for only a subset of the query patterns. In particular,
it does not support loop queries with per-loop constants that
are not contained in the result sets or input parameters of
other queries, like those in the Market-Watch transaction
(Figure 4). Thus, although Scalpel-CC improves performance
over LRU due to its predictive caching, ChronoCache sig-
nificantly outperforms it on the TPC-E workload. Scalpel-E
supports the same patterns as Scalpel-CC, however its inabil-
ity to share cached query results hampers performance. Each
of the other systems experience a slight downward trend in
response time due to these shared caching effects — with
more clients executing and caching query results, there is a
greater chance to experience a cache hit.

6.2 Learning over Time
To evaluate ChronoCache’s online learning and adaptive ca-
pabilities, we measured average query response times over
30 second intervals for a TPC-E US-West experiment from
Figure 9a. As Figure 9b demonstrates, ChronoCache rapidly

(a) TPC-E US-East to US-West (b) TPC-E Learning Over Time (c) Wikipedia Results

Figure 9: TPC-E andWikipedia experiments for ChronoCache, LRU, Scalpel-CC, Apollo, and Scalpel-E. (a) depicts
response times for the TPC-E workload (b) demonstrates system abilities to learn TPC-E query patterns, and (c)
depicts response times for the Wikipedia workload.

learns client workload patterns. Within 150 seconds, Chrono-
Cache has learned the important query patterns in the work-
load and has reduced response times to 25 ms, continuing to
exploit these learned patterns thereafter effectively.
Because we have implemented Scalpel-CC and Scalpel-E

on top of ChronoCache’s client modelling and query pattern
extraction framework, Scalpel-CC and Scalpel-E exhibit simi-
lar learning capabilities. However, Scalpel by default requires
a training period [9] and does not learn while its predic-
tive system is online. Despite being advantaged by Chrono-
Cache’s adaptive learning framework, neither Scalpel-CC’s
nor Scalpel-E’s query response times converge to Chrono-
Cache’s because ChronoCache supports a broader class of
query patterns.
Apollo’s performance also improves over time, a conse-

quence of its ability to learn from client workloads and share
cached results among clients. However, Apollo does not sup-
port many of the types of query patterns in the TPC-E work-
load, and does not predictively combine queries as part of
its caching techniques.
Finally, we observe that LRU’s performance improves

slowly over time, an artifact of cached result sharing effects
as the cache fills up. As the other systems also benefit from
this effect but are enhanced by predictive caching capabili-
ties, they all outperform LRU.

6.3 Wikipedia Results
We measured query response times for the Wikipedia work-
load for each of the systems, results for which are shown
in Figure 9c. Due to the Zipf(𝜌 = 1) distribution of page-
accesses and the extreme popularity of the GetPageAnony-
mous transaction (92% of transactions), LRU enjoys a cache
hit ratio of 30%. Again, Apollo fails to recognize query pat-
terns in the workload and shows only a small improvement
in query response time over LRU because Apollo’s predictive

engine sequentially issues queries. By contrast, both Chrono-
Cache and Scalpel-CC considerably improve the cache ratio
to 50%, a consequence of their ability to recognize and exploit
query patterns in the workload. Similarly, Scalpel-E main-
tains a cache hit ratio of 35%, but its inability to share cached
query results across clients preclude it from reaching the
high cache hit ratios of ChronoCache and Scalpel-CC. Note
that the Wikipedia workload is an ideal case for the Scalpel-
based systems since they are able to identify and exploit
the key query patterns in the popular GetPageAnonymous
transaction. Consequently, Scalpel-CC’s performance is com-
petitive with ChronoCache, both of which considerably out-
perform the other approaches by predictively caching more
queries than the other approaches. This experiment demon-
strates that ChronoCache’s advanced modelling strategies
have scant overhead on workloads without such patterns.

