Journal of Integer Sequences, Vol. 27 (2024), Article 24.4.1

Sums over Primes II

Rusen Li
School of Mathematics and Computational Science
Xiangtan University
Xiangtan 411105
China
limanjiashe@163.com

Abstract

In this paper, we give explicit asymptotic formulas for some sums over primes involving three types of generalized alternating hyperharmonic numbers. We also consider analogous results for numbers with k prime factors.

1 Introduction and preliminaries

The prime numbers (see the sequence A000040 in the OEIS [16]) play an essential role in number theory. Let $\pi(x)$ denote the number of primes up to x. Gauss and Legendre proposed independently that the ratio $\pi(x) / \frac{x}{\log x}$ approaches 1 as x approaches ∞. With the help of analytic tools, Hadamard [5] and de la Vallée Poussin [17] independently and almost simultaneously proved the prime number theorem, i.e.,

$$
\pi(x) \sim \frac{x}{\log x} .
$$

Let p_{n} be the n-th prime number, and let α be a non-negative integer. It is natural to consider asymptotic formulas for more general sums of type $\sum_{p_{n} \leq x} p_{n}^{\alpha}$. We restate the prime number theorem as

$$
\pi(x)=\sum_{p_{n} \leq x} p_{n}^{0} \sim \frac{x}{\log x}
$$

An exercise in Granville's book [4] states that $\sum_{p \leq x} p \sim \frac{x^{2}}{2 \log x}$. In fact, Šalát and Znám [15] proved more general sums $\sum_{p_{n} \leq x} p_{n}^{\alpha} \sim \frac{x^{1+\alpha}}{(1+\alpha) \log x}$. Later, Jakimczuk [7, 8] extended this
kind of summation to numbers with k prime factors and functions of slow increase. Gerard and Washington [3] also gave accurate estimates for $\sum_{p_{n} \leq x} p_{n}^{\alpha}-\frac{x^{1+\alpha}}{(1+\alpha) \log x}$ by using the prime number theorem with error terms.

We now recall some definitions and notation. Let $k \geq 1$, and let n be the product of just k prime factors (p_{i} and p_{j} are allowed to be the same), i.e.,

$$
\begin{equation*}
n=p_{1} p_{2} \cdots p_{k} \tag{1}
\end{equation*}
$$

We write $\tau_{k}(x)$ for the number of such $n \leq x$. If we impose the additional restriction that all the prime divisors p in equation(1) are different, n is squarefree. We write $\pi_{k}(x)$ for the number of these (squarefree) $n \leq x$. Landau $[6,9]$ proved that

$$
\pi_{k}(x) \sim \tau_{k}(x) \sim \frac{x(\log \log x)^{k-1}}{(k-1)!\log x} \quad(k \geq 2)
$$

For $k=1$, this result reduces to the prime number theorem, if, as usual, we take $0!=1$.
Conway and Guy [1] introduced the conception of hyperharmonic numbers as

$$
h_{n}^{(r)}:=\sum_{j=1}^{n} h_{j}^{(r-1)} \quad(n, r \in \mathbb{N}:=\{1,2,3, \ldots\}) \quad \text { with } \quad h_{n}^{(1)}=H_{n}:=\sum_{j=1}^{n} 1 / j .
$$

Dil, Mező, and Cenkci [2] introduced the notion of generalized hyperharmonic numbers as

$$
H_{n}^{(p, r)}:=\sum_{j=1}^{n} H_{j}^{(p, r-1)} \quad(n, p, r \in \mathbb{N}),
$$

and studied the Euler sums of hyperharmonic numbers. Ömür and Koparal [14] introduced the generalized hyperharmonic numbers $H_{n}^{(p, r)}$ independently and almost simultaneously from a combinatorial point of view, and defined two $n \times n$ matrices A_{n} and B_{n} with $a_{i, j}=H_{i}^{(j, r)}$ and $b_{i, j}=H_{i}^{(p, j)}$, respectively. Ömür and Koparal also gave some interesting factorizations and determinant properties of the matrices A_{n} and B_{n}. The author [12] proved that the generalized hyperharmonic numbers $H_{n}^{(p, r)}$ are linear combinations of n 's power times generalized harmonic numbers.

The author [10] introduced the conception of generalized alternating hyperharmonic numbers $H_{n}^{(p, r)}$. Define the notion of the generalized alternating hyperharmonic numbers of types I, II, and III, respectively, as

$$
\begin{aligned}
& H_{n}^{(p, r, 1)}:=\sum_{k=1}^{n}(-1)^{k-1} H_{k}^{(p, r-1,1)} \quad\left(H_{n}^{(p, 1,1)}=H_{n}^{(p)}\right) \\
& H_{n}^{(p, r, 2)}:=\sum_{k=1}^{n} H_{k}^{(p, r-1,2)} \quad\left(H_{n}^{(p, 1,2)}=\bar{H}_{n}^{(p)}:=\sum_{j=1}^{n}(-1)^{j-1} / j^{p}\right) \\
& H_{n}^{(p, r, 3)}:=\sum_{k=1}^{n}(-1)^{k-1} H_{k}^{(p, r-1,3)} \quad\left(H_{n}^{(p, 1,3)}=\bar{H}_{n}^{(p)}\right)
\end{aligned}
$$

Let \mathbb{N}_{0} denote the set of nonnegative integers. If $p \in \mathbb{N}_{0}$, then $H_{n}^{(-p)}$ and $\bar{H}_{n}^{(-p)}$ are the sum $\sum_{j=1}^{n} j^{p}$ and $\sum_{j=1}^{n}(-1)^{j-1} j^{p}$, respectively. The author [10] proved that Euler sums of the generalized alternating hyperharmonic numbers of types I, II, and III are linear combinations of classical (alternating) Euler sums.

