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Abstract

A sequence a = (an)
∞
n=1 of non-negative integers is called realizable if there is a

self-map T : X → X on a set X such that an is equal to the number of periodic points
of T in X of (not necessarily exact) period n, for all n ≥ 1. The sequence a is called
almost realizable if there exists a positive integer m such that (man)

∞
n=1 is realizable.

In this article, we show that certain wide classes of integer sequences are realizable,
which contain many famous combinatorial sequences, such as the sequences of Apéry
numbers of both kinds, central Delannoy numbers, Franel numbers, Domb numbers,
Zagier numbers, and central trinomial coefficients. We also show that the sequences
of Catalan numbers, Motzkin numbers, and large and small Schröder numbers are not
almost realizable.

1 Introduction

Let Z≥0 denote the set of non-negative integers and Z+ the set of positive integers. In this
paper, the serial numbers “Axxxxxx” associated with certain sequences in the paper all refer
to the corresponding sequence numbers in the On-Line Encyclopedia of Integer Sequences
(OEIS) [31]. We consider a property for sequences of non-negative integers which is inspired
from dynamical systems.

Definition 1. A sequence a = (a(n))∞n=1 of non-negative integers is called realizable if one
of the two following equivalent conditions holds.
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(1) there is a self-map T : X → X on a set X such that

a(n) = #{x ∈ X : T n(x) = x}

for all n ≥ 1;

(2) (µ∗a)(n) is a non-negative integer divisible by n, for all n ≥ 1, where µ is the (classical)
Möbius function and the operation ∗ is the Dirichlet convolution of arithmetic functions.

In this case, we also say that the sequence a = (a(n))∞n=1 is realized via the map T and T
realizes a.

Remark 2. For the equivalence, see [29, p. 398]. In the description (2), the condition

(µ ∗ a)(n) ≥ 0

for all n ≥ 1 is called the sign condition, and the condition

(µ ∗ a)(n) ≡ 0 (mod n)

for all n ≥ 1 is called the Dold condition. In the description (1), by [37] one can equally
require X to be an annulus and f a C∞ diffeomorphism of X.

Miska and Ward [23] defined the following generalization of realizability:

Definition 3. Let a = (an)
∞
n=1 be a sequence of non-negative integers. If there existsm ∈ Z+

such that the sequence (man)
∞
n=1 is realizable, then we say that a is almost realizable, and

the minimal such m ∈ Z+ is denoted by Fail(a). When a is not almost realizable, we set
Fail(a) = ∞.

Example 4. We give some examples of sequences which are realizable, almost realizable, or
not almost realizable.

(1) The sequence (2n − 1)∞n=1 A000225 is realized via the map T : R/Z → R/Z, x 7→
2x mod 1, the times-2 map on the circle R/Z.

(2) The sequence (|(−2)n − 1|)∞n=1 A062510 is realized via the map z 7→ z−2 on the circle
S1 = {z ∈ C : |z| = 1}.

(3) Let d ∈ Z+, X = {0, 1, . . . , d− 1}Z, and T : X ∋ (xn)n 7→ (xn+1)n ∈ X be the shift map
on X. Then the sequence (dn)∞n=1 is realized via T .

(4) Consider a sequence (Un)
∞
n=1 given by Un+2 = Un+1 + Un, n ≥ 1, U1 = a, U2 = b, where

a, b ∈ Z≥0. Note that b = 3a = 3 gives the Lucas sequence (Ln) (A000032) and a = b = 1
gives the Fibonacci sequence (Fn) (A000045). Puri and Ward [29] have showed that the
sequence (Un) is realizable if and only if b = 3a if and only if (Un) is a non-negative
integer multiple of the Lucas sequence. In particular, the Fibonacci sequence (Fn) is not
realizable. Indeed, Moss and Ward [25] proved that (Fn) is not almost realizable, but
the sequence (Fn2)∞n=1 (A054783) is almost realizable with Fail((Fn2)) = 5.
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(5) Write S(1)(n, k) for the (signless) Stirling number of the first kind, and S(2)(n, k) for the
Stirling number of the second kind, where n ≥ k ∈ Z≥0, see [33, pp. 32, 81]. For k ≥ 1,

set S
(1)
k = (S(1)(n+k−1, k))∞n=1 and S

(2)
k = (S(2)(n+k−1, k))∞n=1. Miska and Ward [23]

have showed that S
(1)
k is not almost realizable for every k ≥ 1, and that S

(2)
k is realizable

if and only if k ∈ {1, 2}, while S(2)
k is almost realizable with Fail(S

(2)
k ) | (k− 1)! for every

k ≥ 1.

(6) Write (En) for the sequence of Euler numbers A122045, given by the exponential gener-
ating function

2

et + e−t
=

∞
∑

n=0

En
tn

n!
.

Moss [24, Theorem 5.3.2] proved that the sequence ((−1)nE2n)
∞
n=1 (A000364) is realiz-

able.

(7) Write (Bn) for the sequence of Bernoulli numbers, given by the exponential generating
function

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
,

cf. [32, Exercise 5.55]. For each n ≥ 1, let bn ∈ Z+ be the denominator of B2n in
the fraction in lowest terms (A002445) and write |B2n

2n
| = τn

ηn
with τn, ηn ∈ Z+, and

gcd(τn, ηn) = 1. Then (bn)
∞
n=1, (τn)

∞
n=1 (A001067 taking absolute value), and (ηn)

∞
n=1

(A006953) are realizable according to [13, Theorem 2.6] and [24, Theorem 5.5.3, Theorem
5.5.10]. Indeed, the sequence (ηn)

∞
n=1 can be realized via an endomorphism of a group.

(8) Write (Gn) for the sequence of Genocchi numbers A226158, given by the exponential
generating function

−2t

e−t + 1
=

∞
∑

n=1

Gn
tn

n!
.

See [32, Exercise 5.8] for more on these numbers. It is easy to see that G2n+1 = 0 and
en := (−1)nG2n = (−1)n2(1− 4n)B2n is a positive odd integer for n ≥ 1. Since η1 = 12
and τ1 = 1, by (7) and Fermat’s little theorem, for every prime p ≥ 5, we have

ep = 2(4p − 1)× 2p× τp
ηp

≡ 4p(4− 1)
1

12
≡ 0 6≡ 1 = e1 (mod p).

If the sequence (en)
∞
n=1 is almost realizable, then p | Fail((en)) for every prime p ≥ 5,

contradicting the fact that Z+ ∋ Fail((en)) < ∞. Therefore, the sequence (en)
∞
n=1 is not

almost realizable.