6.4 SEATS Results
The SEATS benchmark contains transactions with condi-
tional access patterns — for example, a customer may ac-
cess the system using their frequent flyer number, customer
ID, or their login information. These conditional access pat-
terns increase the complexity of learning the workload’s
access patterns. Despite these challenges, ChronoCache sig-
nificantly reduces query response times compared to its com-
petitors (Figure 10a). These gains are derived from cache
hit rates: ChronoCache maintains an average cache hit ra-
tio of 60%, while Scalpel-CC, Scalpel-E, LRU and Apollo
maintain 45%, 40%, 35% and 35% cache hit rates respectively.
ChronoCache significantly outperforms the other systems
because of its support for per-loop constants, which ap-
pear in the FindFlights transaction. Although Scalpel-CC
improves performance over LRU and Apollo, its lack of sup-
port for these types of query patterns hampers its perfor-
mance. Shared caching semantics improve the performance

(a) SEATS Results (b) AuctionMark Results (c) ChronoCache System Scalability

Figure 10: Query response time results for ChronoCache, LRU, Scalpel-CC, Apollo, and Scalpel-E on the (a) SEATS
Benchmark and (b) AuctionMark Benchmark. (c) depicts TPC-E query response times for 1 and 3 node Chrono-
Cache deployments under increasing numbers of clients.

of Scalpel-CC compared to Scalpel-E, though frequent up-
dates to the Flights table reduce these gains. Again, Apollo
performs similarly to LRU due to its sequential query predic-
tions and processing overheads.

6.5 AuctionMark Results
We measured query response times for each system on the
AuctionMark workload over a 5 minute interval, averages for
which are shown in Figure 10b. As expected, ChronoCache’s
support for per-loop constants substantially improves per-
formance compared to its competitors. We observed that
ChronoCache maintains a 45% cache hit ratio while Scalpel-
CC and Scalpel-E maintain a 10% cache hit ratio — whereas
both Apollo and LRU maintain less than a 2% cache hit ratio.
The low cache hit rates of ChronoCache’s competitors are
due to queries being infrequently repeated in this workload.
Furthermore, frequent updates to tables accessed in loops
result in large numbers of cache misses due to invalidation
when a loop is not cached in its entirety. These frequent up-
dates also reduce the effectiveness of shared query caching,
resulting in Scalpel-E performing comparably to Scalpel-CC.

6.6 Scalability Characteristics
We assessed ChronoCache’s scaling capabilities by compar-
ing a one-node ChronoCache deployment against a three-
node deployment using the TPC-E workload, monitoring
query response time as the number of clients increases (Fig-
ure 10c). The one-node deployment has lower latency for
low numbers of clients because cached query results are not
shared across Chronocache nodes and due to the three-node
system’s more restrictive session requirements (Section 5.2).
As the number of clients increases, the three-node system
significantly outperforms the one-node system by reducing
resource contention. At 180 clients, the three-node deploy-
ment nearly halves the average query response time of the

one-node deployment. ChronoCache scales well because its
nodes do not need to interact with each other to process
client requests.

6.7 Sensitivity Analysis
To test ChronoCache’s sensitivity to its configuration param-
eters, we conducted TPC-E experiments with 10 clients in
whichwe adjusted Chronocache’s threshold for temporal cor-
relations 𝜏 and the size of the cache. For 𝜏 , we observed that
only extreme values (𝜏 <= 0.01, 𝜏 >= 0.95) resulted in statis-
tically significant variations in performance. For other values,
average query response times were within 95% confidence
intervals of the results presented in Section 6.1. Similarly, the
cache size played little role in performance, unless it was set
to be exceeding small (<10 MB). These results demonstrate
that (i) ChronoCache does not excessively load query results
into the cache to inflate its cache hit ratios, and (ii) Chrono-
Cache is effective even when it is assigned only a small cache
to manage. ChronoCache achieves this feat by loading query
results into the cache just before they are needed, and is thus
resilient to the size of the cache.

7 RELATEDWORK
ChronoCache differentiates itself from prior approaches as a
fully online solution that predictively caches query results
using only information available at the middleware layer.
We discuss these differences in more detail below.

Predictive Caching
Scalpel [9] is a client-side query prefetching system that

exploits relationships among queries to optimize them via
rewriting. Scalpel relies on a profiling mode to uncover these
relationships, during which prefetching is disabled. Further-
more, it does not share prefetched query results across clients
or transaction boundaries. Unlike ChronoCache, Scalpel does

not combine nested queries containing constants that vary
per loop invocation nor fully support combining nested and
batch queries [10]. ChronoCache overcomes these limitations
by using adaptive online models which support a broader
class of query relationships and are used for prediction im-
mediately.

