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Abstract

Recently, Ballantine and Welch considered various generalizations and refinements
of POD and PED partitions. These are integer partitions wherein the odd parts must
be distinct (in the case of POD partitions) or the even parts must be distinct (in
the case of PED partitions). In the process, they were led to consider two classes of
integer partitions which are, in some sense, the “opposite” of POD and PED partitions.
They labeled these POND and PEND partitions, which are integer partitions wherein
the odd parts cannot be distinct (in the case of POND partitions) or the even parts
cannot be distinct (in the case of PEND partitions). In this work, we study these two
types of partitions from an arithmetic perspective. Along the way, we are led to prove
two infinite families of Ramanujan–like congruences modulo 3, one satisfied by the
function pond(n), which counts the number of POND partitions of weight n, and the
other satisfied by the function pend(n), which counts the number of PEND partitions
of weight n, where n is a nonnegative integer.

All of the proof techniques used herein are elementary, relying on classical q-series
identities and generating function manipulations, along with mathematical induction.

1 Introduction

In the study of integer partitions, the partitions wherein the parts are distinct have long
played a key role, due in large part to Euler’s famous identity, which states that the number
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of partitions of weight n into distinct parts equals the number of partitions of weight n into
odd parts. One of the most obvious refinements in this regard is to require distinct parts
based on parity; i.e., to require either all of the even parts to be distinct or all of the odd
parts to be distinct (while allowing the frequency of the other parts to be unrestricted). This
leads to two types of partitions, those that we will call PED partitions (wherein the even
parts must be distinct and the odd parts are unrestricted) and POD partitions (wherein
the odd parts must be distinct and the even parts are unrestricted). We then define two
corresponding enumerating functions, ped(n) [19, A001935], which counts the number of
PED partitions of weight n, and pod(n) [19, A006950], which counts the number of POD
partitions of weight n. These two functions have been studied from a variety of perspectives;
the interested reader may wish to see [1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 18, 20, 22, 23] for
examples of work on identities involving, and arithmetic properties satisfied by, ped(n) and
pod(n).

Recently, Ballantine and Welch [5] generalized and refined these two functions in numer-
ous ways. One of the outcomes of their work was to consider integer partitions, which are, in
some sense, the “opposite” of PED partitions and POD partitions. Namely, they considered
PEND partitions and POND partitions, wherein the even (respectively, odd) parts are not

allowed to be distinct. In a vein similar to that shared above, we let pend(n) denote the
number of PEND partitions of weight n, and pond(n) denote the number of POND partitions
of weight n. The first several values of pend(n) appear in the OEIS [19, A265254], while the
first several values of pond(n) appear in [19, A265256].

It is worthwhile to share additional historical thoughts to place PEND and POND par-
titions in context. In his classic Combinatory Analysis [16], P. A. MacMahon proved that,
for all n ≥ 0, the number of partitions of weight n wherein no part appears with multiplicity
one equals the number of partitions of weight n where all parts must be even or congruent
to 3 modulo 6. As an aside, we note that numerous mathematicians have since generalized
this theorem of MacMahon and have provided proofs of these results using both generating
functions (which was MacMahon’s original approach) as well as combinatorial arguments.
The first half of the statement of MacMahon’s theorem involves the function which counts
the number of partitions wherein no part appears with multiplicity one, i.e., no part is al-
lowed to be distinct. It is in this sense that POND and PEND partitions provide a natural,
parity–based refinement of the partitions considered by MacMahon.

At the end of their paper, Ballantine and Welch [5] shared the following possibilities for
future work:

In particular, we note two areas of interest. The first is examining the arith-
metic properties of these generalizations. Much work has been done in studying
arithmetic properties of PED and POD partitions... Hence, this would be a
natural topic of further study...

In light of this suggestion from Ballantine and Welch, our overarching goal in this work is
to study pond(n) and pend(n) from an arithmetic perspective. With this in mind, we will
first prove the following Ramanujan–like congruences satisfied by pond(n) and pend(n):
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Theorem 1. For all integers n ≥ 0, we have

pond(3n+ 2) ≡ 0 (mod 2), (1)

pond(27n+ 26) ≡ 0 (mod 3), and (2)

pond(3n+ 1) ≡ 0 (mod 4). (3)

Theorem 2. For all integers n ≥ 0, we have

pend(27n+ 19) ≡ 0 (mod 3).