(9) Consider a multiplicative arithmetic function f whose values are non-negative integers.
Then µ∗f is also multiplicative. Using multiplicativity, we see that (f(n))∞n=1 is realizable
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if and only if
0 ≤ f(pm)− f(pm−1) = (µ ∗ f)(pm) ≡ 0 (mod pm)

for every prime p and m ∈ Z+. For example, consider the divisor function σk(n) =
∑

d|n d
k, n ∈ Z+, for k ∈ Z+. As σk is multiplicative, from the above observation it is

clear that (σk(n))
∞
n=1 is realizable.

(10) Let (Bell(n))∞n=0 be the sequence of Bell numbers A000110, which was introduced by Bell
[6]. By the Touchard congruence [36], for every prime p, we have

Bell(p)− Bell(1) ≡ Bell(0) = 1 (mod p).

As in (8), we see that the sequence (Bell(n))∞n=1 is not almost realizable. For more
information on Bell numbers, see [6, 5, 3] and the references therein.

(11) Let dn be the number of derangements A000166 of the set {1, . . . , n} for n ≥ 1. It is

well-known that dn = n!
∑n

k=0
(−1)k

k!
. Then, for every prime number p, we have

dp − d1 = p!

p−1
∑

k=0

(−1)k

k!
+ (−1)p − 0 ≡ (−1)p (mod p).

As in (8), we see that the sequence (dn)
∞
n=1 is not almost realizable.

In this article, we consider the realizability of some combinatorial sequences related to
binomial coefficients, which are defined below.

Definition 5. For r ∈ Z+ and n, s ∈ Z≥0, define

A(n, r, s) =
n
∑

k=0

(

n

k

)r(
n+ k

k

)s

.

Remark 6. Definition 5 includes many well-known sequences in combinatorics. For ex-
ample, (A(n))∞n=0 := (A(n, 2, 2))∞n=0 is the sequence of Apéry numbers (of the first kind)
A005259, and (β(n))∞n=0 := (A(n, 2, 1))∞n=0 is the sequence of Apéry numbers of the second
kind A005258. The Apéry numbers of both kinds were introduced by Apéry [2] to prove the ir-
rationality of ζ(3). For more information on Apéry numbers, see [7, 39, 30] and the references
therein. The sequence of central Delannoy numbers A001850 is (D(n))∞n=0 := (A(n, 1, 1))∞n=0,
cf. [32, Example 6.3.8]. The number D(n) equals the number of paths from the southwest
corner (0, 0) of a square grid to the northeast corner (n, n), using only single steps north,
northeast, or east. See [4, 35] to learn more about the central Delannoy numbers. Usually,
the sequence (f (3)(n)) A000172 is called the sequence of Franel numbers, which was first
introduced by Franel [14]. Generally, for r ∈ Z+, we call (f (r)(n))∞n=0 := (A(n, r, 0))∞n=0 the
sequence of Franel numbers of order r. Note that (f (1)(n)) = (2n) has been studied in (3) of
Example 4, and that (f (2)(n)) is the sequence of central binomial coefficients A000984.
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Definition 7. For r ∈ Z+ and n, s, t ∈ Z≥0, define

D(n, r, s, t) =
n
∑

k=0

(

n

k

)r(
2k

k

)s(
2(n− k)

n− k

)t

.

Remark 8. The sequence of Domb numbers A002895 is (Domb(n))∞n=0 := (D(n, 2, 1, 1))∞n=0,
which was introduced by Domb [11]. For more information on Domb numbers, we refer the
reader to [11, 9, 21] and the references therein. We call (Z(n))∞n=0 := (D(n, 1, 1, 1))∞n=0 the
sequence of Zagier numbers (A081085), which corresponds to Zagier [40, E. in Table 2].

Definition 9. The sequence (P (n))∞n=0 of Catalan-Larcombe-French numbers A053175 is
given by the formula

P (n) = 2n
n
∑

k=0

(

n

2k

)(

2k

k

)2

4n−2k, n ≥ 0.

Remark 10. Catalan [8] showed that (P (n)) has the following recurrence relation:

(n+ 1)2P (n+ 1) = 8(3n2 + 3n+ 1)P (n)− 128n2P (n− 1), n ≥ 1.

The number P (n) is the “other” Catalan number in the sense of Larcombe-French [17].
Larcombe and French [17] showed that P (n) can be given by elliptic integrals. We will show
that (P (n))∞n=1 is realizable (Remark 16), while the sequence (C(n))∞n=1 of (true) Catalan
numbers is not almost realizable ((1) of Theorem 21).

Definition 11. For r ∈ Z+ and n, s, t, u ∈ Z≥0, define

T (n, r, s, t, u) =
n
∑

k=0

(

n

2k

)r(
n+ k

k

)s(
2k

k

)t(
2(n− k)

n− k

)u

.

Remark 12. For n ≥ 1, the central trinomial coefficient T (n) is defined to be the coefficient
of xn in (x2 + x+ 1)n (A002426). Clearly, T (n) = T (n, 1, 0, 1, 0).

The sequences given in Definitions 5, 7, 9, and 11 are all realizable. In fact, the results
can be generalized further, see Remarks 33 and 34.

Theorem 13. For every s ∈ Z≥0 and r ∈ Z+, the sequence (A(n, r, s))∞n=1 is realizable.

Remark 14. In particular, the sequence of Apéry numbers (of the first kind), the sequence
of Apéry numbers of the second kind, the sequence of central Delannoy numbers, and the
sequence of Franel numbers of order r ∈ Z+ are all realizable.

Theorem 15. For every s, t ∈ Z≥0, and r ∈ Z+, the sequence (D(n, r, s, t))∞n=1 is realizable.
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Remark 16. In particular, the sequence of Domb numbers and the sequence of Zagier numbers
are both realizable. Moreover, the sequence of Catalan-Larcombe-French numbers is also
realizable. Larcombe and French [18, Theorem 3] proved that P (n) = 2nZ(n) for all n ≥ 0.
As in (3) of Example 4, the sequence (2n)∞n=1 is realized via the shift map T : X = {0, 1}Z →
X. By Theorem 15, there exists a map F : Y → Y on a set Y such that

Z(n) = #{y ∈ Y : F n(y) = y}, n ≥ 1.

Clearly, the sequence (P (n))∞n=1 = (2nZ(n))∞n=1 is realized via the map

T × F : X × Y → X × Y, (x, y) 7→ (T (x), F (y)).

Remark 17. By Theorem 13, for all m, r ∈ Z+, s ∈ Z≥0, and every prime p, we have

A(pm, r, s) ≡ A(pm−1, r, s) (mod pm).