While Apollo [22] does not require a training period and
functions as an online system, it submits predicted queries
sequentially instead of combining them and does not sup-
port common client query patterns (i.e. loops). Consequently,
Apollo does not perform comparably to ChronoCache (Sec-
tion 6). Fido’s predictive techniques [32] also do not combine
queries, in addition to requiring an offline training period.
Ramachandra et al. use static analysis [11, 36, 37] to ex-

amine program code and modify it to retrieve query results
using batching or asynchronous requests. In doing so, clients
may avoid round trips to the remote database and experience
reduced query response times. However, these approaches
require offline analysis and modify client application code.
As such, they are not applicable to middleware caching envi-
ronments where client application code is unavailable, which
ChronoCache targets.
Bilgin et al. [7] discuss how queries should be combined

as part of a prefetching/read-ahead solution. In contrast to
ChronoCache, their work assumes knowledge of an query
transition graph and a data dependency graph.

Query prefetching can be viewed as an analogue of the ma-
terialized view-selection problem [13]. In contrast to Chrono-
Cache, much of the work in this area requires a priori knowl-
edge of the workload [4, 24] which is unavailable to a middle-
ware application. Prior work without this limitation [17, 27]
does not employ fine-grained predictive models like those
within ChronoCache to anticipate future queries and cache
their results.

Transaction Relationships
Houdini [35] uses Markov Models in a distributed data-

base system to model stored procedures and optimize their
execution by selecting the node at which it will execute,
predictively locking partitions, disabling undo logging for
transactions unlikely to abort, and speculatively committing
transactions. These models are built offline from a work-
load trace, do not cross transaction boundaries, and model
relationships among query input parameters and stored pro-
cedures arguments. Consequently, they do not capture re-
lationships among query result sets and input parameters
necessary for predictive caching.

Faleiro et al. [20] model data dependencies among transac-
tions to support lazy transaction evaluation in deterministic
databases. ChronoCache differs from this work in three key
ways: (i) ChronoCache predictively executes queries rather

than lazily deferring transaction execution, (ii) ChronoCache
models relationships among queries rather than among data-
base records in transactions, and (iii) ChronoCache does not
require a deterministic database.

Middleware Caching
DBCache [30] and MT-Cache [29] are proprietary mid-

dleware caching systems developed for IBM DB2 and SQL
Server, respectively. Watchman [39] proposes an intelligent
cache admission scheme that decides which query results
to admit and to replace in the cache. In contrast to least-
recently-used (LRU) caching schemes, Watchman aims to
minimize the cost of a cache miss rather than the number of
cache misses. Watchman, DBCache, and MT-Cache do not
predictively combine and prefetch queries into the cache.

Recent work has proposed extensions to caching systems
to enhance their utility and performance. For example, ROBUS
[28] fairly allocates cache space among clients in a multi-
tenant system, and CPR [21] suggests means to compute
range predicate queries over cached result sets. These or-
thogonal extensions could be deployed complementarily to
ChronoCache’s functionality.

Workload Modelling
Prior systems focused on workload modelling use ma-

chine learning techniques to predict query arrival rates [31],
model query behaviour [38], and detect when the workload
has changed [25]. In contrast to these systems, ChronoCache
uses its workload model to discover related queries that
will benefit from execution as a combined query, and subse-
quently, predictive caching.

8 CONCLUSION
Through ChronoCache, we presented techniques to dynam-
ically (i) uncover query patterns in database application
workloads, (ii) exploit query patterns by combining query re-
quests, and (iii) predictively execute these combined queries
and cache their result sets ahead of time. Such client appli-
cation query requests are then satisfied from nearby edge
nodes instead of via costly trips to a remote datacenter.
ChronoCache enables clients to obtain these benefits without
application modification. Performance results demonstrate
ChronoCache’s superiority over prior approaches on repre-
sentative benchmark workloads.

ACKNOWLEDGMENTS
Funding for this project was provided in part by the Natu-
ral Sciences and Engineering Research Council of Canada,
the AWS Cloud Credits for Research program, the Canada
Foundation for Innovation, and the Province of Ontario.