We will then prove that each of these two functions satisfies an internal congruence
modulo 3.

Theorem 3. For all integers n ≥ 0, we have pond(27n+ 17) ≡ pond(3n+ 2) (mod 3).

Theorem 4. For all integers n ≥ 0, we have pend(27n+ 10) ≡ pend(3n+ 1) (mod 3).

Finally, with the above results in hand, we will prove the following infinite families of
non–nested Ramanujan–like congruences modulo 3 by induction.

Theorem 5. For all integers α ≥ 1 and all n ≥ 0, we have

pond

(

32α+1n+
23 · 32α + 1

8

)

≡ 0 (mod 3).

Theorem 6. For all integers α ≥ 1 and all n ≥ 0, we have

pend

(

32α+1n+
17 · 32α − 1

8

)

≡ 0 (mod 3).

Section 2 is devoted to providing the tools necessary for the remainder of the paper. In
Section 3, we prove Theorems 1, 3, and 5. In Section 4, we prove Theorems 2, 4, and 6. All
of the proof techniques used herein are elementary, relying on classical q-series identities and
generating function manipulations, along with mathematical induction.

2 Preliminaries

Throughout this work, we will use the following shorthand notation for q-Pochhammer sym-
bols:

fr := (qr; qr)∞ = (1− qr) · (1− q2r) · (1− q3r) . . .

In order to prove the congruences mentioned above, several important 3–dissections of
various q-series will be needed. These results will allow us to write the necessary generating
functions in an appropriate fashion. We now catalog these results here.
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Lemma 7. We have

f2

f1f4
=

f 9
18

f 2
3 f

3
9 f

2
12f

3
36

+ q
f 2
6 f

3
18

f 3
3 f

3
12

+ q2
f 4
6 f

3
9 f

3
36

f 4
3 f

4
12f

3
18

.

Proof. A proof of this identity appears in [21, Lemma 2.1].

Lemma 8. We have

f1f2 =
f6f

4
9

f3f
2
18

− qf9f18 − 2q2
f3f

4
18

f6f
2
9

.

Proof. A proof of this identity can be found in [14].

Lemma 9. We have

1

f1f2
=

f 9
9

f 6
3 f

2
6 f

3
18

+ q
f 6
9

f 5
3 f

3
6

+ 3q2
f 3
9 f

3
18

f 4
3 f

4
6

− 2q3
f 6
18

f 3
3 f

5
6

+ 4q4
f 9
18

f 2
3 f

6
6 f

3
9

.

Proof. This lemma is equivalent to [17, Equation (39)].

Lemma 10. We have
f 2
2

f1
=

f6f
2
9

f3f18
+ q

f 2
18

f9
.

Proof. For a proof of this result, see [11, (14.3.3)].

Lemma 11. We have
f2

f 2
1

=
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

.

Remark 12. Note that
f2

f 2
1

=
∞
∑

n=0

p(n)qn

where p(n) is the number of overpartitions of n.

Proof. For a proof of Lemma 11, see [12, Theorem 1].

Lemma 13. We have

f4

f1
=

f12f
4
18

f 3
3 f

2
36

+ q
f 2
6 f

3
9 f36

f 4
3 f

2
18

+ 2q2
f6f18f36

f 3
3

.

Remark 14. Note that
f4

f1
=

∞
∑

n=0

ped(n)qn

where ped(n) is the number of partitions of n wherein even parts are distinct (as mentioned
in the introductory comments above).

4



Proof. Lemma 13 follows from [2, Theorem 3.1] and [11, (33.2.6)].

One additional q-series identity will be beneficial in the proof of Theorem 3.

Lemma 15. We have
f 3
3

f1
− q

f 3
12

f4
=

f 3
4 f

2
6

f 2
2 f12

.

Proof. This identity appears in [11, (22.7.5)].

Lastly, we will utilize the following result which, at its core, relies on the binomial theorem
and the divisibility properties of various binomial coefficients.

Lemma 16. For all primes p and all j, k,m ≥ 1, f pjk
m ≡ f pj−1k

pm (mod pj).

With all of these tools in hand, we are now in a position to prove the theorems listed
above.