In fact, in the proof of Theorem 13, we will show that for every m,n, r ∈ Z+, s ∈ Z≥0, and
every prime p, we have

A(npm, r, s) ≡ A(npm−1, r, s) (mod pm). (1)

(The congruence (1) is a result of Theorem 13 and Lemma 30.) For certain values of r and s,
results stronger than (1) have been proved. For example, Straub [34, Theorem 1.1] asserted
that for (V (n)) in the 15 known sporadic Apéry-like sequences [34, pp. 1–2], arbitrary prime
p ≥ 3, and m,n ∈ Z+, we have

V (npm) ≡ V (npm−1) (mod p2m). (2)

The 15 known sporadic Apéry-like sequences include (f (3)(n))n, (f (4)(n))n (the sequence
A005260), (A(n))n, (β(n))n, (Z(n))n, (Domb(n))n, (D(n, 2, 1, 0))n (the sequence A002893),
and some other sequences, see [20]. Similarly, in the proof of Theorem 15, we will show that
for all m,n, r ∈ Z+, s, t ∈ Z≥0, and every prime p, we have

D(npm, r, s, t) ≡ D(npm−1, r, s, t) (mod pm). (3)

(The congruence (3) is a result of Theorem 15 and Lemma 30.) Also, for restricted values of
s, t, and p, results stronger than (3) have been proved. For example, Osburn and Sahu [27,
Theorem 1.1] showed that for all m,n, s, t ∈ Z+, r ∈ {2, 3, 4, . . .}, and every prime p ≥ 5, we
have

D(npm, r, s, t) ≡ D(npm−1, r, s, t) (mod p3m). (4)

Theorem 18. For every r ∈ Z+ and s, t, u ∈ Z≥0, the sequence (T (n, r, s, t, u))∞n=1 is realiz-
able.

Next we consider some other famous sequences involving binomial coefficients as well,
but they are not almost realizable.
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Definition 19. (1) The sequence of Catalan numbers A000108 (C(n))∞n=0 is given by the
formula

C(n) :=
1

n+ 1

(

2n

n

)

=

(

2n

n

)

−
(

2n

n+ 1

)

, n ≥ 0;

(2) The sequence of Motzkin numbers A001006 (M(n))∞n=0 is given by the formula

M(n) :=
n
∑

k=0

(

n

2k

)

C(k), n ≥ 0;

(3) The sequence of large Schröder numbers A006318 is given by the formula

S(n) :=
n
∑

k=0

(

n+ k

2k

)

C(k), n ≥ 0.

Remark 20. The Motzkin numbers are first appeared in Motzkin [26] in a circle chording
setting. The large Schröder number S(n) describes the number of paths from the southwest
corner (0, 0) of a square grid to the northeast corner (n, n), using only single steps north,
northeast, or east, that do not rise above the SW-NE diagonal.

Theorem 21. The following sequences are not almost realizable.

(1) (C(n))∞n=1;

(2) (M(n))∞n=1;

(3) (S(n))∞n=1.

Remark 22. The sequence of little Schröder numbers A001003 (s(n))∞n=1 is given by the
formula

s(n) :=
n
∑

k=1

N(n, k)2k−1, n ≥ 1,

cf. [32, p. 178]. Here

N(n, k) =
1

n

(

n

k

)(

n

k − 1

)

∈ Z+

is the Narayana number A001263, cf. [32, Exercise 6.36]. It is well-known that S(n) = 2s(n)
for every n ≥ 1, so from (3) of Theorem 21, we deduce that the sequence (s(n))∞n=1 of little
Schröder numbers is not almost realizable as well.

It is interesting to consider the realizability of combinatorial sequences of different types,
which may not involve binomial coefficients. Motivated by computations, we make the
following conjecture.
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Conjecture 23. For n ≥ 1, let p(n) be the number of partitions of n, i.e., ways of writing
n as an (unordered) sum of positive integers (A000041). Then the sequence

(p(n))∞n=1 = (1, 2, 3, 5, 7, 11, 15, . . .)

of partition numbers is not almost realizable.

Remark 24. However, we show that the sequence (p(n))∞n=1 satisfies the sign condition.
Clearly, the sequence (p(n))∞n=1 is increasing. By Remark 29, it suffices to check that

p(2n) ≥ np(n), n ≥ 1. (5)

By [22, Corollary 3.1] and [19, Theorem 15.7], for all integers n ≥ 3, we have

1

14
e2

√
n < p(n) <

π
√

6(n− 1)
eπ
√

2

3
n.

Thus, for every integer n ≥ 523, we have

p(2n)

p(n)
>

√

6(n− 1)

14π
e(2

√
2−π

√
2

3
)
√
n > n.

For integers 1 ≤ n ≤ 522, the equation (5) has been checked by direct computation via a
computer. Hence the sequence (p(n))∞n=1 satisfies the sign condition.

In §2, we consider several useful lemmas. In §3, we complete the proofs of Theorems 13,
15, 18, and 21, and give some remarks.

2 Auxiliary lemmas

First, we need the following well-known theorem of Kummer [16].

Lemma 25 (Kummer’s theorem). Given a prime number p and integers n ≥ m ≥ 0, the
value of νp

((

n
m

))

is equal to the number of carries when m is added to n−m in base p. Here
νp denotes the standard p-adic valuation on Q.

The following lemma is [15, Corollary of p. 490] by Helou and Terjanian.

Lemma 26. Let n ≥ m ≥ 0 be integers.

(1) For every prime p ≥ 5, we have

(

np

mp

)

≡
(

n

m

)

(mod p3+max(νp(m),νp(n−m))+νp((n

m))).
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(2) For p = 3, we have

(

3n

3m

)

≡
(

n

m

)

(mod 32+max(ν3(m),ν3(n−m))+ν3((n

m))).

(3) For p = 2, we have

(

2n

2m

)

≡
(

n

m

)

(mod 21+max(ν2(m),ν2(n−m))+ν2((n

m))).

Here, for two integers A,B, and a prime p, the expression A ≡ B (mod p∞) means that
A ≡ B (mod pN) for all N ∈ Z+, or equivalently, A = B.

Note that in Lemma 26, the conclusion trivially holds when m = 0.

Lemma 27. Let n ∈ Z≥0 and p be a prime divisor of n. Set m = νp(n) ∈ Z+ ∪ {∞}. Then
(

n

λp

)

≡
(

n/p

λ

)

(mod pmax(m,νp(n−λp))),

for every non-negative integer λ.

Proof. When n = 0, we have
(

n
λp

)

= 0 =
(

n/p
λ

)

. Hence the conclusion is clear. We may

assume that n > 0. Write n = lpm. Observe that gcd(l,m) = 1. If λ ≥ lpm−1 or λ = 0,
then

(

n
λp

)

=
(

n/p
λ

)

∈ {0, 1}, so the conclusion holds. Now assume that 0 < λ < lpm−1. As

1 + νp((n/p)− λ) = νp(n− λp), by Lemma 26, it suffices to show that

1 + max
(

νp(λ), νp(lp
m−1 − λ)

)

+ νp

((

lpm−1

λ

))

≥ m.