REFERENCES
[1] 2019. http://memcached.org.
[2] 2019. https://github.com/antlr/grammars-v4.
[3] Database Test Suite 5. 2019. http://osdldbt.sourceforge.net/.
[4] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Au-

tomated Selection of Materialized Views and Indexes in SQL Databases.
In Proceedings of the 26th International Conference on Very Large Data
Bases (VLDB ’00). Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 496–505. http://dl.acm.org/citation.cfm?id=645926.671701

[5] Cristiana Amza, Anupam Chanda, Alan L. Cox, Sameh Elnikety, Romer
Gil, Karthick Rajamani, Willy Zwaenepoel, Emmanuel Cecchet, and
Julie Marguerite. 2002. Specification and Implementation of Dynamic
Web Site Benchmarks. In 2002 IEEE InternationalWorkshop onWorkload
Characterization. 3–13. https://doi.org/10.1109/WWC.2002.1226489

[6] ANSI. 1999. Information Systems Database Language SQL. ISO/IEC
9075-1:1999 (September 1999).

[7] A. Soydan Bilgin, Rada Y. Chirkova, Timo J. Salo, and Munindar P.
Singh. 2004. Deriving Efficient SQL Sequences via Read-Aheads.
In Data Warehousing and Knowledge Discovery, Yahiko Kambayashi,
Mukesh Mohania, and Wolfram Wöß (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 299–308. https://doi.org/10.1007/978-3-540-
30076-2_30

[8] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and
Erfan Zamanian. 2016. The End of Slow Networks: It’s Time for a
Redesign. Proc. VLDB Endow. 9, 7 (March 2016), 528–539. https:
//doi.org/10.14778/2904483.2904485

[9] Ivan T. Bowman and Kenneth Salem. 2004. Optimization of Query
Streams Using Semantic Prefetching. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’04). ACM, New York, NY, USA, 179–190. https://doi.org/10.1145/
1007568.1007591

[10] Bowman, Ivan. 2005. Scalpel: Optimizing Query Streams Using Se-
mantic Prefetching. http://hdl.handle.net/10012/1093

[11] Mahendra Chavan, Ravindra Guravannavar, Karthik Ramachandra,
and S. Sudarshan. 2011. DBridge: A Program Rewrite Tool for Set-
Oriented Query Execution. In 2011 IEEE 27th International Conference
on Data Engineering. 1284–1287. https://doi.org/10.1109/ICDE.2011.
5767949

[12] Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B.
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.
TPC-E vs. TPC-C: Characterizing the New TPC-E Benchmark via an
I/O Comparison Study. SIGMOD Rec. 39, 3 (February 2011), 5–10.
https://doi.org/10.1145/1942776.1942778

[13] Rada Chirkova, Alon Y. Halevy, and Dan Suciu. 2001. A Formal
Perspective on the View Selection Problem. In Proceedings of the
27th International Conference on Very Large Data Bases (VLDB ’01).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 59–68.
http://dl.acm.org/citation.cfm?id=645927.672216

[14] Marsha Collier. 2019. What an eBay End-of-Auction Email Tells
You. https://www.dummies.com/business/online-business/ebay/what-
an-ebay-end-of-auction-e-mail-tells-you/.

[15] Transaction Processing Performance Council. 2009. TPC-E On-Line
Transaction Processing Benchmark. http://www.tpc.org/tpce/.

[16] Khuzaima Daudjee and Kenneth Salem. 2006. Lazy Database Replica-
tion with Snapshot Isolation. In Proceedings of the 32Nd International
Conference on Very Large Data Bases (VLDB ’06). VLDB Endowment,
715–726. http://dl.acm.org/citation.cfm?id=1182635.1164189

[17] Prasad M. Deshpande, Karthikeyan Ramasamy, Amit Shulka, and Jef-
frey F. Naughton. 1998. Caching Multidimensional Queries Using
Chunks. In Proceedings of the 1998 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD ’98). ACM, New York, NY, USA,

259–270. https://doi.org/10.1145/276304.276328
[18] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe

Cudre-Mauroux. 2013. OLTP-Bench: An extensible testbed for bench-
marking relational databases. PVLDB 7, 4 (2013), 277–288.

[19] eBay. 2019. Customize Ebay’s End of Auction Email. https://pages.
ebay.com/CustomizedEOA/index.html.

[20] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy
Evaluation of Transactions in Database Systems. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’14). ACM, New York, NY, USA, 15–26. https://doi.org/10.
1145/2588555.2610529

[21] Shahram Ghandeharizadeh, Yazeed Alabdulkarim, and Hieu Nguyen.
2019. CPR: Client-Side Processing of Range Predicates. In Cloud Com-
puting – CLOUD 2019, Dilma Da Silva, Qingyang Wang, and Liang-Jie
Zhang (Eds.). Springer International Publishing, Cham, 340–354.

