
Morphing Planar Graph Drawings with Bent Edges

Anna Lubiw∗† and Mark Petrick∗‡

Abstract

We give an algorithm to morph between two planar drawings of a graph, preserving
planarity, but allowing edges to bend during the course of the morph. The morph
uses a polynomial number of elementary steps, where each elementary step is a linear
morph that moves each vertex in a straight line at uniform speed. Although there are
planarity-preserving morphs that do not require edge bends, it is an open problem to
find polynomial-size morphs. We achieve polynomial size at the expense of edge bends.

1 Introduction

A morph from one drawing of a planar graph to another is a continuous transformation
from the first drawing to the second that maintains planarity. Developments in the theory
of morphing run parallel to the developments in graph drawing, though they lag behind. In
particular, the milestones in the history of planar graph drawing are: the existence results for
straight line planar drawings due to Wagner, Fáry and Stein; Tutte’s algorithm to construct
such drawings; and, in 1990, the polynomial time algorithms of de Frayssiex, Pach, Pollack [2]
and independently Schnyder [5] to construct a straight-line drawing of an n-vertex planar
graph on an O(n) × O(n) grid.

Mirroring these, the first result on morphing planar graph drawings was an existence
result: between any two planar straight-line drawings there exists a morph in which ev-
ery intermediate drawing is straight-line planar. This was proved for triangulations, by
Cairns [1] in 1944, and extended to planar graphs by Thomassen [6] in 1983. Both proofs are
constructive—they work by repeatedly contracting one vertex to another. Unfortunately,
they use an exponential number of steps, and are horrible for visualization purposes since
the graph contracts to a triangle and then re-emerges.

The next development was an algorithm to morph between any two planar straight-
line drawings, given by Floater and Gotsman [3] in 1999 for triangulations, and extended
to planar graphs by Gotsman and Surazhsky [4] in 2001. The morphs are not given by
means of explicit vertex trajectories, but rather by means of “snapshots” of the graph at any
intermediate time t. By choosing sufficiently many values of t, they give good visual results,

∗David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, N2L
3G1

†alubiw@uwaterloo.ca
‡mdtpetrick@uwaterloo.ca

1



but there is no proof that polynomially many steps suffice. Furthermore, the morph suffers
from the same drawbacks as Tutte’s original planar graph drawing algorithm in that there
is no nice bound on the size of the grid needed for the drawings.

The history of morphing planar graph drawings has not progressed to the analogue of
the small grid results of de Fraysseix et al.: It is an open problem to find a polynomial size

morph between two given drawings of a planar graph.

In this paper we solve this problem provided that edges are allowed to bend during the
course of the morph. We give a polynomial-time algorithm to find a planarity preserving
morph between two drawings of a planar graph on n vertices, where the morph is composed
of a sequence of O(n6) linear morphs. During the course of the morph, an edge becomes a
polygonal path with O(n5) bends.

Terminology. A planar drawing of a graph G = (V,E) assigns to each vertex v ∈ V

a distinct point p(v) in the plane, and to each edge e = (u, v) a path from p(u) to p(v) in
such a way that paths intersect only at a common endpoint. A plane graph is one that has
a planar drawing. A combinatorial or planar embedding of a plane graph is a cyclic order of
edges around vertices consistent with a planar drawing. We will consider drawings in which
edges are drawn as polygonal paths. A point where such a polygonal path changes direction
is called a bend.

A morph from a drawing P of a graph G to a drawing Q of the graph is a continuous
family of drawings P (t), indexed by time t ∈ [0, 1] where each P (t) is a drawing of G, and
P (0) = P and P (1) = Q. A morph preserves planarity if each P (t) is planar.

2 The Morphing Algorithm

We give an algorithm that takes two planar straight line drawings P and Q representing the
same combinatorial embedding of a graph G, and finds a planarity-preserving edge-bending
morph from P to Q using a polynomial number of elementary steps.

Conceptually, the morph is simple: if v1, v2, . . . , vn are the vertices of Q ordered by x-
coordinate, then we first locate v1 in P—it must be on the outer face—and “pull it out”
of the drawing until it is at the far left, allowing the edges of P to bend in compensation.
We then repeat with v2, v3 and so on until the vertices of P appear in the same x-ordering
as those of Q. If the pulling out is done with care, the edges of P will now be polygonal
paths monotone in the x direction. We then perform a linear morph to adjust all vertices
and bends to the correct y coordinate, thus straightening all the polygonal paths.

We now discuss the algorithm in more detail, beginning with the set-up phase. We
discretize by adding a vertical line through each vertex of P . We also add n vertical lines
Li, 1 ≤ i ≤ n to the left of the drawing of P . Line Li will be the eventual home of vertex
vi, and when all vertices vi reach their line Li then the vertices of P are in the same x-order
as those of Q. We plan ahead of time the route that each vertex of P will follow as we pull
it to its eventual position at the left. Specifically, we augment Q with an extra vertex v0 at
the far left, and augment with extra straight-line edges so that every vertex vi, 1 ≤ i ≤ n

is joined by some edge ei to a vertex earlier in the ordering. We augment P to match the
augmented Q and its embedding by routing each new edge as a polygonal path.