Write λ = ptq, where t = νp(λ) ∈ Z≥0 and q ∈ Z+ with p ∤ q. When t ≥ m− 1, we have

1 + max
(

νp(λ), νp(lp
m−1 − λ)

)

+ νp

((

lpm−1

λ

))

≥ 1 + νp(λ) = 1 + t ≥ m.

If t ≤ m− 2, then νp(n/p) = m− 1 > m− 2 ≥ t = max(νp(λ), νp((n/p)− λ)), so by Lemma
25 we see that

νp

((

lpm−1

λ

))

= νp

((

lpm−1

qpt

))

≥ m− 1− t.

Thus,

1 + max
(

νp(λ), νp(lp
m−1 − λ)

)

+ νp

((

lpm−1

λ

))

≥ 1 + t+m− 1− t = m.

9



The following lemma gives a sufficient condition for the sign condition.

Lemma 28. Let (b(n))∞n=1 be a sequence of non-negative real numbers. Assume that there
is a constant C ≥ 1.221 such that b(n + 1) ≥ Cb(n) for every n ≥ 1. Then (µ ∗ b)(n) ≥ 0
for every n ≥ 1.

Proof. Set f = µ ∗ b. By assumption we have b(n+ k) ≥ Ckb(n) for every n ≥ 1 and k ≥ 0.
In particular, (b(n))∞n=1 is non-decreasing and non-negative. Trivially, f(1) = b(1) ≥ 0. For
every prime number p and k ∈ Z+, since pk > pk−1, we have

f(pk) = b(pk)− b(pk−1) ≥ 0.

For every pair of distinct prime numbers p1 6= p2 and k1, k2 ∈ Z+, we have

f
(

pk11 pk22
)

= b
(

pk11 pk22
)

− b
(

pk1−1
1 pk22

)

− b
(

pk11 pk2−1
2

)

+ b
(

pk1−1
1 pk2−1

2

)

≥ b
(

pk11 pk22
)

− Cp
k1−1

1
p
k2
2

−p
k1
1

p
k2
2 b
(

pk11 pk22
)

− Cp
k1
1

p
k2−1

2
−p

k1
1

p
k2
2 b
(

pk11 pk22
)

+ 0

≥
(

1− C3−3×2 − C2−3×2
)

b
(

pk11 pk22
)

≥
(

1− 1.221−3 − 1.221−4
)

b
(

pk11 pk22
)

≥ 0.

The minimum positive integer with at least three distinct prime divisor is 30 = 2× 3× 5, so
it suffices to show that f(n) ≥ 0 for n ≥ 30. Assume that n ≥ 30, and set m = ⌊n

2
⌋ ≥ 15.

Then

f(n) =
∑

d|n
µ
(n

d

)

b(d) = b(n) +
∑

d|n,d 6=n

µ
(n

d

)

b(d) ≥ b(n)−
∑

d|n,d 6=n

b(d)

≥ b(n)−
m
∑

d=1

b(d) ≥ Cmb(m)−
m
∑

d=1

Cd−mb(m) ≥ (Cm −m)b(m)

≥ (1.221m −m)b(m) ≥ 0,

since m ≥ 15.

Remark 29. The converse of Lemma 28 is false, in general. For example, the trivial sequence
(1)∞n=1 provides a counterexample. Note that the number 1.221 in the statement can be
replaced by the unique positive root x0 = 1.220744 · · · of the equation x4 = x+ 1. Puri [28]
observed that if (b(n))∞n=1 is a non-decreasing sequence of non-negative real numbers with

b(2n) ≥ nb(n), (6)

for all n ≥ 1, then (µ ∗ b)(n) ≥ 0 for all n ≥ 1, cf. [23, proof of Lemma 8]. Note that
Lemma 28 cannot be deduced directly from the observation of Puri since 1.221n < n for
n ∈ {2, 3, . . . , 12}, and vice versa.

10



We consider the Dold condition now, which has an equivalent statement as follows.

Lemma 30. Let (V (n))∞n=1 be a sequence of integers. Then the following conditions are
equivalent.

(1) for every n,m ∈ Z+, and every prime number p, we have

V (npm) ≡ V (npm−1) (mod pm);

(2) (V (n))∞n=1 satisfies the Dold condition, i.e., (µ ∗ V )(n) ≡ 0 (mod n), for every n ≥ 1.

Proof. Set g = µ ∗ V . Given an arbitrary integer n ≥ 2, write n = pm1

1 pm2

2 · · · pml

l , where
p1, . . . , pl are pairwise distinct primes, and l,m1, . . . ,ml ∈ Z+. Set n1 = pm2

2 · · · pml

l . Here
n1 = 1 when l = 1. Then, we have

g(n) =
∑

d|n
µ(d)V

(n

d

)

=
∑

d|n1

(

µ(d)V
(n

d

)

+ µ(dp1)V

(

n

dp1

))

=
∑

d|n1

µ(d)
(

V
(n1

d
pm1

1

)

+ µ(p1)V
(n1

d
pm1−1
1

))

=
∑

d|n1

µ(d)
(

V
(n1

d
pm1

1

)

− V
(n1

d
pm1−1
1

))

.

(7)

First assume that for every n,m ∈ Z+, and every prime number p, we have

V (npm) ≡ V (npm−1) (mod pm).

We show that the Dold condition holds. The congruence g(1) ≡ 0 (mod 1) trivially holds.
For an arbitrary integer n = pm1

1 pm2

2 · · · pml

l ≥ 2 as above, we have

g(n) =
∑

d|n1

µ(d)
(

V
(n1

d
pm1

1

)

− V
(n1

d
pm1−1
1

))

≡ 0 (mod pm1 )

by (7). Similarly, we have g(n) ≡ 0 (mod p
mj

j ) for 1 < j ≤ l. Thus, we get g(n) ≡ 0 (mod
n), i.e., the Dold condition is verified.

Now assume that for every n ∈ Z+, we have g(n) ≡ 0 (mod n). We will show that for
every n,m ∈ Z+, and every prime number p, we have

V (npm) ≡ V (npm−1) (mod pm). (8)

Write n = n1p
s, where n1 ∈ Z+ and s ∈ Z≥0 with gcd(n1, p) = 1. Note that the congruence

V (n1p
m+s) ≡ V (n1p

m+s−1) (mod pm+s)

11



implies the congruence (8), hence it suffices to show that (8) holds in the case gcd(n, p) = 1.
We use induction on n ∈ Z+. When n = 1, the congruence (8) follows from

V (pm)− V (pm−1) = g(pm) ≡ 0 (mod pm).

Let n be an arbitrary integer at least 2 and assume that (8) hold for all smaller n (with
gcd(n, p) = 1). Thus, by (7), the inductive hypothesis, and the Dold condition, we have

0 ≡ g(npm) =
∑

d|n
µ(d)

(

V
(n

d
pm
)

− V
(n

d
pm−1

))

≡ µ(1)
(

V (npm)− V
(

npm−1
))

+
∑

d|n,d>1

µ(d) · 0

= V (npm)− V
(

npm−1
)

(mod pm).