Let $f(n)$ denote an arithmetical function. It is interesting to consider asymptotic formulas for sums over primes of type $\sum_{p_{n} \leq x} p_{n}^{\alpha} f(n)^{m}$. The author [11] gave explicit asymptotic formulas for sums over primes involving generalized hyperharmonic numbers of type $\sum_{p_{n} \leq x} p_{n}^{\alpha}\left(H_{n}^{(p, r)}\right)^{m}$. The author [11] also considered analogous results for numbers with k prime factors.

The motivation of this paper arises from an exercise in Granville's book [4] and the author's recent work [10] on generalized alternating hyperharmonic numbers. This paper is a continuation of the previous paper of the author with the same title [11]. In this paper, we derive explicit asymptotic formulas for some sums over primes involving three types of generalized alternating hyperharmonic numbers. We also consider analogous results for numbers with k prime factors.

2 Some notation and lemmas

We now recall some notation and lemmas.
Lemma 1 ([13]). For all $n \in \mathbb{N}$ and a fixed order $r \geq 1$, we have

$$
h_{n}^{(r)} \sim \frac{1}{(r-1)!} n^{r-1} \log (n) .
$$

Lemma 2 ([11]). For $r, n, p \in \mathbb{N}$ with $p \geq 2$, we have

$$
H_{n}^{(p, r)} \sim \frac{1}{(r-1)!} n^{r-1} \zeta(p),
$$

where $\zeta(p):=\sum_{n=1}^{\infty} n^{-p}$ is the Riemann zeta function.
Lemma 3 ([12]). For $r, n, p \in \mathbb{N}$, we have

$$
H_{n}^{(p, r, 2)}=\sum_{m=0}^{r-1} \sum_{j=0}^{r-1-m} a(r, m, j) n^{j} \bar{H}_{n}^{(p-m)} .
$$

The coefficients a(r,m,j) satisfy the following recurrence formulas:

$$
\begin{aligned}
a(r+1, r, 0)= & -\sum_{m=0}^{r-1} a(r, m, r-m-1) \frac{1}{r-m} \\
a(r+1, m, \ell)= & \sum_{j=\ell-1}^{r-1-m} \frac{a(r, m, j)}{j+1}\binom{j+1}{j-\ell+1} B_{j-\ell+1} \\
& (0 \leq m \leq r-1,1 \leq \ell \leq r-m)
\end{aligned}
$$

$$
a(r+1, m, 0)=-\sum_{y=0}^{m} \sum_{j=\max \{0, m-y-1\}}^{r-1-y} a(r, y, j) D(r, m, j, y) \quad(0 \leq m \leq r-1)
$$

where

$$
D(r, m, j, y)=\sum_{\ell=\max \{0, m-y-1\}}^{j} \frac{1}{j+1}\binom{j+1}{j-\ell} B_{j-\ell}\binom{\ell+1}{m-y}(-1)^{1+\ell-m+y} .
$$

The Bernoulli numbers B_{n} satisfy the following recurrence formula

$$
\sum_{j=0}^{k}\binom{k+1}{j} B_{j}=k+1 \quad(k \geq 0)
$$

The initial value is $a(1,0,0)=1$.
Definition 4. For $m, j \in \mathbb{N}_{0}$, define the quantities $c(m, j), d(m, j), c_{1}(m, j)$, and $d_{1}(m, j)$ as

$$
\begin{aligned}
& c(m, j)=\frac{1}{m+1}\binom{m+1}{m+1-j} B_{m+1-j} \\
& d(m, j)=\frac{1}{m+1} \sum_{k=j-1}^{m}\binom{m+1}{m-k} B_{m-k}\binom{1+k}{j}(-1)^{1+k-j} \\
& c_{1}(m, j)=\frac{1}{2(m+1)} \sum_{k=0}^{m-j}\binom{m+1}{k} B_{k} 2^{k}\binom{m+1-k}{j}(-1)^{m-k-j}, \\
& d_{1}(m, j)=\sum_{k=j}^{m}\binom{k}{j}(-1)^{k-j} c_{1}(m, k) .
\end{aligned}
$$

Definition 5. Let $g(r):=\left(2 r-(-1)^{r}-3\right) / 4$. For $r \in \mathbb{N}$, define the boundary values of the quantities $b_{1}(r, m, j, k), k=0,1,2,3$ as

- $b_{1}(1,0,0,2)=1, \quad b_{1}(1,0,0,3)=0 ;$
- $b_{1}(r, m, j, 0)=b_{1}(r, m, j, 1)=0 \quad(\mathrm{r}$ odd $)$;
- $b_{1}(r, m, j, 2)=b_{1}(r, m, j, 3)=0 \quad$ (r even);
- $b_{1}(r, m, j, 3)=0 \quad(\mathrm{r}$ odd, $\quad m+j=g(r))$.

