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Abstract

In this paper, we give explicit asymptotic formulas for some sums over primes involv-
ing three types of generalized alternating hyperharmonic numbers. We also consider
analogous results for numbers with k prime factors.

1 Introduction and preliminaries

The prime numbers (see the sequence A000040 in the OEIS [16]) play an essential role
in number theory. Let π(x) denote the number of primes up to x. Gauss and Legendre
proposed independently that the ratio π(x)/ x

log x
approaches 1 as x approaches ∞. With the

help of analytic tools, Hadamard [5] and de la Vallée Poussin [17] independently and almost
simultaneously proved the prime number theorem, i.e.,

π(x) ∼
x

log x
.

Let pn be the n-th prime number, and let α be a non-negative integer. It is natural to
consider asymptotic formulas for more general sums of type

∑

pn≤x p
α
n. We restate the prime

number theorem as

π(x) =
∑

pn≤x

p0n ∼
x

log x
.

An exercise in Granville’s book [4] states that
∑

p≤x p ∼ x2

2 log x
. In fact, Šalát and Znám

[15] proved more general sums
∑

pn≤x p
α
n ∼ x1+α

(1+α) log x
. Later, Jakimczuk [7, 8] extended this
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kind of summation to numbers with k prime factors and functions of slow increase. Gerard
and Washington [3] also gave accurate estimates for

∑

pn≤x p
α
n−

x1+α

(1+α) log x
by using the prime

number theorem with error terms.
We now recall some definitions and notation. Let k ≥ 1, and let n be the product of just

k prime factors (pi and pj are allowed to be the same), i.e.,

n = p1p2 · · · pk. (1)

We write τk(x) for the number of such n ≤ x. If we impose the additional restriction that
all the prime divisors p in equation(1) are different, n is squarefree. We write πk(x) for the
number of these (squarefree) n ≤ x. Landau [6, 9] proved that

πk(x) ∼ τk(x) ∼
x(log log x)k−1

(k − 1)! log x
(k ≥ 2).

For k = 1, this result reduces to the prime number theorem, if, as usual, we take 0! = 1.
Conway and Guy [1] introduced the conception of hyperharmonic numbers as

h(r)
n :=

n
∑

j=1

h
(r−1)
j (n, r ∈ N := {1, 2, 3, . . .}) with h(1)

n = Hn :=
n

∑

j=1

1/j.

Dil, Mező, and Cenkci [2] introduced the notion of generalized hyperharmonic numbers as

H(p,r)
n :=

n
∑

j=1

H
(p,r−1)
j (n, p, r ∈ N),

and studied the Euler sums of hyperharmonic numbers. Ömür and Koparal [14] intro-

duced the generalized hyperharmonic numbers H
(p,r)
n independently and almost simultane-

ously from a combinatorial point of view, and defined two n × n matrices An and Bn with
ai,j = H

(j,r)
i and bi,j = H

(p,j)
i , respectively. Ömür and Koparal also gave some interest-

ing factorizations and determinant properties of the matrices An and Bn. The author [12]

proved that the generalized hyperharmonic numbers H
(p,r)
n are linear combinations of n’s

power times generalized harmonic numbers.
The author [10] introduced the conception of generalized alternating hyperharmonic num-

bers H
(p,r)
n . Define the notion of the generalized alternating hyperharmonic numbers of types

I, II, and III, respectively, as

H(p,r,1)
n :=

n
∑

k=1

(−1)k−1H
(p,r−1,1)
k (H(p,1,1)

n = H(p)
n ),

H(p,r,2)
n :=

n
∑

k=1

H
(p,r−1,2)
k (H(p,1,2)

n = H
(p)

n :=
n

∑

j=1

(−1)j−1/jp),

H(p,r,3)
n :=

n
∑

k=1

(−1)k−1H
(p,r−1,3)
k (H(p,1,3)

n = H
(p)

n ).
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Let N0 denote the set of nonnegative integers. If p ∈ N0, then H
(−p)
n and H

(−p)

n are the sum
∑n

j=1 j
p and

∑n

j=1(−1)j−1jp, respectively. The author [10] proved that Euler sums of the
generalized alternating hyperharmonic numbers of types I, II, and III are linear combinations
of classical (alternating) Euler sums.