3 Congruences for pond(n)

We begin by considering the function pond(n). Although one can derive the generating
function for pond(n) from the work of Ballantine and Welch [5], we provide a proof of the
result here for the sake of completeness.

Theorem 17. We have
∞
∑

n=0

pond(n)qn =
f4f

2
6

f 2
2 f3f12

.

Proof. By definition,

∞
∑

n=0

pond(n)qn =
1

f2

∞
∏

i=1

(

1

1− q2i−1
− q2i−1

)

=
1

f2

∞
∏

i=1

(

1− q2i−1 + q4i−2

1− q2i−1

)

=
1

f2

∞
∏

i=1

(

1 + q6i−3

(1 + q2i−1)(1− q2i−1)

)

=
1

f2
·
(−q3; q6)∞
(q2; q4)∞

=
1

f2
·
f4

f2
·
(q6; q12)∞
(q3; q6)∞

=
f4

f 2
2

·
f6

f12
·
f6

f3
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=
f4f

2
6

f 2
2 f3f12

.

We can now move to a proof of Theorem 1.

Proof of Theorem 1. Our first goal is to 3–dissect the generating function for pond(n). Note
that

∞
∑

n=0

pond(n)qn =
f4f

2
6

f 2
2 f3f12

=
f4

f 2
2

·
f 2
6

f3f12

=

(

f 4
12f

6
18

f 8
6 f

3
36

+ 2q2
f 3
12f

3
18

f 7
6

+ 4q4
f 2
12f

3
36

f 6
6

)

·
f 2
6

f3f12

thanks to Lemma 11. This means we know the following:

∞
∑

n=0

pond(3n)q3n =
f 2
6

f3f12
·
f 4
12f

6
18

f 8
6 f

3
36

,

∞
∑

n=0

pond(3n+ 1)q3n+1 =
f 2
6

f3f12
· 4q4

f 2
12f

3
36

f 6
6

, and

∞
∑

n=0

pond(3n+ 2)q3n+2 =
f 2
6

f3f12
· 2q2

f 3
12f

3
18

f 7
6

.

This is equivalent to the following 3–dissection for the generating function for pond(n):

∞
∑

n=0

pond(3n)qn =
f 2
2

f1f4
·
f 4
4 f

6
6

f 8
2 f

3
12

=
f 3
4 f

6
6

f1f
6
2 f

3
12

,

∞
∑

n=0

pond(3n+ 1)qn = 4q
f 2
2

f1f4
·
f 2
4 f

3
12

f 6
2

= 4q
f4f

3
12

f1f
4
2

, and (4)

∞
∑

n=0

pond(3n+ 2)qn = 2
f 2
2

f1f4
·
f 3
4 f

3
6

f 7
2

= 2
f 2
4 f

3
6

f1f
5
2

. (5)

We pause here to note that (5) implies (1) while (4) implies (3). Thus, in order to complete
the proof of Theorem 1, we simply need to prove (2), and this requires us to 3–dissect the
generating function for pond(3n+ 2), which appears in (5):

∞
∑

n=0

pond(3n+ 2)qn
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= 2
f 2
4 f

3
6

f1f
5
2

≡ 2
f 2
4 f

9
2

f1f
5
2

(mod 3) (thanks to Lemma 16)

= 2
f 2
4 f

4
2

f1

= 2(f2f4)
3
·
f 2
2

f1
·

1

f2f4

≡ 2f6f12 ·
f 2
2

f1
·

1

f2f4
(mod 3)

≡ 2f6f12

(

f6f
2
9

f3f18
+ q

f 2
18

f9

)

×

(

f 9
18

f 6
6 f

2
12f

3
36

+ q2
f 6
18

f 5
6 f

3
12

+ q6
f 6
36

f 3
6 f

5
12

+ q8
f 9
36

f 2
6 f

6
12f

3
18

)

(mod 3)

thanks to Lemmas 9 and 10. Thus, we know
∞
∑

n=0

pond(9n+ 8)q3n+2
≡ 2f6f12 ·

f6f
2
9

f3f18

(

q2
f 6
18

f 5
6 f

3
12

+ q8
f 9
36

f 2
6 f

6
12f

3
18

)

(mod 3).