For $k=0,1,2,3$, the quantities $b_{1}(r, m, j, k)$ satisfy the following recurrence formulas:
When r is odd,

- $b_{1}(r+1, m, j, 0)=\sum_{\ell=m}^{g(r)} b_{1}(r, \ell, j, 2) c_{1}(\ell, m) \quad(1 \leq m \leq g(r), \quad 0 \leq j \leq g(r)-m) ;$
- $b_{1}(r+1,0, j, 0)=\sum_{\ell=0}^{g(r)-j} b_{1}(r, \ell, j, 2) c_{1}(\ell, 0) \quad(0 \leq j \leq g(r))$;
- $b_{1}(r+1, m, j, 1)=\sum_{\ell=m-1}^{g(r)-1} b_{1}(r, \ell, j, 3) c(\ell, m) \quad(1 \leq m \leq g(r), \quad 0 \leq j \leq g(r)-m) ;$
$\bullet b_{1}(r+1,0, j, 1)=\sum_{m=0}^{g(r)} \sum_{\substack{j_{1}+\ell=j \\ 0 \leq j_{1} \leq g(r)-m \\ 1 \leq \ell \leq m}} b_{1}\left(r, m, j_{1}, 2\right) d_{1}(m, \ell)+\sum_{m=0}^{g(r)-j} b_{1}(r, m, j, 2) d_{1}(m, 0)+$

$$
b_{1}(r, 0, j, 3)-\sum_{m=0}^{g(r)-1} \sum_{\substack{j_{1}+\ell=j \\ 0 \leq j_{1} \leq g(r)-m-1 \\ 1 \leq \ell \leq m+1}} b_{1}\left(r, m, j_{1}, 3\right) d(m, \ell) \quad(0 \leq j \leq g(r))
$$

When r is even,

- $b_{1}(r+1, m, j, 2)=\sum_{\ell=m-1}^{g(r)} b_{1}(r, \ell, j, 0) c(\ell, m) \quad(1 \leq m \leq g(r)+1, \quad 0 \leq j \leq g(r)+1-m) ;$
- $b_{1}(r+1,0, j, 2)=-\sum_{m=0}^{g(r)} \sum_{\substack{j_{1}+\ell=j \\ 0 \leq j_{1} \leq g(r)-m \\ 1 \leq \ell \leq m+1}} b_{1}\left(r, m, j_{1}, 0\right) d(m, \ell)+\sum_{m=0}^{g(r)-j} b_{1}(r, m, j, 1) d_{1}(m, 0)+$

$$
b_{1}(r, 0, j, 0)+\sum_{m=0}^{g(r)} \sum_{\substack{j_{1}+\ell=j \\ 0 \leq j_{1} \leq g(r)-m \\ 1 \leq \ell \leq m}} b_{1}\left(r, m, j_{1}, 1\right) d_{1}(m, \ell) \quad(0 \leq j \leq g(r)+1)
$$

- $b_{1}(r+1, m, j, 3)=\sum_{\ell=m}^{g(r)} b_{1}(r, \ell, j, 1) c_{1}(\ell, m) \quad(1 \leq m \leq g(r), \quad 0 \leq j \leq g(r)-m) ;$
- $b_{1}(r+1,0, j, 3)=\sum_{\ell=0}^{g(r)-j} b_{1}(r, \ell, j, 1) c_{1}(\ell, 0) \quad(0 \leq j \leq g(r))$.

Lemma 6 ([10]). For $r, n, p \in \mathbb{N}$, we have

$$
\begin{aligned}
H_{n}^{(p, r, 1)}= & \sum_{m=0}^{\frac{2 r-(-1)^{r}-3}{4}} \sum_{j=0}^{\frac{2 r-\left(-1 r^{r}-3\right.}{4}-m}\left(b_{1}(r, j, m, 0)(-1)^{n-1} H_{n}^{(p-m)}+b_{1}(r, j, m, 1) \bar{H}_{n}^{(p-m)}\right. \\
& \left.+b_{1}(r, j, m, 2) H_{n}^{(p-m)}+b_{1}(r, j, m, 3)(-1)^{n-1} \bar{H}_{n}^{(p-m)}\right) n^{j},
\end{aligned}
$$

$$
\begin{aligned}
H_{n}^{(p, r, 3)}= & \sum_{m=0}^{\frac{2 r-(-1)^{r}-3}{4}} \sum_{j=0}^{\frac{2 r-(-1)^{r}-3}{4^{2}}-m}\left(b_{1}(r, j, m, 0)(-1)^{n-1} \bar{H}_{n}^{(p-m)}+b_{1}(r, j, m, 1) H_{n}^{(p-m)}\right. \\
& \left.+b_{1}(r, j, m, 2) \bar{H}_{n}^{(p-m)}+b_{1}(r, j, m, 3)(-1)^{n-1} H_{n}^{(p-m)}\right) n^{j} .
\end{aligned}
$$