Let f(n) denote an arithmetical function. It is interesting to consider asymptotic for-
mulas for sums over primes of type

∑

pn≤x p
α
nf(n)

m. The author [11] gave explicit asymp-
totic formulas for sums over primes involving generalized hyperharmonic numbers of type
∑

pn≤x p
α
n(H

(p,r)
n )m. The author [11] also considered analogous results for numbers with k

prime factors.
The motivation of this paper arises from an exercise in Granville’s book [4] and the

author’s recent work [10] on generalized alternating hyperharmonic numbers. This paper is
a continuation of the previous paper of the author with the same title [11]. In this paper,
we derive explicit asymptotic formulas for some sums over primes involving three types
of generalized alternating hyperharmonic numbers. We also consider analogous results for
numbers with k prime factors.

2 Some notation and lemmas

We now recall some notation and lemmas.

Lemma 1 ([13]). For all n ∈ N and a fixed order r ≥ 1, we have

h(r)
n ∼

1

(r − 1)!
nr−1 log(n).

Lemma 2 ([11]). For r, n, p ∈ N with p ≥ 2, we have

H(p,r)
n ∼

1

(r − 1)!
nr−1ζ(p),

where ζ(p) :=
∑∞

n=1 n
−p is the Riemann zeta function.

Lemma 3 ([12]). For r, n, p ∈ N, we have

H(p,r,2)
n =

r−1
∑

m=0

r−1−m
∑

j=0

a(r,m, j)njH
(p−m)

n .

The coefficients a(r,m, j) satisfy the following recurrence formulas:

a(r + 1, r, 0) = −

r−1
∑

m=0

a(r,m, r −m− 1)
1

r −m
,

a(r + 1,m, ℓ) =
r−1−m
∑

j=ℓ−1

a(r,m, j)

j + 1

(

j + 1

j − ℓ+ 1

)

Bj−ℓ+1

(0 ≤ m ≤ r − 1, 1 ≤ ℓ ≤ r −m),
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a(r + 1,m, 0) = −
m
∑

y=0

r−1−y
∑

j=max{0,m−y−1}

a(r, y, j)D(r,m, j, y) (0 ≤ m ≤ r − 1),

where

D(r,m, j, y) =

j
∑

ℓ=max{0,m−y−1}

1

j + 1

(

j + 1

j − ℓ

)

Bj−ℓ

(

ℓ+ 1

m− y

)

(−1)1+ℓ−m+y.

The Bernoulli numbers Bn satisfy the following recurrence formula

k
∑

j=0

(

k + 1

j

)

Bj = k + 1 (k ≥ 0).

The initial value is a(1, 0, 0) = 1.

Definition 4. For m, j ∈ N0, define the quantities c(m, j), d(m, j), c1(m, j), and d1(m, j)
as

c(m, j) =
1

m+ 1

(

m+ 1

m+ 1− j

)

Bm+1−j ,

d(m, j) =
1

m+ 1

m
∑

k=j−1

(

m+ 1

m− k

)

Bm−k

(

1 + k

j

)

(−1)1+k−j,

c1(m, j) =
1

2(m+ 1)

m−j
∑

k=0

(

m+ 1

k

)

Bk2
k

(

m+ 1− k

j

)

(−1)m−k−j,

d1(m, j) =
m
∑

k=j

(

k

j

)

(−1)k−jc1(m, k).

Definition 5. Let g(r) := (2r− (−1)r − 3)/4. For r ∈ N, define the boundary values of the
quantities b1(r,m, j, k), k = 0, 1, 2, 3 as

• b1(1, 0, 0, 2) = 1, b1(1, 0, 0, 3) = 0;

• b1(r,m, j, 0) = b1(r,m, j, 1) = 0 (r odd);

• b1(r,m, j, 2) = b1(r,m, j, 3) = 0 (r even);

• b1(r,m, j, 3) = 0 (r odd, m+ j = g(r)).