2



The main body of the algorithm is an iteration on i = 1, . . . , n. In iteration i vertex vi

is pulled along the path of ei until it reaches line Li. This is accomplished by repeatedly
moving vi from the vertical line on which it lies to an adjacent vertical line along the last
segment of ei. We call this the main step of the algorithm, and give details below. Each main
step is preceded by a straightening step that modifies the incoming edges to vi. Incoming

and outgoing edges to a vertex are defined wrt the x-ordering in Q. In P , the incoming
edges need not come from the left but they are contiguous in the cyclic order of edges. The
straightening step, whose details we defer to the full version of the paper, enforces:

Property 1. All incoming edges to vi enter vi from the same side of the vertical line l

through vi. If l′ is the adjacent vertical line on that side, there are no other vertices/bends
along l′ between the incoming edges.

The final phase of the algorithm is a linear morph from P to Q. We prove that it preserves
planarity by proving that, after the main body of the algorithm, the trapezoidizations of P

and Q are combinatorially the same. Details are defered.

2.1 Main Step of Algorithm

In the main step of the algorithm vertex vi is moved from its current vertical line l to an
adjacent line l′ along the path of edge ei. This step takes place repeatedly during iteration
i of the algorithm. Iterations 1, . . . , i − 1 have already moved vertices v1, . . . , vi−1 to lines
L1, . . . , Li−1 respectively.

p

l1 l2 l3 l1 l2 l3l1 l2 l3

vi

q vi

vi

e0 = ei

e1

e2

e3

e4

e5

e6e7

e8

e5

e6

e5

e6

e8 e8

e7
e7

e1

e2

e3

e4

e1

e2

e3

e4

Figure 1: The main step of the algorithm moves vi along one segment of ei.

The operation is local, altering only the position of vi and of bends and vertices joined
to vi by a straight segment. These bends and vertices all lie on line l = l2, its predecessor l1
and its successor l3. Since bends and vertices only occur on vertical lines, portions of edges
between adjacent vertical lines are straight, which makes it possible to use linear morphs.
By Property (1) all incoming edges to vi are contiguous and arrive from the same side;
assume without loss of generality that they arrive from l1. Also by Property (1) there are no
vertices/bends along l1 between the incoming edges. The situation is as shown in Figure 1.
We morph as follows:

vertex vi: Move vertex vi along ei from its current point p on l2 to point q where ei intersects
l1.

3



incoming edges: These arrive from bends on l1. Move these bends along l1 to q. (See
edges e1 and e2 in Fig. 1.)
outgoing edges: There are several cases: Any edge to l3 acquires a new bend on l2, initially
at p, and with final positions nicely spaced on l2. (See e5 and e6.) There may be an edge to
a vertex on l2—leave the vertex fixed. (See e7.) Finally, consider an edge to a bend/vertex t

on l1. If t is a bend, and the interval along l1 between q and t contains only bends connected

to vi (*) then move t to q. (See e8.) If t is a vertex and property (*) holds then t stays
fixed and the edge (vi, t) morphs to lie along l1. (See e3.) Otherwise (*) fails which means
that there is an intervening bend/vertex along l1 between q and t. In this case t stays fixed
and the segment (vi, t) morphs to a two-segment path that bends around the intervening
point(s). (See e4.) We defer further details and justification of planarity to the full paper.

Each main step of the algorithm can be accomplished via two linear morphs, the dividing
point being when the new bends appear.

3 Analysis

Note that the final case of the main step of the algorithm (see the right-hand pane of Fig. 1)
introduces new bends. Each bend requires a new vertical line, and each crossing of the
vertical line with an existing edge counts as a new bend. This blow-up in the number of
bends is potentially dangerous, since the number of main steps performed by the algorithm
depends on the number of bends. To circumvent the danger, we focus on turns , which are
bends where the path changes x-direction, and we examine more closely the straightening
step and the main step of the algorithm, and argue that turns are progagated rather than
created. Looking at the big picture, the intuition is that, since iteration i of the algorithm
causes each outgoing edge of vi to follow the path of the incoming edge ei, thus, at worst, we
copy the turns of ei onto all the outgoing edges. We begin by bounding the number of turns
introduced during the set-up phase. Further details of the following theorem are defered.

Theorem 1 The algorithm uses O(n6) linear morphs.

References

[1] S. S. Cairns. Deformation of plane rectilinear complexes. American Mathematical Monthly,
51:247–252, 1944.

[2] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990.

[3] M. S. Floater and C. Gotsman. How to morph tilings injectively. Journal of Computational
and Applied Mathematics, 101:117–129, 1999.

[4] C. Gotsman and V. Surazhsky. Guaranteed intersection-free polygon morphing. Computers
and Graphics, 25:67–75, 2001.

[5] W. Schnyder. Embedding planar graphs on a grid. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pages 138–148, 1990.

[6] C. Thomassen. Deformation of plane graphs. Journal of Combinatorial Theory Series B,
34:244–257, 1983.

4