(Here npm, n, p,m correspond to n, n1, p1,m1 in (7), respectively.) Therefore, we have showed
that (8) holds for every n,m ∈ Z+, and every prime p.

Remark 31. From the proof of Lemma 30, we can require that n and p are coprime in
condition (1).

3 Proofs of theorems

Proof of Theorem 13. Fix s ∈ Z≥0 and r ∈ Z+. Write V (n) = A(n, r, s), n ≥ 1, for simplicity
of notation. Set g = µ ∗ V . For n = 1, it is clear that g(1) = V (1) = 1 + 2s is divisible by
1. Given arbitrary m,n ∈ Z+, and an arbitrary prime number p, we consider the difference
V (npm)− V (npm−1) modulo pm. Let 0 ≤ k ≤ npm be an integer. If p ∤ k, then we have

(

npm

k

)

≡ 0 (mod pm)

by Lemma 25. If p | k, then
(

npm

k

)

≡
(

npm−1

k/p

)

(mod pm),

(

npm + k

k

)

≡
(

npm−1 + k/p

k/p

)

(mod pm)

by Lemma 27, since νp(np
m + k − k) ≥ m. Therefore,

V (npm)− V (npm−1) =

npm
∑

k=0

(

npm

k

)r(
npm + k

k

)s

−
npm−1

∑

k=0

(

npm−1

k

)r(
npm−1 + k

k

)s

≡ 0 +

npm−1

∑

λ=0

(

npm

λp

)r(
npm + λp

λp

)s

−
npm−1

∑

k=0

(

npm−1

k

)r(
npm−1 + k

k

)s

≡
npm−1

∑

λ=0

(

npm−1

λ

)r(
npm−1 + λ

λ

)s

−
npm−1

∑

k=0

(

npm−1

k

)r(
npm−1 + k

k

)s

= 0 (mod pm).

12



We get that
V (npm)− V (npm−1) ≡ 0 (mod pm).

By Lemma 30, we see that (V (n))∞n=1 satisfies the Dold condition.
It suffices to show that g(n) ≥ 0 for all n ∈ Z+. For every n ≥ 1, we have

V (n+ 1) =
n+1
∑

k=0

(

n+ 1

k

)r(
n+ 1 + k

k

)s

= 1 +
n+1
∑

k=1

(

n+ 1

k

)r(
n+ 1 + k

k

)s

= 1 +
n+1
∑

k=1

((

n

k

)

+

(

n

k − 1

))r ((
n+ k

k

)

+

(

n+ k

k − 1

))s

≥ 1 +
n+1
∑

k=1

((

n

k

)r(
n+ k

k

)s

+

(

n

k − 1

)r(
n+ k

k − 1

)s)

≥ 1 +
n+1
∑

k=1

((

n

k

)r(
n+ k

k

)s

+

(

n

k − 1

)r(
n+ k − 1

k − 1

)s)

= 2
n
∑

k=0

(

n

k

)r(
n+ k

k

)s

= 2V (n).

As 2 > 1.221, the Dold condition g(n) ≥ 0 for all n ∈ Z+ follows from Lemma 28. Therefore,
the sequence (V (n))∞n=1 is realizable.

Remark 32. In the proof of Theorem 13, we have showed that A(n+1, r, s) ≥ 2A(n, r, s), for
all n, s ≥ 0, and r ≥ 1. For some specified values of r and s, some stronger results are known.
Recall that A(n) = A(n, 2, 2), β(n) = A(n, 2, 1), D(n) = A(n, 1, 1), and f (r)(n) = A(n, r, 0).
Xia and Yao [38, Corollary 5] proved that the sequence (A(n))∞n=0 is strictly log-convex, i.e.,

A(n+ 1)

A(n)
>

A(n)

A(n− 1)
, n ≥ 1.

Hence, for all n ≥ 1, we have

A(n+ 1)

A(n)
≥ A(2)

A(1)
=

73

5
> 2.

Xia and Yao also showed that the sequence (D(n))∞n=0 is strictly log-convex [38, Corollary
6], hence we have

D(n+ 1)

D(n)
≥ D(2)

D(1)
=

13

3
> 2, n ≥ 1.

The result [10, Theorem 5.2] of Chen and Xia implies that the sequence (β(n))∞n=0 is strictly
log-convex, hence we get

β(n+ 1)

β(n)
≥ β(2)

β(1)
=

19

3
> 2, n ≥ 1.

13



The result [12, Corollary 4.3] of Došlić implies that for r ∈ {3, 4}, the sequence (f (r)(n))∞n=0

is log-convex, i.e.,
f (r)(n+ 1)f (r)(n− 1) ≥ f (r)(n)2, n ≥ 1.

Proof of Theorem 15. Fix s, t ∈ Z≥0, and r ∈ Z+. Write W (n) = D(n, r, s, t), n ≥ 1, for
simplicity of notation. Set g = µ ∗W . For n = 1, it is clear that g(1) = W (1) = 2t + 2s is
divisible by 1. Given m,n ∈ Z+, and an arbitrary prime number p, we consider the difference
A := W (npm) − W (npm−1) modulo pm. Let 0 ≤ k ≤ npm be an integer. If p ∤ k, then we
have

(

npm

k

)

≡ 0 (mod pm) (9)

by Lemma 25. Now assume that p | k and write k = lpu, where (l, u) = (0,m) when k = 0,
and l, u ∈ Z+ with gcd(l, p) = 1 when k > 0. We claim that

(

npm

k

)r(
2k

k

)s(
2(npm − k)

npm − k

)t

≡
(

npm−1

lpu−1

)r(
2lpu−1

lpu−1

)s(
2(npm−1 − lpu−1)

npm−1 − lpu−1

)t

(mod pm).

(10)

Note that Lemma 27 implies that

(

npm

k

)r

≡
(

npm−1

lpu−1

)r

(mod pm).

By Lemma 25, we have νp
((

2M
M

))

≥ δ2,p for all M ∈ Z+, where δ2,p is the Kronecker symbol.
From Lemma 26, we see that

(

2k

k

)

≡
(

2lpu−1

lpu−1

)

(mod p1+u), (11)

(

2(npm − k)

npm − k

)

≡
(

2(npm−1 − lpu−1)

npm−1 − lpu−1

)

(mod p1+min(u,m)). (12)

Thus, the congruence (10) holds if u ≥ m−1. Assume that 1 ≤ u ≤ m−2. By the definition
of u, we have 0 < k < npm. From Lemma 25, we get that

vp

((

npm

k

))

= vp

((

npm−1

k/p

))

≥ m− u. (13)

Set N = max(0,m− r(m− u)). To show (10), it suffices to prove the congruences

(

2k

k

)

≡
(

2lpu−1

lpu−1

)

(mod pN) and

(

2(npm − k)

npm − k

)

≡
(

2(npm−1 − lpu−1)

npm−1 − lpu−1

)

(mod pN),

(14)

14



which follows from (11) and (12), since r ≥ 1 and 1 ≤ u ≤ m− 2 imply

N = max(0, ru− (r − 1)m) < 1 + u = 1 +min(u,m).