For k = 0, 1, 2, 3, the quantities b1(r,m, j, k) satisfy the following recurrence formulas:
When r is odd,

• b1(r + 1,m, j, 0) =

g(r)
∑

ℓ=m

b1(r, ℓ, j, 2)c1(ℓ,m) (1 ≤ m ≤ g(r), 0 ≤ j ≤ g(r)−m);
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• b1(r + 1, 0, j, 0) =

g(r)−j
∑

ℓ=0

b1(r, ℓ, j, 2)c1(ℓ, 0) (0 ≤ j ≤ g(r));

• b1(r + 1,m, j, 1) =

g(r)−1
∑

ℓ=m−1

b1(r, ℓ, j, 3)c(ℓ,m) (1 ≤ m ≤ g(r), 0 ≤ j ≤ g(r)−m);

• b1(r + 1, 0, j, 1) =

g(r)
∑

m=0

∑

j1+ℓ=j
0≤j1≤g(r)−m

1≤ℓ≤m

b1(r,m, j1, 2)d1(m, ℓ) +

g(r)−j
∑

m=0

b1(r,m, j, 2)d1(m, 0) +

b1(r, 0, j, 3)−

g(r)−1
∑

m=0

∑

j1+ℓ=j
0≤j1≤g(r)−m−1

1≤ℓ≤m+1

b1(r,m, j1, 3)d(m, ℓ) (0 ≤ j ≤ g(r)).

When r is even,

• b1(r+1,m, j, 2) =

g(r)
∑

ℓ=m−1

b1(r, ℓ, j, 0)c(ℓ,m) (1 ≤ m ≤ g(r)+1, 0 ≤ j ≤ g(r)+1−m);

• b1(r + 1, 0, j, 2) = −

g(r)
∑

m=0

∑

j1+ℓ=j
0≤j1≤g(r)−m
1≤ℓ≤m+1

b1(r,m, j1, 0)d(m, ℓ) +

g(r)−j
∑

m=0

b1(r,m, j, 1)d1(m, 0) +

b1(r, 0, j, 0) +

g(r)
∑

m=0

∑

j1+ℓ=j
0≤j1≤g(r)−m

1≤ℓ≤m

b1(r,m, j1, 1)d1(m, ℓ) (0 ≤ j ≤ g(r) + 1);

• b1(r + 1,m, j, 3) =

g(r)
∑

ℓ=m

b1(r, ℓ, j, 1)c1(ℓ,m) (1 ≤ m ≤ g(r), 0 ≤ j ≤ g(r)−m);

• b1(r + 1, 0, j, 3) =

g(r)−j
∑

ℓ=0

b1(r, ℓ, j, 1)c1(ℓ, 0) (0 ≤ j ≤ g(r)).

Lemma 6 ([10]). For r, n, p ∈ N, we have

H(p,r,1)
n =

2r−(−1)r−3
4

∑

m=0

2r−(−1)r−3
4

−m
∑

j=0

(

b1(r, j,m, 0)(−1)n−1H(p−m)
n + b1(r, j,m, 1)H

(p−m)

n

+ b1(r, j,m, 2)H(p−m)
n + b1(r, j,m, 3)(−1)n−1H

(p−m)

n

)

nj,
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H(p,r,3)
n =

2r−(−1)r−3
4

∑

m=0

2r−(−1)r−3
4

−m
∑

j=0

(

b1(r, j,m, 0)(−1)n−1H
(p−m)

n + b1(r, j,m, 1)H(p−m)
n

+ b1(r, j,m, 2)H
(p−m)

n + b1(r, j,m, 3)(−1)n−1H(p−m)
n

)

nj.

Lemma 7 ([7, 8]). Let
∑∞

i=1 ai and
∑∞

i=1 bi be two series of positive terms such that ai ∼ bi.
Then if

∑∞
i=1 bi is divergent, the following result holds:

n
∑

i=1

ai ∼

n
∑

i=1

bi.

Lemma 8 ([6, 11]). Let pn,k denote the nth squarefree number with just k prime factors

and qn,k denote the nth number with just k prime factors. Then the following asymptotic

formulas hold:

pn,k ∼ qn,k ∼ (k − 1)!
n log(n)

(log log(n))k−1
,

pn,k(log log(pn,k))
k−1 ∼ qn,k(log log(qn,k))

k−1 ∼ (k − 1)!n log(n).

For k = 1, we have pn ∼ n log(n).

Lemma 9 ([11]). For m,n, k, x ∈ N, we have
x

∑

ℓ=1

ℓm(log(ℓ))n ∼
xm+1(log(x))n

m+ 1
,

x
∑

ℓ=1

ℓm(log(ℓ))n

(log log(ℓ))k
∼

xm+1(log(x))n

(m+ 1)(log log(x))k
.