[22] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Scott Foggo,
and Anil Pacaci. 2018. Apollo: Learning Query Correlations for
Predictive Caching in Geo-Distributed Systems. In Proceedings of
the 21th International Conference on Extending Database Technology,
EDBT 2018, Vienna, Austria, March 26-29, 2018. 253–264. https:
//doi.org/10.5441/002/edbt.2018.23

[23] The PostgreSQL Global Development Group. 2019. PostgreSQL. https:
//www.postgresql.org/.

[24] Himanshu Gupta and Inderpal S. Mumick. 2005. Selection of views to
materialize in a data warehouse. IEEE Transactions on Knowledge and
Data Engineering 17, 1 (January 2005), 24–43. https://doi.org/10.1109/
TKDE.2005.16

[25] Marc Holze and Norbert Ritter. 2007. Towards Workload Shift Detec-
tion and Prediction for Autonomic Databases. In Proceedings of the
ACM First Ph.D. Workshop in CIKM (PIKM ’07). ACM, New York, NY,
USA, 109–116. https://doi.org/10.1145/1316874.1316892

[26] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a
Highly Scalable User-level TCP Stack for Multicore Systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 489–502. https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/jeong

[27] Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: A Dynamic
View Management System for Data Warehouses. In Proceedings of the
1999 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’99). ACM, New York, NY, USA, 371–382. https://doi.org/10.
1145/304182.304215

[28] Mayuresh Kunjir, Brandon Fain, KameshMunagala, and Shivnath Babu.
2017. ROBUS: Fair Cache Allocation for Data-parallel Workloads. In
Proceedings of the 2017 ACM International Conference on Management
of Data (SIGMOD ’17). ACM, New York, NY, USA, 219–234. https:
//doi.org/10.1145/3035918.3064018

[29] Per-Ake Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MT-
Cache: transparent mid-tier database caching in SQL server. In Pro-
ceedings. 20th International Conference on Data Engineering. 177–188.
https://doi.org/10.1109/ICDE.2004.1319994

[30] Qiong Luo, Sailesh Krishnamurthy, C. Mohan, Hamid Pirahesh,
HongukWoo, Bruce G. Lindsay, and Jeffrey F. Naughton. 2002. Middle-
tier Database Caching for e-Business. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’02). ACM, New York, NY, USA, 600–611. https://doi.org/10.1145/
564691.564763

[31] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. 2018. Query-based Workload Forecast-
ing for Self-Driving Database Management Systems. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD ’18).
ACM, New York, NY, USA, 631–645. https://doi.org/10.1145/3183713.

http://memcached.org
https://github.com/antlr/grammars-v4
http://osdldbt.sourceforge.net/
http://dl.acm.org/citation.cfm?id=645926.671701
https://doi.org/10.1109/WWC.2002.1226489
https://doi.org/10.1007/978-3-540-30076-2_30
https://doi.org/10.1007/978-3-540-30076-2_30
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/1007568.1007591
https://doi.org/10.1145/1007568.1007591
http://hdl.handle.net/10012/1093
https://doi.org/10.1109/ICDE.2011.5767949
https://doi.org/10.1109/ICDE.2011.5767949
https://doi.org/10.1145/1942776.1942778
http://dl.acm.org/citation.cfm?id=645927.672216
https://www.dummies.com/business/online-business/ebay/what-an-ebay-end-of-auction-e-mail-tells-you/
https://www.dummies.com/business/online-business/ebay/what-an-ebay-end-of-auction-e-mail-tells-you/
http://www.tpc.org/tpce/
http://dl.acm.org/citation.cfm?id=1182635.1164189
https://doi.org/10.1145/276304.276328
https://pages.ebay.com/CustomizedEOA/index.html
https://pages.ebay.com/CustomizedEOA/index.html
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.5441/002/edbt.2018.23
https://doi.org/10.5441/002/edbt.2018.23
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1109/TKDE.2005.16
https://doi.org/10.1145/1316874.1316892
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://doi.org/10.1145/304182.304215
https://doi.org/10.1145/304182.304215
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1109/ICDE.2004.1319994
https://doi.org/10.1145/564691.564763
https://doi.org/10.1145/564691.564763
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.1145/3183713.3196908

3196908
[32] Mark Palmer and Stanley B. Zdonik. 1991. Fido: A Cache That Learns

to Fetch. In VLDB (VLDB ’91). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 255–264.