By (9) and (10), the difference A = W (npm)−W (npm−1) satisfies

A =

npm
∑

k=0

(

npm

k

)r(
2k

k

)s(
2(npm − k)

npm − k

)t

−
npm−1

∑

k=0

(

npm−1

k

)r(
2k

k

)s(
2(npm−1 − k)

npm−1 − k

)t

≡ 0 +

npm−1

∑

λ=0

(

npm

λp

)r(
2λp

λp

)s(
2(npm − λp)

npm − λp

)t

−
npm−1

∑

k=0

(

npm−1

k

)r(
2k

k

)s(
2(npm−1 − k)

npm−1 − k

)t

≡
npm−1

∑

λ=0

(

npm−1

λ

)r(
2λ

λ

)s(
2(npm−1 − λ)

npm−1 − λ

)t

−
npm−1

∑

k=0

(

npm−1

k

)r(
2k

k

)s(
2(npm−1 − k)

npm−1 − k

)t

= 0 (mod pm).

We get W (npm) ≡ W (npm−1) (mod pm). Hence, the Dold condition for (W (n))∞n=1 follows
from Lemma 30.

We consider the sign condition. It is clear that the sequence
((

2n
n

))∞
n=0

is strictly increasing
by looking the ratios of two adjacent terms. For all n ≥ 1, we have

W (n+ 1) =
n+1
∑

k=0

(

n+ 1

k

)r(
2k

k

)s(
2(n+ 1− k)

n+ 1− k

)t

=

(

2(n+ 1)

n+ 1

)t

+
n+1
∑

k=1

((

n

k

)

+

(

n

k − 1

))r (
2k

k

)s(
2(n+ 1− k)

n+ 1− k

)t

≥
(

2(n+ 1)

n+ 1

)t

+
n+1
∑

k=1

((

n

k

)r

+

(

n

k − 1

)r)(
2k

k

)s(
2(n+ 1− k)

n+ 1− k

)t

≥
(

2n

n

)t

+
n
∑

k=1

(

n

k

)r(
2k

k

)s(
2(n− k)

n− k

)t

+
n
∑

k=0

(

n

k

)r(
2k

k

)s(
2(n− k)

n− k

)t

= 2
n
∑

k=0

(

n

k

)r(
2k

k

)s(
2(n− k)

n− k

)t

= 2W (n).

As 2 > 1.221 and W (n) > 0 for all n ≥ 1, the sign condition for (W (n))∞n=1 holds by Lemma
28. Thus, the sequence (W (n))∞n=1 is realizable.

Remark 33. For every r ∈ Z+ and s, t, u ∈ Z≥0, set

C(n, r, s, t, u) =
n
∑

k=0

(

n

k

)r(
n+ k

k

)s(
2k

k

)t(
2(n− k)

n− k

)u

, n ≥ 1.

A very similar argument proves that the sequence (C(n, r, s, t, u))∞n=1 is realizable, which
generalizes both Theorem 13 and Theorem 15.
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Proof of Theorem 18. Fix r ∈ Z+ and s, t, u ∈ Z≥0. As in Remark 33, applying Lemma 30,
the combination of the proof of Theorem 15 and Lemma 30 with small modification implies
the Dold condition for (T (n, r, s, t, u) =: X(n))∞n=1. The only differences are that in many
places k should be replaced by 2k, so the formula (13) should have a correction term, i.e.,
(13) should be

vp

((

npm

2k

))

= vp

((

npm−1

2k/p

))

≥ m− u− δ2,p,

and that N should be max(0,m− r(m− u− δ2,p)). Since m− r(m− u− 1) ≤ 1 + u under
the conditions r ≥ 1 and 1 ≤ u ≤ m− 2, we see that the proof is still valid.

For the sign condition, we first consider the easier case of central trinomial coefficients,
i.e., the case when (r, s, t, u) = (1, 0, 1, 0). We will use the observation of Puri stated as
in Remark 29. Fix n ∈ Z+. For a polynomial h(x) and k ∈ Z≥0, let [xk]h(x) denote the
coefficient of xk in h(x). Then

T (2n) = [x2n](x2 + x+ 1)2n ≥ ([xn](x2 + x+ 1)n)2 = T (n)2.

Clearly, the sequence of central trinomial coefficients is increasing. By Remark 29, it suffices
to show that T (n) ≥ n, for every n ≥ 1. For n ∈ {1, 2, 3}, T (n) ≥ n trivially holds. When
n ≥ 4, we have

T (n) ≥ 1 +

(

n

2⌊n
2
⌋

)(

2⌊n
2
⌋

⌊n
2
⌋

)

≥ 1 + 2
⌊n

2

⌋

≥ n.

Therefore, the sequence (T (n))∞n=1 satisfies the sign condition.
Now we consider the sign condition for the general case. We will prove that

X(n+ 1) ≥ 7

5
X(n), n ≥ 1, (15)

from which the sign condition follows, applying Lemma 28.
Fix n ∈ Z+. When n = 1, we have X(2) = 6u + 3s2t+u ≥ 2× 2u = 2X(1). When n = 2,

we have

X(3) = 20u + 3r4s2t6u ≥ 2× 6u − δu,0 + 3× 4s2t6u ≥ 2× 6u − δu,0 + 1 + 2× 4s2t6u

≥ 2(6u + 4s2t6u) ≥ 2(6u + 3s2t+u) = 2X(2).

Similarly, it is easy to check that X(4) ≥ 2X(3) and X(5) ≥ 2X(4) hold. Now assume that
n ≥ 5. (Here n ≥ 5 ensures that n1 − 1 ≥ 1 below.)

For integers m, l ≥ 0, set

fm(l) =

(

m+ l

l

)s(
2l

l

)t

,

which is non-decreasing with respect to both m and l.
We give a lower bound of X(n+1)−X(n) =: B as follows. As in the proofs of Theorems

13 and 15, from the identity
(

m+1
l+1

)

=
(

m
l

)

+
(

m
l+1

)

, we get
(

m+1
l+1

)v ≥
(

m
l

)v
+
(

m
l+1

)v
, where
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m ≥ l ≥ 0 and v ≥ 1 are integers. Set n0 = ⌊n+1
2
⌋ ∈ [3, n− 2]. Since the central binomial

coefficient
(

2m
m

)

is strictly increasing and
(

n+1+k
k

)

≥
(

n+k
k

)

, we have

B =

(

2(n+ 1)

n+ 1

)u

+

n0
∑

k=1

(

n+ 1

2k

)r

fn+1(k)

(

2(n+ 1− k)

n+ 1− k

)u

−X(n)

≥
(

2n

n

)u

+

n0
∑

k=1

((

n

2k

)r

+

(

n

2k − 1

)r)

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

−X(n)

≥
n0
∑

k=1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

.