3 Sums over primes involving generalized alternating

hyperharmonic numbers of type H
(p,r,1)
n

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type H

(p,r,1)
n .

Lemma 10. Let y, p ∈ N with p ≥ 2, the following asymptotic formulas hold:

H(1,2y+1,1)
n ∼

1

2y · y!
ny log(n), H(p,2y+1,1)

n ∼
1

2y · y!
nyζ(p),

H(1,2y,1)
n ∼

1

2y · (y − 1)!
ny−1(−1)n−1 log(n),

H
(p,2y,1)
2n ∼ −

1

2 · (y − 1)!
ny−1(ζ(p)− ζ(p)),

H
(p,2y,1)
2n−1 ∼

1

2 · (y − 1)!
ny−1(ζ(p) + ζ(p)),
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where ζ(s) is the well-known alternating zeta function

ζ(s) :=
∞
∑

n=1

(−1)n−1

ns
= (1− 21−s)ζ(s) with ζ(1) = log 2.

Proof. By applying Definition 5 and Lemma 6, we have the following identities:
when r is odd,

H(p,r,1)
n =

g(r)
∑

m=0

g(r)−m
∑

j=0

(

b1(r, j,m, 2)H(p−m)
n + b1(r, j,m, 3)(−1)n−1H

(p−m)

n

)

nj;

when r is even,

H(p,r,1)
n =

g(r)
∑

m=0

g(r)−m
∑

j=0

(

b1(r, j,m, 0)(−1)n−1H(p−m)
n + b1(r, j,m, 1)H

(p−m)

n

)

nj.

When r is odd, by b1(r,m, j, 3) = 0 (m + j = g(r)), we know that the main term of

H
(p,r,1)
n is b1(r, g(r), 0, 2)H

(p)
n ng(r).

When r is even and p = 1, we know that the main term of H
(1,r,1)
n is

b1(r, g(r), 0, 0)(−1)n−1Hnn
g(r).

When r is even and p ≥ 2, we know that the main term of H
(p,r,1)
n is

(

b1(r, g(r), 0, 0)(−1)n−1H(p−m)
n + b1(r, g(r), 0, 1)H

(p)

n

)

ng(r).

By applying Definition 5, we can obtain the following recursive formulas:
When r is odd with r ≥ 3,

b1(r + 1, g(r + 1), 0, 0) = b1(r, g(r), 0, 2)
1

2
,

b1(r + 1, g(r + 1), 0, 1) = b1(r, g(r)− 1, 0, 3)
1

g(r)
.

When r is even,

b1(r + 1, g(r + 1), 0, 2) = b1(r, g(r), 0, 0)
1

g(r) + 1
,

b1(r + 1, g(r + 1)− 1, 0, 3) = b1(r, g(r)− 1, 0, 1)
1

2
.
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Let y ∈ N. By using the initial values b1(1, 0, 0, 2) = 1 and b1(1, 0, 0, 3) = 0, and the
above recursive formulas, we can obtain the following explicit formulas:

b1(2y + 1, y, 0, 2) =
1

2y · y!
,

b1(2y + 1, y − 1, 0, 3) =
1

2y+1 · (y − 1)!
,

b1(2y, y − 1, 0, 0) = b1(2y, y − 1, 0, 1) =
1

2y · (y − 1)!
.

Thus we get the desired results.

Now we state our main theorems of this section.

Theorem 11. For α,m, q, y ∈ N with q ≥ 2, we have

•

∑

ℓ≤x

pαℓ (H
(1,2y+1,1)
ℓ )m ∼

xα+my+1(log(x))α+m

(2y · y!)m(α +my + 1)
;

•

∑

pℓ≤x

pαℓ (H
(1,2y+1,1)
ℓ )m ∼

xα+my+1

(2y · y!)m(α +my + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ (H
(q,2y+1,1)
ℓ )m ∼

ζ(q)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)
;

•

∑

pℓ≤x

pαℓ (H
(q,2y+1,1)
ℓ )m ∼

ζ(q)mxα+my+1

(2y · y!)m(α +my + 1)(log(x))my+1
;