Lemma $7([7,8])$. Let $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ be two series of positive terms such that $a_{i} \sim b_{i}$. Then if $\sum_{i=1}^{\infty} b_{i}$ is divergent, the following result holds:

$$
\sum_{i=1}^{n} a_{i} \sim \sum_{i=1}^{n} b_{i}
$$

Lemma 8 ($[6,11])$. Let $p_{n, k}$ denote the nth squarefree number with just k prime factors and $q_{n, k}$ denote the nth number with just k prime factors. Then the following asymptotic formulas hold:

$$
\begin{aligned}
& p_{n, k} \sim q_{n, k} \sim(k-1)!\frac{n \log (n)}{(\log \log (n))^{k-1}}, \\
& p_{n, k}\left(\log \log \left(p_{n, k}\right)\right)^{k-1} \sim q_{n, k}\left(\log \log \left(q_{n, k}\right)\right)^{k-1} \sim(k-1)!n \log (n)
\end{aligned}
$$

For $k=1$, we have $p_{n} \sim n \log (n)$.
Lemma 9 ([11]). For $m, n, k, x \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{\ell=1}^{x} \ell^{m}(\log (\ell))^{n} \sim \frac{x^{m+1}(\log (x))^{n}}{m+1}, \\
& \sum_{\ell=1}^{x} \frac{\ell^{m}(\log (\ell))^{n}}{(\log \log (\ell))^{k}} \sim \frac{x^{m+1}(\log (x))^{n}}{(m+1)(\log \log (x))^{k}} .
\end{aligned}
$$

3 Sums over primes involving generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 1)}$

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 1)}$.
Lemma 10. Let $y, p \in \mathbb{N}$ with $p \geq 2$, the following asymptotic formulas hold:

$$
\begin{aligned}
& H_{n}^{(1,2 y+1,1)} \sim \frac{1}{2^{y} \cdot y!} n^{y} \log (n), \quad H_{n}^{(p, 2 y+1,1)} \sim \frac{1}{2^{y} \cdot y!} n^{y} \zeta(p), \\
& H_{n}^{(1,2 y, 1)} \sim \frac{1}{2^{y} \cdot(y-1)!} n^{y-1}(-1)^{n-1} \log (n), \\
& H_{2 n}^{(p, 2 y, 1)} \sim-\frac{1}{2 \cdot(y-1)!} n^{y-1}(\zeta(p)-\bar{\zeta}(p)), \\
& H_{2 n-1}^{(p, 2 y, 1)} \sim \frac{1}{2 \cdot(y-1)!} n^{y-1}(\zeta(p)+\bar{\zeta}(p)),
\end{aligned}
$$

where $\bar{\zeta}(s)$ is the well-known alternating zeta function

$$
\bar{\zeta}(s):=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s) \quad \text { with } \quad \bar{\zeta}(1)=\log 2 .
$$

Proof. By applying Definition 5 and Lemma 6, we have the following identities: when r is odd,

$$
H_{n}^{(p, r, 1)}=\sum_{m=0}^{g(r)} \sum_{j=0}^{g(r)-m}\left(b_{1}(r, j, m, 2) H_{n}^{(p-m)}+b_{1}(r, j, m, 3)(-1)^{n-1} \bar{H}_{n}^{(p-m)}\right) n^{j} ;
$$

when r is even,

$$
H_{n}^{(p, r, 1)}=\sum_{m=0}^{g(r)} \sum_{j=0}^{g(r)-m}\left(b_{1}(r, j, m, 0)(-1)^{n-1} H_{n}^{(p-m)}+b_{1}(r, j, m, 1) \bar{H}_{n}^{(p-m)}\right) n^{j}
$$

When r is odd, by $b_{1}(r, m, j, 3)=0 \quad(m+j=g(r))$, we know that the main term of $H_{n}^{(p, r, 1)}$ is $b_{1}(r, g(r), 0,2) H_{n}^{(p)} n^{g(r)}$.

When r is even and $p=1$, we know that the main term of $H_{n}^{(1, r, 1)}$ is

$$
b_{1}(r, g(r), 0,0)(-1)^{n-1} H_{n} n^{g(r)}
$$

When r is even and $p \geq 2$, we know that the main term of $H_{n}^{(p, r, 1)}$ is

$$
\left(b_{1}(r, g(r), 0,0)(-1)^{n-1} H_{n}^{(p-m)}+b_{1}(r, g(r), 0,1) \bar{H}_{n}^{(p)}\right) n^{g(r)} .
$$

By applying Definition 5, we can obtain the following recursive formulas:
When r is odd with $r \geq 3$,

$$
\begin{aligned}
& b_{1}(r+1, g(r+1), 0,0)=b_{1}(r, g(r), 0,2) \frac{1}{2} \\
& b_{1}(r+1, g(r+1), 0,1)=b_{1}(r, g(r)-1,0,3) \frac{1}{g(r)}
\end{aligned}
$$

When r is even,

$$
\begin{aligned}
& b_{1}(r+1, g(r+1), 0,2)=b_{1}(r, g(r), 0,0) \frac{1}{g(r)+1} \\
& b_{1}(r+1, g(r+1)-1,0,3)=b_{1}(r, g(r)-1,0,1) \frac{1}{2}
\end{aligned}
$$