Therefore,
∞
∑

n=0

pond(9n+ 8)qn ≡ 2
f 2
2 f

2
3 f4

f1f6

(

f 6
6

f 5
2 f

3
4

+ q2
f 9
12

f 2
2 f

6
4 f

3
6

)

(mod 3)

= 2
f 2
3

f1f
2
4

(

f 5
6

f 3
2

+ q2
f 9
12

f 3
4 f

4
6

)

≡ 2
f 2
3

f1f
2
4

(

f 5
6

f6
+ q2

f 9
12

f12f
4
6

)

(mod 3) (using Lemma 16)

= 2
f 2
3 f4

f1f
3
4

(

f 4

6 + q2
f 8
12

f 4
6

)

≡ 2
f4

f1
·
f 2
3

f12

(

f 4

6 + q2
f 8
12

f 4
6

)

(mod 3).

We now use Lemma 13 to see that
∞
∑

n=0

pond(27n+ 26)q3n+2
≡ 2

f 2
3

f12

(

q2
f 8
12

f 4
6

·
f12f

4
18

f 3
3 f

2
36

+ 2q2
f 5
6 f18f36

f 3
3

)

(mod 3)

so that
∞
∑

n=0

pond(27n+ 26)qn ≡ 2
f 2
1

f4

(

f 9
4 f

4
6

f 4
2 f

3
1 f

2
12

+ 2
f 5
2 f6f12

f 3
1

)

(mod 3)
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=
f 5
2

f1f4

(

2
f 9
4 f

4
6

f 9
2 f

2
12

+ 4f6f12

)

≡
f 5
2

f1f4

(

2
f 3
12f

4
6

f 3
6 f

2
12

+ 4f6f12

)

(mod 3)

≡
f 5
2

f1f4
(6f6f12) (mod 3)

≡ 0 (mod 3).

This completes the proof of (2) and, therefore, Theorem 1.

Equation (2) will serve as the base case for the proof by induction of Theorem 5. However,
before we turn to the proof of Theorem 5, we first prove Theorem 3, which will be the “engine”
for that proof by induction.

Proof of Theorem 3. Our goal is to prove that, for all n ≥ 0,

pond(27n+ 17) ≡ pond(3n+ 2) (mod 3).

From our work above, we know

∞
∑

n=0

pond(3n+ 2)qn ≡ 2
f 2
4

f1
(f 4

2 ) (mod 3). (6)

Next, we need to determine a corresponding congruence for the generating function for
pond(27n+ 17). In our earlier work, we showed that

∞
∑

n=0

pond(9n+ 8)qn ≡ 2
f4

f1
·
f 2
3

f12

(

f 4

6 + q2
f 8
12

f 4
6

)

(mod 3).

We can then use Lemma 13 to see that

∞
∑

n=0

pond(9(3n+ 1) + 8)q3n+1

≡ 2
f 2
3

f12

(

f 4

6 · q
f 2
6 f

3
9 f36

f 4
3 f

2
18

+ q2
f 8
12

f 4
6

· 2q2
f6f18f36

f 3
3

)

(mod 3)

or

∞
∑

n=0

pond(27n+ 17)qn ≡ 2
f 2
1

f4

(

f 6
2 f

3
3 f12

f 4
1 f

2
6

+ 2q
f 8
4 f6f12

f 3
1 f

3
2

)

(mod 3)

≡ 2
f 6
2 f

3
3 f12

f 2
1 f4f

2
6

+ 4q
f 7
4 f6f12

f1f
3
2

(mod 3)
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≡ 2
f 6
2 f

9
1 f

3
4

f 2
1 f4f

6
2

+ 4q
f 7
4 f

3
2 f

3
4

f1f
3
2

(mod 3)

≡ 2f 7

1 f
2

4 + 4q
f 10
4

f1
(mod 3)

= 2
f 2
4

f1

(

f 8

1 + 2qf 8

4

)

. (7)

Therefore, in order to prove this theorem, we know from (6) and (7) that we must show the
following:

2
f 2
4

f1

(

f 8

1 + 2qf 8

4

)

≡ 2
f 2
4

f1
(f 4

2 ) (mod 3)

or
f 8

1 + 2qf 8

4 ≡ f 4

2 (mod 3).

To complete this proof, we are reminded of Lemma 15:

f 3
3

f1
− q

f 3
12

f4
=

f 3
4 f

2
6

f 2
2 f12

.