•

∑

ℓ≤x

pαℓ ((−1)ℓ−1H
(1,2y,1)
ℓ )m ∼

xα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ ((−1)ℓ−1H
(1,2y,1)
ℓ )m ∼

xα+m(y−1)+1

(2y · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−2)+1
;

•

∑

ℓ≤x

pαℓ (H
(1,2y,1)
2ℓ−1 )m ∼

xα+m(y−1)+1(log(x))α+m

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

ℓ≤x

pαℓ (−H
(1,2y,1)
2ℓ )m ∼

xα+m(y−1)+1(log(x))α+m

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (H
(1,2y,1)
2ℓ−1 )m ∼

xα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−2)+1
;
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•

∑

pℓ≤x

pαℓ (−H
(1,2y,1)
2ℓ )m ∼

xα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−2)+1
;

•

∑

ℓ≤x

pαℓ (H
(q,2y,1)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (H
(q,2y,1)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ (−H
(q,2y,1)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (−H
(q,2y,1)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmas 7, 8, 9, and 10, we have

∑

ℓ≤x

pαℓ (H
(1,2y+1,1)
ℓ )m ∼

∑

ℓ≤x

ℓα+my(log(ℓ))α+m

(2y · y!)m
∼

xα+my+1(log(x))α+m

(2y · y!)m(α +my + 1)
.

We can prove thirteen additional asymptotic formulas in a similar manner.

Theorem 12. For α,m, k, q, y ∈ N with q ≥ 2, we have

•

∑

ℓ≤x

pαℓ,k(H
(1,2y+1,1)
ℓ )m ∼

((k − 1)!)αxα+my+1(log(x))α+m

(2y · y!)m(α +my + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(1,2y+1,1)
ℓ )m ∼

xα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α +my + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ,k(H
q,2y+1,1)
ℓ )m ∼

((k − 1)!)αζ(q)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(q,2y+1,1)
ℓ )m ∼

ζ(q)mxα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α +my + 1)(log(x))my+1
;

•

∑

ℓ≤x

pαℓ,k((−1)ℓ−1H
1,2y,1)
ℓ )m ∼

((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k((−1)ℓ−1H
(1,2y,1)
ℓ )m ∼

xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2y · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−2)+1
;
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•

∑

ℓ≤x

pαℓ,k(H
1,2y,1)
2ℓ−1 )m ∼

∑

pℓ,k≤x

pαℓ,k(−H
(1,2y,1)
2ℓ )m

∼
((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(1,2y,1)
2ℓ−1 )m ∼

∑

pℓ,k≤x

pαℓ,k(−H
(1,2y,1)
2ℓ )m

∼
xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1(α +m(y − 1) + 1)(log(x))m(y−2)+1
;

•

∑

ℓ≤x

pαℓ,k(H
(q,2y,1)
2ℓ−1 )m ∼

((k − 1)!)α(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(q,2y,1)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ,k(−H
(q,2y,1)
2ℓ )m ∼

((k − 1)!)α(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(−H
(q,2y,1)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmas 7, 8, 9, and 10, we have

∑

ℓ≤x

pαℓ,k(H
(1,2y+1,1)
ℓ )m ∼

∑

ℓ≤x

((k − 1)!)αℓα+my(log(ℓ))α+m

(2y · y!)m(log log(ℓ))α(k−1)

∼
((k − 1)!)αxα+my+1(log(x))α+m

(2y · y!)m(α +my + 1)(log log(x))α(k−1)
.

We can prove eleven additional asymptotic formulas in a similar manner.

4 Sums over primes involving generalized alternating

hyperharmonic numbers of type H
(p,r,2)
n

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type H

(p,r,2)
n .

10



Lemma 13. For r, n, p ∈ N, we have

H(p,r,2)
n ∼

1

(r − 1)!
nr−1ζ(p).

Proof. By using Lemma 3, we know that the main term of H
(p,r,2)
n is a(r, 0, r − 1)nr−1H

(p)

n .

The author [11] proves that a(r, 0, r − 1) = 1
(r−1)!

and H
(p)

n ∼ ζ(p). Thus we get the desired
result.

Now we show our main theorems of this section.