Let $y \in \mathbb{N}$. By using the initial values $b_{1}(1,0,0,2)=1$ and $b_{1}(1,0,0,3)=0$, and the above recursive formulas, we can obtain the following explicit formulas:

$$
\begin{aligned}
& b_{1}(2 y+1, y, 0,2)=\frac{1}{2^{y} \cdot y!} \\
& b_{1}(2 y+1, y-1,0,3)=\frac{1}{2^{y+1} \cdot(y-1)!} \\
& b_{1}(2 y, y-1,0,0)=b_{1}(2 y, y-1,0,1)=\frac{1}{2^{y} \cdot(y-1)!}
\end{aligned}
$$

Thus we get the desired results.
Now we state our main theorems of this section.
Theorem 11. For $\alpha, m, q, y \in \mathbb{N}$ with $q \geq 2$, we have

- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \frac{x^{\alpha+m y+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \frac{x^{\alpha+m y+1}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log (x))^{m(y-1)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(q, 2 y+1,1)}\right)^{m} \sim \frac{\zeta(q)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(q, 2 y+1,1)}\right)^{m} \sim \frac{\zeta(q)^{m} x^{\alpha+m y+1}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log (x))^{m y+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left((-1)^{\ell-1} H_{\ell}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)}$;
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left((-1)^{\ell-1} H_{\ell}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)}$;
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(-H_{2 \ell}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)}$;
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} ;$

$$
\begin{aligned}
& \text { - } \sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(-H_{2 \ell}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} \\
& \text { - } \sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)} \\
& \text { - } \sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} \\
& \text { - } \sum_{\ell \leq x} p_{\ell}^{\alpha}\left(-H_{2 \ell}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)} \\
& \text { - } \sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(-H_{2 \ell}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}}
\end{aligned}
$$

Proof. By using Lemmas 7, 8, 9, and 10, we have

$$
\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \sum_{\ell \leq x} \frac{\ell^{\alpha+m y}(\log (\ell))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}} \sim \frac{x^{\alpha+m y+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)}
$$

We can prove thirteen additional asymptotic formulas in a similar manner.
Theorem 12. For $\alpha, m, k, q, y \in \mathbb{N}$ with $q \geq 2$, we have

- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} x^{\alpha+m y+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log \log (x))^{\alpha(k-1)}}$;
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \frac{x^{\alpha+m y+1}(\log \log (x))^{(m y+1)(k-1)}}{\left(2^{y} \cdot y!\right)^{m}((k-1)!)^{m y+1}(\alpha+m y+1)(\log (x))^{m(y-1)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{q, 2 y+1,1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} \zeta(q)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log \log (x))^{\alpha(k-1)}}$;
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(q, 2 y+1,1)}\right)^{m} \sim \frac{\zeta(q)^{m} x^{\alpha+m y+1}(\log \log (x))^{(m y+1)(k-1)}}{\left(2^{y} \cdot y!\right)^{m}((k-1)!)^{m y+1}(\alpha+m y+1)(\log (x))^{m y+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left((-1)^{\ell-1} H_{\ell}^{1,2 y, 1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}} ;$
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left((-1)^{\ell-1} H_{\ell}^{(1,2 y, 1)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{\left(2^{y} \cdot(y-1)!\right)^{m}((k-1)!)^{m(y-1)+1}}$
$\times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{1,2 y, 1)}\right)^{m} \sim \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(-H_{2 \ell}^{(1,2 y, 1)}\right)^{m}$

$$
\sim \frac{((k-1)!)^{\alpha} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}}
$$

- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{(1,2 y, 1)}\right)^{m} \sim \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(-H_{2 \ell}^{(1,2 y, 1)}\right)^{m}$

$$
\sim \frac{x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{(2 \cdot(y-1)!)^{m}((k-1)!)^{m(y-1)+1}(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}}
$$

- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha}(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}} ;$
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{(2 \cdot(y-1)!)^{m}((k-1)!)^{m(y-1)+1}}$
$\times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(-H_{2 \ell}^{(q, 2 y, 1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha}(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}}$;
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(-H_{2 \ell}^{(q, 2 y, 1)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{(2 \cdot(y-1)!)^{m}((k-1)!)^{m(y-1)+1}}$

$$
\times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} .
$$

Proof. By using Lemmas 7, 8, 9, and 10, we have

$$
\begin{aligned}
& \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(1,2 y+1,1)}\right)^{m} \sim \sum_{\ell \leq x} \frac{((k-1)!)^{\alpha} \ell^{\alpha+m y}(\log (\ell))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}(\log \log (\ell))^{\alpha(k-1)}} \\
& \sim \frac{((k-1)!)^{\alpha} x^{\alpha+m y+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log \log (x))^{\alpha(k-1)}} .
\end{aligned}
$$

We can prove eleven additional asymptotic formulas in a similar manner.

4 Sums over primes involving generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 2)}$

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 2)}$.

Lemma 13. For $r, n, p \in \mathbb{N}$, we have

$$
H_{n}^{(p, r, 2)} \sim \frac{1}{(r-1)!} n^{r-1} \bar{\zeta}(p) .
$$

Proof. By using Lemma 3, we know that the main term of $H_{n}^{(p, r, 2)}$ is $a(r, 0, r-1) n^{r-1} \bar{H}_{n}^{(p)}$. The author [11] proves that $a(r, 0, r-1)=\frac{1}{(r-1)!}$ and $\bar{H}_{n}^{(p)} \sim \bar{\zeta}(p)$. Thus we get the desired result.