(16)

Using (16), we will give a lower bound of X(n + 1) − 2X(n). Set n1 =
⌊

n+3
4

⌋

= ⌈n
4
⌉ ∈

[2, n− 3]. When 1 ≤ k ≤ n1, we have

2k − 1 ≤ 2
⌈n

4

⌉

− 1 ≤ n+ 1

2
.

When n1 + 1 ≤ k ≤ n0, we have

2k − 1 ≥ 2
⌈n

4

⌉

+ 1 ≥ n

2
+ 1.

Set

∆′ =

((

n

2n1 − 1

)r

fn(n1)−
(

n

2n1 − 2

)r

fn(n1 − 1)

)(

2(n+ 1− n1)

n+ 1− n1

)u

and

∆ =

(

n

2n1 − 2

)r

(fn(n1)− fn(n1 − 1))

(

2(n+ 1− n1)

n+ 1− n1

)u

.

Then, we have

B ≥
n0
∑

k=1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

=

n1
∑

k=1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

+

n0
∑

k=n1+1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥
(

n1
∑

k=1

(

n

2k − 2

)r

fn(k − 1)

(

2(n+ 1− k)

n+ 1− k

)u

+∆′

)

+

n0
∑

k=n1+1

(

n

2k

)r

fn(k)

(

2(n− k)

n− k

)u

=

n1−1
∑

l=0

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+∆′ +

n0
∑

k=n1+1

(

n

2k

)r

fn(k)

(

2(n− k)

n− k

)u

=

n0
∑

l=0,l 6=n1

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+∆′,

(17)
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where we use (16) in the first inequality. Thus, we have

X(n+ 1)− 2X(n) ≥ ∆′ −
(

n

2n1

)r

fn(n1)

(

2(n− n1)

n− n1

)u

. (18)

Note that ∆′ ≥ ∆, since
∣

∣

∣
2n1 − 1− n

2

∣

∣

∣
≤
∣

∣

∣
2n1 − 2− n

2

∣

∣

∣

and fn(n1) ≥ fn(n1 − 1). Consequently, the inequality (18) implies

X(n+ 1)− 2X(n) ≥ ∆−
(

n

2n1

)r

fn(n1)

(

2(n− n1)

n− n1

)u

. (19)

Write n = 4m+ q with m ∈ Z+ and q ∈ {0, 1, 2, 3}. We see that n1 = m+ 1− δ0,q. The
proof of (15) then proceeds by cases, according to the value of q.

If q ∈ {1, 2}, then
∣

∣

∣

n

2
− 2n1

∣

∣

∣
=
∣

∣

∣

q

2
+ 2δ0,q − 2

∣

∣

∣
= 2− q

2
≥ q

2
=
∣

∣

∣

q

2
+ 2δ0,q

∣

∣

∣
=
∣

∣

∣

n

2
− (2n1 − 2)

∣

∣

∣
,

so we have
(

n
2n1−2

)

≥
(

n
2n1

)

. Consequently, we have

1

2
X(n) ≤

∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+
1

2

n0
∑

l∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

≤
∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+

(

n

2n1 − 2

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

= X(n) + ∆−
(

n

2n1

)r

fn(n1)

(

2(n− n1)

n− n1

)u

.

(20)

By (19) and (20), we get that

X(n+ 1) ≥ 3

2
X(n).

Now assume that q = 3. We have

∣

∣

∣

n

2
− 2n1

∣

∣

∣
=

1

2
=
∣

∣

∣

n

2
− (2n1 − 1)

∣

∣

∣
<

3

2
=
∣

∣

∣

n

2
− (2n1 − 2)

∣

∣

∣
,

so we get
(

n

2n1 − 1

)

=

(

n

2n1

)

>

(

n

2n1 − 2

)

.
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Consequently, we have

1

2
X(n) ≤

∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+
1

2

∑

l∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

≤
∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+

(

n

2n1 − 1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

= X(n) + ∆′ −
(

n

2n1

)r

fn(n1)

(

2(n− n1)

n− n1

)u

.

(21)

By (18) and (21), we see that

X(n+ 1) ≥ 3

2
X(n).

At last assume that q = 0. Then we have n = 4m,n0 = 2m, and n1 = m ≥ 2. Note that

(

n+ 1

2n1

)r

=

(

4m+ 1

2m

)r

=

((

4m

2m

)

4m+ 1

2m+ 1

)r

≥ 9

5

(

4m

2m

)r

=
9

5

(

n

2n1

)r

,

since m ≥ 2 and r ≥ 1. Thus, setting

E = X(n+ 1)− 9

5

(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

,

we have

E ≥ X(n+ 1)−
(

n+ 1

2n1

)r

fn+1(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

=

(

2(n+ 1)

n+ 1

)u

+
∑

1≤k≤n0,k 6=n1

(

n+ 1

2k

)r

fn+1(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥
(

2n

n

)u

+
∑

1≤k≤n0,k 6=n1

((

n

2k

)r

+

(

n

2k − 1

)r)

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥ X(n)−
(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

+

n0
∑

k=1,k 6=n1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

.

(22)

Recall that B = X(n+ 1)−X(n). From (22), we see that

B ≥ 4

5

(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

+

n0
∑

k=1,k 6=n1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

. (23)
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We claim that
n0
∑

k=1,k 6=n1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥
∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

. (24)

In fact, the inequality (24) follows from the inequalities

n1−1
∑

k=1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥
n1−1
∑

k=1

(

n

2k − 2

)r

fn(k − 1)

(

2(n+ 1− k)

n+ 1− k

)u

and
n0
∑

k=n1+1

(

n

2k − 1

)r

fn(k)

(

2(n+ 1− k)

n+ 1− k

)u

≥
n0
∑

k=n1+1

(

n

2k

)r

fn(k)

(

2(n− k)

n− k

)u

.

Observe that the term
(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

=

(

4m

2m

)r

f4m(m)

(

6m+ 2

3m+ 1

)u

is not smaller than both
(

n

2n1

)r

fn(n1)

(

2(n− n1)

n− n1

)u

=

(

4m

2m

)r

f4m(m)

(

6m

3m

)u

and
(

n

2n1 − 2

)r

fn(n1 − 1)

(

2(n− (n1 − 1))

n− (n1 − 1)

)u

=

(

4m

2m− 2

)r

f4m(m− 1)

(

6m+ 2

3m+ 1

)u

.