Theorem 14. For α,m, q, k, r ∈ N, we have

•

∑

ℓ≤x

pαℓ (H
(q,r,2)
ℓ )m ∼

ζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α +m(r − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (H
(q,r,2)
ℓ )m ∼

ζ(q)mxα+m(r−1)+1

((r − 1)!)m(α +m(r − 1) + 1)(log(x))m(r−1)+1
;

•

∑

ℓ≤x

pαℓ,k(H
(q,r,2)
ℓ )m ∼

((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α +m(r − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(q,r,2)
ℓ )m ∼

ζ(q)mxα+m(r−1)+1(log log(x))(m(r−1)+1)(k−1)

((k − 1)!)m(r−1)+1((r − 1)!)m

×
1

(α +m(r − 1) + 1)(log(x))m(r−1)+1
.

Proof. By using Lemmas 7, 8, 9, and 13, we have

∑

ℓ≤x

pαℓ,k(H
(q,r,2)
ℓ )m ∼

∑

ℓ≤x

((k − 1)!)αζ(q)mℓα+m(r−1)(log(ℓ))α

((r − 1)!)m(log log(ℓ))α(k−1)

∼
((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α +m(r − 1) + 1)(log log(x))α(k−1)
.

We can prove three other asymptotic formulas in a similar manner.

Theorem 15. For q1, q2, α, β,m, k, s, n, r1, r2 ∈ N with q1 ≥ 2, we have

•

∑

ℓ≤x

pαℓ,k(H
(q1,r1)
ℓ )m(h

(s)
ℓ )n(H

(q2,r2,2)
ℓ )β ∼

((k − 1)!)αζ(q1)
mζ(q2)

β(log(x))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β

×
xα+m(r1−1)+n(s−1)+β(r2−1)+1

(α +m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)(log log(x))α(k−1)
;
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•

∑

pℓ,k≤x

pαℓ,k(H
(q1,r1)
ℓ )m(h

(s)
ℓ )n(H

(q2,r2,2)
ℓ )β ∼

ζ(q1)
mζ(q2)

β

(α +m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)

×
xα+m(r1−1)+n(s−1)+β(r2−1)+1(log log(x))(m(r1−1)+n(s−1)+β(r2−1)+1)(k−1)

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β((k − 1)!)m(r1−1)+n(s−1)+β(r2−1)+1

×
1

(log(x))m(r1−1)+n(s−2)+β(r2−1)+1
.

Proof. By using Lemmas 1, 2, 7, 8, 9, and 13, we have

∑

ℓ≤x

pαℓ,k(H
(q1,r1)
ℓ )m(h

(s)
ℓ )n(H

(q2,r2,2)
ℓ )β

∼
∑

ℓ≤x

((k − 1)!)αζ(q1)
mζ(q2)

βℓα+m(r1−1)+n(s−1)+β(r2−1)(log(ℓ))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β(log log(ℓ))α(k−1)

∼
((k − 1)!)αζ(q1)

mζ(q2)
β(log(x))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β(log log(x))α(k−1)

×
xα+m(r1−1)+n(s−1)+β(r2−1)+1

(α +m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)
.

We can prove the other asymptotic formula in a similar manner.

5 Sums over primes involving generalized alternating

hyperharmonic numbers of type H
(p,r,3)
n

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type H

(p,r,3)
n .

Lemma 16. Let y, p ∈ N, the following asymptotic formulas hold:

• H(p,2y+1,3)
n ∼

1

2y · y!
nyζ(p);

• H(1,2y,3)
n ∼

1

2y · (y − 1)!
ny−1 log(n);

• H
(p,2y,3)
2n ∼

1

2 · (y − 1)!
ny−1(ζ(p)− ζ(p)) (p ≥ 2);

• H
(p,2y,3)
2n−1 ∼

1

2 · (y − 1)!
ny−1(ζ(p) + ζ(p)) (p ≥ 2).
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Proof. By applying Definition 5 and Lemma 6, we have the following identities:
when r is odd,

H(p,r,3)
n =

g(r)
∑

m=0

g(r)−m
∑

j=0

(

b1(r, j,m, 2)H
(p−m)

n + b1(r, j,m, 3)(−1)n−1H(p−m)
n

)

nj;

when r is even,

H(p,r,1)
n =

g(r)
∑

m=0

g(r)−m
∑

j=0

(

b1(r, j,m, 0)(−1)n−1H
(p−m)

n + b1(r, j,m, 1)H(p−m)
n

)

nj.