Now we show our main theorems of this section.
Theorem 14. For $\alpha, m, q, k, r \in \mathbb{N}$, we have

$$
\begin{aligned}
& \text { - } \sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(q, r, 2)}\right)^{m} \sim \frac{\bar{\zeta}(q)^{m} x^{\alpha+m(r-1)+1}(\log (x))^{\alpha}}{((r-1)!)^{m}(\alpha+m(r-1)+1)} ; \\
& \text { - } \sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(q, r, 2)}\right)^{m} \sim \frac{\bar{\zeta}(q)^{m} x^{\alpha+m(r-1)+1}}{((r-1)!)^{m}(\alpha+m(r-1)+1)(\log (x))^{m(r-1)+1}} ; \\
& \text { - } \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(q, r, 2)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} \bar{\zeta}(q)^{m} x^{\alpha+m(r-1)+1}(\log (x))^{\alpha}}{((r-1)!)^{m}(\alpha+m(r-1)+1)(\log \log (x))^{\alpha(k-1)}} ; \\
& \text { - } \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(q, r, 2)}\right)^{m} \sim \frac{\bar{\zeta}(q)^{m} x^{\alpha+m(r-1)+1}(\log \log (x))^{(m(r-1)+1)(k-1)}}{((k-1)!)^{m(r-1)+1}((r-1)!)^{m}} \\
& \quad \times \frac{1}{(\alpha+m(r-1)+1)(\log (x))^{m(r-1)+1}} .
\end{aligned}
$$

Proof. By using Lemmas 7, 8, 9, and 13, we have

$$
\begin{aligned}
& \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(q, r, 2)}\right)^{m} \sim \sum_{\ell \leq x} \frac{((k-1)!)^{\alpha} \bar{\zeta}(q)^{m} \ell^{\alpha+m(r-1)}(\log (\ell))^{\alpha}}{((r-1)!)^{m}(\log \log (\ell))^{\alpha(k-1)}} \\
& \sim \frac{((k-1)!)^{\alpha} \bar{\zeta}(q)^{m} x^{\alpha+m(r-1)+1}(\log (x))^{\alpha}}{((r-1)!)^{m}(\alpha+m(r-1)+1)(\log \log (x))^{\alpha(k-1)}} .
\end{aligned}
$$

We can prove three other asymptotic formulas in a similar manner.
Theorem 15. For $q_{1}, q_{2}, \alpha, \beta, m, k, s, n, r_{1}, r_{2} \in \mathbb{N}$ with $q_{1} \geq 2$, we have

$$
\begin{aligned}
& \text { - } \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{\left(q_{1}, r_{1}\right)}\right)^{m}\left(h_{\ell}^{(s)}\right)^{n}\left(H_{\ell}^{\left(q_{2}, r_{2}, 2\right)}\right)^{\beta} \sim \frac{((k-1)!)^{\alpha} \zeta\left(q_{1}\right)^{m} \bar{\zeta}\left(q_{2}\right)^{\beta}(\log (x))^{\alpha+n}}{\left(\left(r_{1}-1\right)!\right)^{m}((s-1)!)^{n}\left(\left(r_{2}-1\right)!\right)^{\beta}} \\
& \quad \times \frac{x^{\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1}}{\left(\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1\right)(\log \log (x))^{\alpha(k-1)}}
\end{aligned}
$$

$$
\begin{aligned}
&- \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{\left(q_{1}, r_{1}\right)}\right)^{m}\left(h_{\ell}^{(s)}\right)^{n}\left(H_{\ell}^{\left(q_{2}, r_{2}, 2\right)}\right)^{\beta} \sim \frac{\zeta\left(q_{1}\right)^{m} \bar{\zeta}\left(q_{2}\right)^{\beta}}{\left(\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1\right)} \\
& \quad \times \frac{x^{\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1}(\log \log (x))^{\left(m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1\right)(k-1)}}{\left(\left(r_{1}-1\right)!\right)^{m}((s-1)!)^{n}\left(\left(r_{2}-1\right)!\right)^{\beta}((k-1)!)^{m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1}} \\
& \quad \times \frac{1}{(\log (x))^{m\left(r_{1}-1\right)+n(s-2)+\beta\left(r_{2}-1\right)+1}} .
\end{aligned}
$$

Proof. By using Lemmas 1, 2, 7, 8, 9, and 13, we have

$$
\begin{aligned}
& \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{\left(q_{1}, r_{1}\right)}\right)^{m}\left(h_{\ell}^{(s)}\right)^{n}\left(H_{\ell}^{\left(q_{2}, r_{2}, 2\right)}\right)^{\beta} \\
& \sim \sum_{\ell \leq x} \frac{((k-1)!)^{\alpha} \zeta\left(q_{1}\right)^{m} \bar{\zeta}\left(q_{2}\right)^{\beta} \ell^{\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)}(\log (\ell))^{\alpha+n}}{\left(\left(r_{1}-1\right)!\right)^{m}((s-1)!)^{n}\left(\left(r_{2}-1\right)!\right)^{\beta}(\log \log (\ell))^{\alpha(k-1)}} \\
& \sim \frac{((k-1)!)^{\alpha} \zeta\left(q_{1}\right)^{m} \bar{\zeta}\left(q_{2}\right)^{\beta}(\log (x))^{\alpha+n}}{\left(\left(r_{1}-1\right)!\right)^{m}((s-1)!)^{n}\left(\left(r_{2}-1\right)!\right)^{\beta}(\log \log (x))^{\alpha(k-1)}} \\
& \times \frac{x^{\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1}}{\left(\alpha+m\left(r_{1}-1\right)+n(s-1)+\beta\left(r_{2}-1\right)+1\right)} .
\end{aligned}
$$

We can prove the other asymptotic formula in a similar manner.