Hence, we have
(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

≥ 1

2

∑

l∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

. (25)

Therefore, by (23), (24), and (25), we deduce that

B ≥ 4

5

(

n

2n1

)r

fn(n1)

(

2(n+ 1− n1)

n+ 1− n1

)u

+
∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

≥ 2

5

∑

l∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

+
2

5

∑

0≤l≤n0,
l /∈{n1−1,n1}

(

n

2l

)r

fn(l)

(

2(n− l)

n− l

)u

=
2

5
X(n),

(26)

which gives

X(n+ 1) ≥ 7

5
X(n).

We have completed the proof of the claimed inequality (15) (and hence the theorem).
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Remark 34. For every n, r1, r2, s, t, u ∈ Z≥0 with r1 + r2 ≥ 1, define

V (n, r1, r2, s, t, u) =
n
∑

k=0

(

n

k

)r1( n

2k

)r2(n+ k

k

)s(
2k

k

)t(
2(n− k)

n− k

)u

.

Here we follow the convention 00 = 1. Note that (V (n, 1, 1, 0, 0, 0))n is the sequence of
quadrinomial coefficients A005725. When r1r2 = 0, i.e., when r1 = 0 or r2 = 0, the se-
quence (V (n, r1, r2, s, t, u))

∞
n=1 is realizable by Remark 33 and Theorem 18. Indeed, for all

r1, r2, s, t, u ∈ Z≥0 with r1+r2 ≥ 1, an essentially same argument as the one given in the proof
of Theorem 18 shows that the sequence (V (n, r1, r2, s, t, u))

∞
n=1 is realizable. For shortening

the paper, we omit the details.

Remark 35. Let r1, r2, s, t, u be non-negative integers with r1 + r2 ≥ 1. Set V (n) =
V (n, r1, r2, s, t, u) for n ≥ 1. Clearly, we have V (1) > 0. By checking the proof of Lemma 28,
it is easy to see that (µ ∗ V )(n) > 0 for every n ≥ 1. According to Remark 34, the sequence
(V (n))∞n is realizable. Then (µ ∗ V )(n) ≥ n for all n ≥ 1. Thus, for every map T : X → X
realizing V and n ∈ Z+, there is at least one periodic orbit of T with exact period n in X.

Proof of Theorem 21.

(1) For an arbitrary prime number p, we have

C(p) ≡ (p+ 1)C(p) =

(

2p

p

)

=
(p+ 1) · · · (p+ p− 1)

(p− 1)!
× 2 ≡ 2 (mod p), (27)

where the modulo is taken over the ring Zp. Thus, we have

(µ ∗ C)(p) = C(p)− C(1) = C(p)− 1 ≡ 1 (mod p). (28)

Assume that (C(n))∞n=1 is almost realizable. By (28), we see that p | Fail(C). However,
the prime number p can be arbitrary large, contradicting the fact that Z+ ∋ Fail(C) < ∞.
Therefore, the sequence (C(n))∞n=1 is not almost realizable.

(2) Let p be an arbitrary odd prime number. By using (27) and Lemma 25, we get

(µ ∗M)(2p) = M(2p)−M(p)−M(2) +M(1)

=

p
∑

k=0

(

2p

2k

)

C(k)−
p−1

2
∑

k=0

(

p

2k

)

C(k)− 2 + 1

≡
(

2p

0

)

C(0) +

(

2p

2p

)

C(p)−
(

p

0

)

C(0)− 2 + 1

= C(p)− 1

≡ 1 (mod p).

(29)

Assume that (M(n))∞n=1 is almost realizable. By (29), we deduce that p | Fail(M).
Similar to (1), we see that (M(n))∞n=1 is not almost realizable.
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(3) Let p be an arbitrary odd prime number. For an integer p/2 < k < p− 1, we have

C(k) =
1

k + 1

(

2k

k

)

≡ 0 (mod p)

by Lemma 25. For an integer 0 < k < p/2, we have
(

p+k
2k

)

≡ 0 (mod p) by Lemma 25.
Note that

C(p− 1) =
1

p

(

2p− 2

p− 1

)

=
(p+ 1) · · · (2p− 2)(2p− 1)

(p− 1)!

1

2p− 1
≡ −1 (mod p).

Then with (27), we have

(µ ∗ S)(p) = S(p)− S(1) =

p
∑

k=0

(

p+ k

2k

)

C(k)− 2

≡
(

p

0

)

C(0) +

(

2p− 1

2p− 2

)

C(p− 1) +

(

2p

2p

)

C(p)− 2

≡ C(p)− C(p− 1)− 1

≡ 2− (−1)− 1 = 2 (mod p).

Similar to (1), we see that (S(n))∞n=1 is not almost realizable.

Remark 36. Although the sequences in Theorem 21 are not almost realizable, they all satisfy
the sign condition. Clearly, we have C(n+1) = 2(2n+1)

n+2
C(n) ≥ 2C(n), for every n ≥ 1. Hence,

by Lemma 28, the sequence (C(n))∞n=1 satisfies the sign condition. Aigner [1, Proposition
3] proved that the sequence (M(n))∞n=0 is log-concave, so the sign condition follows from
M(2)/M(1) = 2 and Lemma 28. Xia and Yao [38, Corollary 7] showed that the sequence
(s(n))∞n=0 of little Schröder numbers is strictly log-concave, so the sign condition for (s(n))∞n=1

follows from s(2)/s(1) = 3 and Lemma 28. Clearly, the sequence (S(n))∞n=1 of large Schröder
numbers also satisfies the sign condition.
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[22] A. Maróti, On elementary lower bounds for the partition function, Integers 3 (2003),
#A10.

[23] P. Miska and T. Ward, Stirling numbers and periodic points, Acta Arith. 201 (2021),
421–435.

[24] P. Moss, The arithmetic of realizable sequences, PhD thesis, University of East Anglia,
2003.

[25] P. Moss and T. Ward, Fibonacci along even powers is (almost) realizable, Fibonacci
Quart. 60 (2022), 40–47.

[26] T. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula
for partitions of a polygon, for permanent preponderance, and for non-associative prod-
ucts, Bull. Amer. Math. Soc. 54 (1948), 352–360.

[27] R. Osburn and B. Sahu, A supercongruence for generalized Domb numbers, Funct.
Approx. Comment. Math. 48 (2013), 29–36.

[28] Y. Puri, Arithmetic properties of periodic orbits, PhD thesis, University of East Anglia,
2000.

[29] Y. Puri and T. Ward, A dynamical property unique to the Lucas sequence, Fibonacci
Quart. 39 (2001), 398–402.

[30] A. L. Schmidt, Legendre transforms and Apéry’s sequences, J. Aust. Math. Soc. 58
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