When r is odd, by b1(r,m, j, 3) = 0 (m + j = g(r)), we know that the main term of

H
(p,r,3)
n is b1(r, g(r), 0, 2)H

(p)

n ng(r).

When r is even and p = 1, we know that the main term ofH
(1,r,3)
n is b1(r, g(r), 0, 1)Hnn

g(r).

When r is even and p ≥ 2, we know that the main term of H
(p,r,3)
n is

(

b1(r, g(r), 0, 0)(−1)n−1H
(p−m)

n + b1(r, g(r), 0, 1)H
(p)
n

)

ng(r).

Let y ∈ N. By applying Lemma 10, we have the following explicit formulas:

b1(2y + 1, y, 0, 2) =
1

2y · y!
,

b1(2y + 1, y − 1, 0, 3) =
1

2y+1 · (y − 1)!
,

b1(2y, y − 1, 0, 0) = b1(2y, y − 1, 0, 1) =
1

2y · (y − 1)!
.

Thus we get the desired results.

Now we show our main theorems of this section.

Theorem 17. For α,m, p, q, y ∈ N with q ≥ 2, we have

•

∑

ℓ≤x

pαℓ (H
(p,2y+1,3)
ℓ )m ∼

ζ(p)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)
;

•

∑

pℓ≤x

pαℓ (H
(p,2y+1,3)
ℓ )m ∼

ζ(p)mxα+my+1

(2y · y!)m(α +my + 1)(log(x))my+1
;

•

∑

ℓ≤x

pαℓ (H
(1,2y,3)
ℓ )m ∼

xα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α +m(y − 1) + 1)
;
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•

∑

pℓ≤x

pαℓ (H
(1,2y,3)
ℓ )m ∼

xα+m(y−1)+1

(2y · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−2)+1
;

•

∑

ℓ≤x

pαℓ (H
(q,2y,3)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (H
(q,2y,3)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ (H
(q,2y,3)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)
;

•

∑

pℓ≤x

pαℓ (H
(q,2y,3)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmas 7, 8, 9, and 16, we have

∑

ℓ≤x

pαℓ (H
(p,2y+1,3)
ℓ )m ∼

∑

ℓ≤x

ζ(p)mℓα+my(log(ℓ))α

(2y · y!)m
∼

ζ(p)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)
.

We can prove seven other asymptotic formulas in a similar manner.

Theorem 18. For α,m, k, p, q, y ∈ N with q ≥ 2, we have

•

∑

ℓ≤x

pαℓ,k(H
p,2y+1,1)
ℓ )m ∼

((k − 1)!)αζ(p)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(p,2y+1,1)
ℓ )m ∼

ζ(p)mxα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α +my + 1)(log(x))my+1
;

•

∑

ℓ≤x

pαℓ,k(H
1,2y,3)
ℓ )m ∼

((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(1,2y,3)
ℓ )m ∼

xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2y · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−2)+1
;

•

∑

ℓ≤x

pαℓ,k(H
(q,2y,3)
2ℓ−1 )m ∼

((k − 1)!)α(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;
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•

∑

pℓ,k≤x

pαℓ,k(H
(q,2y,3)
2ℓ−1 )m ∼

(ζ(q) + ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−1)+1
;

•

∑

ℓ≤x

pαℓ,k(H
(q,2y,3)
2ℓ )m ∼

((k − 1)!)α(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α +m(y − 1) + 1)(log log(x))α(k−1)
;

•

∑

pℓ,k≤x

pαℓ,k(H
(q,2y,3)
2ℓ )m ∼

(ζ(q)− ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

×
1

(α +m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmas 7, 8, 9, and 16, we have

∑

ℓ≤x

pαℓ,k(H
(p,2y+1,3)
ℓ )m ∼

∑

ℓ≤x

((k − 1)!)αζ(p)mℓα+my(log(ℓ))α

(2y · y!)m(log log(ℓ))α(k−1)

∼
((k − 1)!)αζ(p)mxα+my+1(log(x))α

(2y · y!)m(α +my + 1)(log log(x))α(k−1)
.

We can prove seven other asymptotic formulas in a similar manner.
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