Note that this implies that

f 9
1

f1
+ 2q

f 9
4

f4
≡

f12f
6
2

f 2
2 f12

(mod 3)

or
f 8

1 + 2qf 8

4 ≡ f 4

2 (mod 3),

which is the desired result.

With Theorems 1 and 3 in hand, we can now turn to proving the infinite family of
Ramanujan–like congruences modulo 3 satisfied by pond(n).

Proof of Theorem 5. We prove this theorem by induction on α. Note that the base case,
α = 1, which corresponds to the arithmetic progression

33n+
23 · 32 + 1

8
= 27n+ 26,

has already been proved in Theorem 1 above. Thus, we assume that, for some α ≥ 1 and all
n ≥ 0,

pond

(

32α+1n+
23 · 32α + 1

8

)

≡ 0 (mod 3).

We then want to prove that

pond

(

32α+3n+
23 · 32α+2 + 1

8

)

≡ 0 (mod 3).
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Note that

32α+1n+
23 · 32α + 1

8
= 3

(

32αn
)

+
23 · 32α − 15 + 16

8

= 3
(

32αn
)

+ 3

(

23 · 32α−1 − 5

8

)

+ 2

= 3

(

32αn+
23 · 32α−1 − 5

8

)

+ 2

and it is easy to argue that

32αn+
23 · 32α−1 − 5

8

is an integer for any α ≥ 1. Therefore, we have the following:

pond

(

32α+1n+
23 · 32α + 1

8

)

= pond

(

3

(

32αn+
23 · 32α−1 − 5

8

)

+ 2

)

≡ pond

(

27

(

32αn+
23 · 32α−1 − 5

8

)

+ 17

)

(mod 3) (thanks to Theorem 3)

= pond

(

32α+3n+
23 · 32α+2 − 27 · 5 + 17 · 8

8

)

= pond

(

32α+3n+
23 · 32α+2 + 1

8

)

≡ 0 (mod 3)

thanks to the induction hypothesis. This completes the proof.

4 Congruences for pend(n)

We now turn our attention to proving Theorems 2, 4, and 6. We begin by finding the
generating function for pend(n).

Theorem 18. We have
∞
∑

n=0

pend(n)qn =
f2f12

f1f4f6
.

Proof. Using the definition of the partitions counted by pend(n), we know

∞
∑

n=0

pend(n)qn =
1

(q; q2)∞

∞
∏

i=1

(

1

1− q2i
− q2i

)

10



=
f2

f1

∞
∏

i=1

(

1− q2i + q4i

1− q2i

)

=
f2

f1

∞
∏

i=1

(

1 + q6i

(1 + q2i)(1− q2i)

)

=
f2

f1

(−q6; q6)∞
f4

=
f2

f1
·
f12

f4f6

=
f2f12

f1f4f6
.

We now turn our attention to proving Theorem 2. This will require that we 3–dissect
the generating function for pend(n) in a particular way.

Proof of Theorem 2. Thanks to Theorem 18, we see that

∞
∑

n=0

pend(n)qn =
f2f12

f1f4f6

≡
f 2
4

f1f
2
2

(mod 3) (from Lemma 16)

=
f 3
4

f 3
2

·
f2

f1f4

≡
f12

f6
·

f2

f1f4
(mod 3).

From Lemma 7, we then know that

∞
∑

n=0

pend(3n+ 1)q3n+1
≡

f12

f6

(

q
f 2
6 f

3
18

f 3
3 f

3
12

)

(mod 3),

which means

∞
∑

n=0

pend(3n+ 1)qn ≡
f4

f2
·
f 2
2 f

3
6

f 3
1 f

3
4

(mod 3)

=
f2f

3
6

f 3
1 f

2
4

≡ (f2f4)
f 3
6

f3f12
(mod 3). (8)
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Thanks to Lemma 8, we see that

∞
∑

n=0

pend(3n+ 1)qn ≡
f 3
6

f3f12

(

f12f
4
18

f6f
2
36

+ 2q2f18f36 + q4
f6f

4
36

f12f
2
18

)

(mod 3).