[33] Terence Parr. 2019. https://www.antlr.org/.
[34] Andrew Pavlo. 2017. What Are Doing With Our Lives? No One

Cares About Our Concurrency Control Research. In Proceedings of the
2017 ACM SIGMOD International Conference On Management of Data
(SIGMOD ’17). https://www.cs.cmu.edu/~pavlo/slides/pavlo-keynote-
sigmod2017.pdf

[35] Andrew Pavlo, Evan P. C. Jones, and Stanley Zdonik. 2011. On
Predictive Modeling for Optimizing Transaction Execution in Par-
allel OLTP Systems. Proc. VLDB Endow. 5, 2 (October 2011), 85–96.
https://doi.org/10.14778/2078324.2078325

[36] Karthik Ramachandra, Mahendra Chavan, Ravindra Guravannavar,
and S. Sudarshan. 2015. Program Transformations for Asynchronous
and Batched Query Submission. IEEE Transactions on Knowledge and
Data Engineering 27, 2 (February 2015), 531–544. https://doi.org/10.
1109/TKDE.2014.2334302

[37] Karthik Ramachandra and S. Sudarshan. 2012. Holistic Optimization
by Prefetching Query Results. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’12). ACM,
NewYork, NY, USA, 133–144. https://doi.org/10.1145/2213836.2213852

[38] Carsten Sapia. 2000. PROMISE: Predicting Query Behavior to Enable
Predictive Caching Strategies for OLAP Systems. In Proceedings of the
Second International Conference on Data Warehousing and Knowledge
Discovery (DaWaK 2000). Springer-Verlag, London, UK, UK, 224–233.
http://dl.acm.org/citation.cfm?id=646109.679288

[39] Peter Scheuermann, Junho Shim, and Radek Vingralek. 1996. WATCH-
MAN: A Data Warehouse Intelligent Cache Manager. In Proceedings of
the 22th International Conference on Very Large Data Bases (VLDB ’96).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 51–62.
http://dl.acm.org/citation.cfm?id=645922.758367

[40] Michael Stonebraker, Sam Madden, and Pradeep Dubey. 2013. Intel
"Big Data" Science and Technology Center Vision and Execution Plan.
SIGMOD Rec. 42, 1 (May 2013), 44–49. https://doi.org/10.1145/2481528.
2481537

[41] Robert Tarjan. 1971. Depth-first search and linear graph algorithms.
In 12th Annual Symposium on Switching and Automata Theory (SWAT
1971). 114–121. https://doi.org/10.1109/SWAT.1971.10

https://doi.org/10.1145/3183713.3196908
https://www.antlr.org/
https://www.cs.cmu.edu/~pavlo/slides/pavlo-keynote-sigmod2017.pdf
https://www.cs.cmu.edu/~pavlo/slides/pavlo-keynote-sigmod2017.pdf
https://doi.org/10.14778/2078324.2078325
https://doi.org/10.1109/TKDE.2014.2334302
https://doi.org/10.1109/TKDE.2014.2334302
https://doi.org/10.1145/2213836.2213852
http://dl.acm.org/citation.cfm?id=646109.679288
http://dl.acm.org/citation.cfm?id=645922.758367
https://doi.org/10.1145/2481528.2481537
https://doi.org/10.1145/2481528.2481537
https://doi.org/10.1109/SWAT.1971.10

	Abstract
	1 Introduction
	2 Detecting Query Relationships
	2.1 Discovering Query Patterns
	2.2 Discovering Complex Loops

	3 Dependency Graph Management
	4 Query Combination Strategies
	4.1 Left Joins over Common Table Expressions
	4.2 Lateral Union

	5 The ChronoCache System
	5.1 Avoiding Redundant Predictions
	5.2 Session Semantics

	6 Performance Evaluation
	6.1 TPC-E Results
	6.2 Learning over Time
	6.3 Wikipedia Results
	6.4 SEATS Results
	6.5 AuctionMark Results
	6.6 Scalability Characteristics
	6.7 Sensitivity Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