5 Sums over primes involving generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 3)}$

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic numbers of type $H_{n}^{(p, r, 3)}$.

Lemma 16. Let $y, p \in \mathbb{N}$, the following asymptotic formulas hold:

- $H_{n}^{(p, 2 y+1,3)} \sim \frac{1}{2^{y} \cdot y!} n^{y} \bar{\zeta}(p)$;
- $H_{n}^{(1,2 y, 3)} \sim \frac{1}{2^{y} \cdot(y-1)!} n^{y-1} \log (n)$;
- $H_{2 n}^{(p, 2 y, 3)} \sim \frac{1}{2 \cdot(y-1)!} n^{y-1}(\zeta(p)-\bar{\zeta}(p)) \quad(p \geq 2)$;
- $H_{2 n-1}^{(p, 2 y, 3)} \sim \frac{1}{2 \cdot(y-1)!} n^{y-1}(\zeta(p)+\bar{\zeta}(p)) \quad(p \geq 2)$.

Proof. By applying Definition 5 and Lemma 6, we have the following identities: when r is odd,

$$
H_{n}^{(p, r, 3)}=\sum_{m=0}^{g(r)} \sum_{j=0}^{g(r)-m}\left(b_{1}(r, j, m, 2) \bar{H}_{n}^{(p-m)}+b_{1}(r, j, m, 3)(-1)^{n-1} H_{n}^{(p-m)}\right) n^{j}
$$

when r is even,

$$
H_{n}^{(p, r, 1)}=\sum_{m=0}^{g(r)} \sum_{j=0}^{g(r)-m}\left(b_{1}(r, j, m, 0)(-1)^{n-1} \bar{H}_{n}^{(p-m)}+b_{1}(r, j, m, 1) H_{n}^{(p-m)}\right) n^{j}
$$

When r is odd, by $b_{1}(r, m, j, 3)=0 \quad(m+j=g(r))$, we know that the main term of $H_{n}^{(p, r, 3)}$ is $b_{1}(r, g(r), 0,2) \bar{H}_{n}^{(p)} n^{g(r)}$.

When r is even and $p=1$, we know that the main term of $H_{n}^{(1, r, 3)}$ is $b_{1}(r, g(r), 0,1) H_{n} n^{g(r)}$.
When r is even and $p \geq 2$, we know that the main term of $H_{n}^{(p, r, 3)}$ is

$$
\left(b_{1}(r, g(r), 0,0)(-1)^{n-1} \bar{H}_{n}^{(p-m)}+b_{1}(r, g(r), 0,1) H_{n}^{(p)}\right) n^{g(r)}
$$

Let $y \in \mathbb{N}$. By applying Lemma 10, we have the following explicit formulas:

$$
\begin{aligned}
& b_{1}(2 y+1, y, 0,2)=\frac{1}{2^{y} \cdot y!} \\
& b_{1}(2 y+1, y-1,0,3)=\frac{1}{2^{y+1} \cdot(y-1)!} \\
& b_{1}(2 y, y-1,0,0)=b_{1}(2 y, y-1,0,1)=\frac{1}{2^{y} \cdot(y-1)!}
\end{aligned}
$$

Thus we get the desired results.
Now we show our main theorems of this section.
Theorem 17. For $\alpha, m, p, q, y \in \mathbb{N}$ with $q \geq 2$, we have

- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(p, 2 y+1,3)}\right)^{m} \sim \frac{\bar{\zeta}(p)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(p, 2 y+1,3)}\right)^{m} \sim \frac{\bar{\zeta}(p)^{m} x^{\alpha+m y+1}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log (x))^{m y+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(1,2 y, 3)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(1,2 y, 3)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)} ;$
- $\sum_{p_{\ell} \leq x} p_{\ell}^{\alpha}\left(H_{2 \ell}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}}$.

Proof. By using Lemmas 7, 8, 9, and 16, we have

$$
\sum_{\ell \leq x} p_{\ell}^{\alpha}\left(H_{\ell}^{(p, 2 y+1,3)}\right)^{m} \sim \sum_{\ell \leq x} \frac{\bar{\zeta}(p)^{m} \ell^{\alpha+m y}(\log (\ell))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}} \sim \frac{\bar{\zeta}(p)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)}
$$

We can prove seven other asymptotic formulas in a similar manner.
Theorem 18. For $\alpha, m, k, p, q, y \in \mathbb{N}$ with $q \geq 2$, we have

- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{p, 2 y+1,1)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} \bar{\zeta}(p)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log \log (x))^{\alpha(k-1)}} ;$
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(p, 2 y+1,1)}\right)^{m} \sim \frac{\bar{\zeta}(p)^{m} x^{\alpha+m y+1}(\log \log (x))^{(m y+1)(k-1)}}{\left(2^{y} \cdot y!\right)^{m}((k-1)!)^{m y+1}(\alpha+m y+1)(\log (x))^{m y+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{1,2 y, 3)}\right)^{m} \sim \frac{((k-1)!)^{\alpha} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha+m}}{\left(2^{y} \cdot(y-1)!\right)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}} ;$
- $\sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(1,2 y, 3)}\right)^{m} \sim \frac{x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{\left(2^{y} \cdot(y-1)!\right)^{m}((k-1)!)^{m(y-1)+1}}$
$\times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-2)+1}} ;$
- $\sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 3)}\right)^{m} \sim \frac{((k-1)!)^{\alpha}(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}}$;

$$
\begin{aligned}
& \text { - } \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell-1}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)+\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{(2 \cdot(y-1)!)^{m}((k-1)!)^{m(y-1)+1}} \\
& \times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} ; \\
& \text { - } \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell}^{(q, 2 y, 3)}\right)^{m} \sim \frac{((k-1)!)^{\alpha}(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log (x))^{\alpha}}{(2 \cdot(y-1)!)^{m}(\alpha+m(y-1)+1)(\log \log (x))^{\alpha(k-1)}} ; \\
& \text { - } \sum_{p_{\ell, k} \leq x} p_{\ell, k}^{\alpha}\left(H_{2 \ell}^{(q, 2 y, 3)}\right)^{m} \sim \frac{(\zeta(q)-\bar{\zeta}(q))^{m} x^{\alpha+m(y-1)+1}(\log \log (x))^{(m(y-1)+1)(k-1)}}{(2 \cdot(y-1)!)^{m}((k-1)!)^{m(y-1)+1}} \\
& \quad \times \frac{1}{(\alpha+m(y-1)+1)(\log (x))^{m(y-1)+1}} .
\end{aligned}
$$

Proof. By using Lemmas 7, 8, 9, and 16, we have

$$
\begin{aligned}
& \sum_{\ell \leq x} p_{\ell, k}^{\alpha}\left(H_{\ell}^{(p, 2 y+1,3)}\right)^{m} \sim \sum_{\ell \leq x} \frac{((k-1)!)^{\alpha} \bar{\zeta}(p)^{m} \ell^{\alpha+m y}(\log (\ell))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\log \log (\ell))^{\alpha(k-1)}} \\
& \sim \frac{((k-1)!)^{\alpha} \bar{\zeta}(p)^{m} x^{\alpha+m y+1}(\log (x))^{\alpha}}{\left(2^{y} \cdot y!\right)^{m}(\alpha+m y+1)(\log \log (x))^{\alpha(k-1)}}
\end{aligned}
$$

We can prove seven other asymptotic formulas in a similar manner.

6 Acknowledgment

The author would like to thank the anonymous referee for many helpful comments.

References

[1] J. H. Conway and R. K. Guy, The Book of Numbers, Springer, 1996.
[2] A. Dil, I. Mező, and M. Cenkci. Evaluation of Euler-like sums via Hurwitz zeta values, Turkish J. Math. 41 (2017), 1640-1655.
[3] J. Gerard and L. C. Washington, Sums of powers of primes, Ramanujan J. 45 (2018), 171-180.
[4] A. Granville, Analytic Number Theory Revealed: The Distribution of Prime Numbers, book draft, unpublished.
[5] J. Hadamard, Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, Bull. Soc. Math. France 24 (1896), 199-220.
[6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th edition, Oxford University Press, 2008.
[7] R. Jakimczuk, A note on sums of powers which have a fixed number of prime factors, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), Article 31.
[8] R. Jakimczuk, Functions of slow increase and integer sequences, J. Integer Sequences 13 (2010), Article 10.1.1.
[9] E. Landau, Sur quelques problèmes relatifs à la distribution des nombres premiers, Bull. Soc. Math. France 28 (1900), 25-38.
[10] R. Li, Euler sums of generalized alternating hyperharmonic numbers, Rocky Mountain J. Math. 51 (2021), 1299-1313.
[11] R. Li, Sums over primes, Integers 21 (2021), Paper No. A94.
[12] R. Li, Euler sums of generalized hyperharmonic numbers, Funct. Approximatio, Comment. Math. 66 (2022), 179-189.
[13] I. Mező and A. Dil, Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), 360-369.
[14] N. Ömür and S. Koparal, On the matrices with the generalized hyperharmonic numbers of order r, Asian-Eur. J. Math. 11 (2018), 1850045.
[15] T. Šalát and Š. Znám, On sums of the prime powers, Acta Fac. Rerum Natur. Univ. Comenian. Math. 21 (1968), 21-24 (1969).
[16] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2023. Available at https://oeis.org.
[17] C. D. L. Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxelles. 20 (1896), 183-256.

[^0](Concerned with sequence $\underline{\text { A000040.) }}$

Received January 7 2024; revised versions received March 11 2024; March 12 2024. Published in Journal of Integer Sequences, March 172024.

Return to Journal of Integer Sequences home page.

[^0]: 2020 Mathematics Subject Classification: Primary 11B83; Secondary 11L20, 11N25, 11N37.
 Keywords: sum over primes, generalized alternating hyperharmonic number, asymptotic formula, number with k prime factors.