This now allows us to perform an additional 3–dissection to obtain

∞
∑

n=0

pend(9n+ 1)q3n ≡
f 3
6

f3f12
·
f12f

4
18

f6f
2
36

(mod 3),

which yields

∞
∑

n=0

pend(9n+ 1)qn ≡
f 2
2 f

4
6

f1f
2
12

(mod 3)

=
f 2
2

f1
·
f 4
6

f 2
12

.

From Lemma 10, we can rewrite this result as

∞
∑

n=0

pend(9n+ 1)qn ≡

(

f6f
2
9

f3f18
+ q

f 2
18

f9

)

f 4
6

f 2
12

(mod 3). (9)

Note that the power series representation of the right–hand side of the above congruence
contains no terms of the form q3n+2. Thus,

∞
∑

n=0

pend(9(3n+ 2) + 1)q3n+2
≡ 0 (mod 3),

which means that, for all n ≥ 0,

pend(9(3n+ 2) + 1) = pend(27n+ 19) ≡ 0 (mod 3).

We next consider the proof of Theorem 4.

Proof of Theorem 4. Our goal here is to prove that, for all n ≥ 0,

pend(27n+ 10) ≡ pend(3n+ 1) (mod 3).

Thanks to (9), we see that

∞
∑

n=0

pend(27n+ 10)q3n+1
≡ q

f 4
6 f

2
18

f9f
2
12

(mod 3),
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which means
∞
∑

n=0

pend(27n+ 10)qn ≡
f 4
2 f

2
6

f3f
2
4

(mod 3). (10)

From (8), we know

∞
∑

n=0

pend(3n+ 1)qn ≡
f2f4f

3
6

f3f12
(mod 3)

≡
f2f4f

3
6

f3f
3
4

(mod 3)

=
f2f

3
6

f3f
2
4

≡
f2f

3
2 f

2
6

f3f
2
4

(mod 3)

=
f 4
2 f

2
6

f3f
2
4

≡

∞
∑

n=0

pend(27n+ 10)qn (mod 3)

thanks to (10).

We are now in a position to prove the infinite family of congruences in Theorem 6.

Proof of Theorem 6. We prove this theorem by induction on α. Note that the base case,
α = 1, which corresponds to the arithmetic progression

33n+
17 · 32 − 1

8
= 27n+ 19,

has already been proved in Theorem 2. Thus, we assume that, for some α ≥ 1 and all n ≥ 0,

pend

(

32α+1n+
17 · 32α − 1

8

)

≡ 0 (mod 3).

We then want to prove that

pend

(

32α+3n+
17 · 32α+2 − 1

8

)

≡ 0 (mod 3).

Note that

32α+1n+
17 · 32α − 1

8
= 3

(

32αn
)

+
17 · 32α − 9 + 8

8

13



= 3
(

32αn
)

+ 3

(

17 · 32α−1 − 3

8

)

+ 1

= 3

(

32αn+
17 · 32α−1 − 3

8

)

+ 1

and it is easy to argue that

32αn+
17 · 32α−1 − 3

8

is an integer for any α ≥ 1. Therefore, we have the following:

pend

(

32α+1n+
17 · 32α − 1

8

)

= pend

(

3

(

32αn+
17 · 32α−1 − 3

8

)

+ 1

)

≡ pend

(

27

(

32αn+
17 · 32α−1 − 3

8

)

+ 10

)

(mod 3) (thanks to Theorem 4)

= pend

(

32α+3n+
17 · 32α+2 − 27 · 3 + 10 · 8

8

)

= pend

(

32α+3n+
17 · 32α+2 − 1

8

)

≡ 0 (mod 3)

thanks to the induction hypothesis. This completes the proof.

5 Closing thoughts

While it is very satisfying to see the proofs provided above, it would be interesting to see
combinatorial proofs of these divisibility properties. We leave it to the interested reader to
obtain such proofs.

It may also be fruitful to consider further refinements of the functions pend(n) and
pond(n). For example, rather than requiring that even parts must be repeated, one could
restrict this requirement to only those parts which are divisible by 4 (with no such require-
ments on the other parts). It is certainly straightforward to find the generating functions
for such refinements, which means that an analysis such as that above should be possi-
ble. Ballantine and Welch [5] share comments about such partitions (and their enumerating
functions) near the end of their manuscript. The interested reader may wish to study such
functions from an arithmetic perspective.
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