On generalized Leonardo p-numbers

Kantaphon Kuhapatanakul and Pongpol Ruankong
Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900
Thailand
fscikpkk@ku.ac.th
fscippru@ku.ac.th

Abstract

We introduce a generalization of Leonardo p-numbers, which extends the definition of Leonardo p-numbers given by Tan and Leung, and investigate some of their basic properties. Moreover, we give a companion matrix and derive some identities regarding the numbers.

1 Introduction

 rence sequence given by

$$
F_{0}=0, F_{1}=1 \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \quad \text { for } n \geq 1
$$

One of the generalizations of Fibonacci numbers, given by Stakhov [7], is the Fibonacci p-numbers $F_{p}(n)$, which is defined for positive integers p by

$$
F_{p}(n)=F_{p}(n-1)+F_{p}(n-p-1) \text { for } n>p
$$

with the initial values $F_{p}(0)=0$ and $F_{p}(1)=F_{p}(2)=\cdots=F_{p}(p)=1$.
Furthermore, Catarino and Borges in [2] introduced the Leonardo sequence $\left\{\operatorname{Le}_{n}\right\}_{n \geq 0}$ and derived some of its properties. It is the sequence A001595 satisfying the recurrence relation

$$
\mathrm{Le}_{0}=\mathrm{Le}_{1}=1 \quad \text { and } \quad \mathrm{Le}_{n}=\mathrm{Le}_{n-1}+\mathrm{Le}_{n-2}+1 \text { for } n \geq 2
$$

The first author and Chobsorn [4] presented the generalized Leonardo sequence and obtained some properties of this sequence. Recently, Tan and Leung [8] have introduced the sequence of the Leonardo p-numbers $\left\{\mathcal{L}_{p, n}\right\}_{n \geq 0}$ as

$$
\mathcal{L}_{p}(n)=\mathcal{L}_{p}(n-1)+\mathcal{L}_{p}(n-p-1)+p \text { for } n>p
$$

with the initial values $\mathcal{L}_{p}(0)=\mathcal{L}_{p}(1)=\cdots=\mathcal{L}_{p}(p)=1$. When $p=1$, the Leonardo p-numbers reduce to the Leonardo numbers.

In this paper, we extend the aforementioned definition of the Leonardo p-numbers and derive some properties of the new sequence.

2 Generalized Leonardo p-numbers

We begin by defining a sequence of the generalized Leonardo p-numbers and establishing its basic properties.

Definition 1. For all fixed pairs of positive integers p and k, define the generalized Leonardo p-sequence $\left\{\mathcal{L}_{p, k}(n)\right\}_{n \geq 0}$ by

$$
\mathcal{L}_{p, k}(n)=\mathcal{L}_{p, k}(n-1)+\mathcal{L}_{p, k}(n-p-1)+k \text { for } n>p
$$

with the initial values $\mathcal{L}_{p, k}(0)=\mathcal{L}_{p, k}(1)=\cdots=\mathcal{L}_{p, k}(p)=1$.
Some special cases of the generalized Leonardo p-numbers are as follows.

- If $k=p$, the generalized Leonardo p-numbers are the Leonardo p-numbers.
- If $p=1$, the generalized Leonardo p-numbers are the generalized Leonardo numbers.
- If $p=1$ and $k=2$, this sequence reduces to the sequence A111314.

We compute the first few terms of the sequences $F_{2}(n)$ and $\mathcal{L}_{2, k}(n)$ for $k=1,2,3,4,5$.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$F_{2}(n)$	1	1	1	2	3	4	6	9	13	19	28	41	60	88
$\mathcal{L}_{2,1}(n)$	1	1	3	5	7	11	17	25	37	55	81	119	175	257
$\mathcal{L}_{2,2}(n)$	1	1	4	7	10	16	25	37	55	82	121	178	262	385
$\mathcal{L}_{2,3}(n)$	1	1	5	9	13	21	33	49	73	109	161	237	349	513
$\mathcal{L}_{2,4}(n)$	1	1	6	11	16	26	41	61	91	136	201	296	436	641
$\mathcal{L}_{2,5}(n)$	1	1	7	13	19	31	49	73	109	163	241	355	523	769

Table 1: The first 14 terms of $F_{2}(n), \mathcal{L}_{2,1}(n), \mathcal{L}_{2,2}(n), \mathcal{L}_{2,3}(n), \mathcal{L}_{2,4}(n)$ and $\mathcal{L}_{2,5}(n)$.

The Fibonacci 2-numbers $F_{2}(n)$ and the generalized Leonardo 2-numbers $\mathcal{L}_{2,2}(n)$ are the sequences A000930 and A362255, respectively.

The non-homogeneous recurrence relation of the generalized Leonardo p-numbers can be rewritten as the following homogeneous recurrence relation:

$$
\mathcal{L}_{p, k}(n)=\mathcal{L}_{p, k}(n-1)+\mathcal{L}_{p, k}(n-p)-\mathcal{L}_{p, k}(n-2 p-1) \text { for } n>2 p .
$$

Next, we establish a connection between the generalized Leonardo p-numbers and the Fibonacci p-numbers.

Theorem 2. For positive integers p, k and a nonnegative integer n, we have

$$
\begin{equation*}
\mathcal{L}_{p, k}(n)=(k+1) F_{p}(n+1)-k . \tag{1}
\end{equation*}
$$

Proof. It is easy to check that the identity (1) holds for $n=0,1,2, \ldots, p$. Assume that, for some $n \geq p$, the identity (1) holds for all integers m such that $0 \leq m \leq n$. By the definition and the inductive hypothesis, we obtain

$$
\begin{aligned}
\mathcal{L}_{p, k}(n+1) & =\mathcal{L}_{p, k}(n)+\mathcal{L}_{p, k}(n-p)+k \\
& =(k+1) F_{p}(n+1)-k+(k+1) F_{p}(n-p+1)-k+k \\
& =(k+1) F_{p}(n+2)-k
\end{aligned}
$$

which shows that the identity (1) holds for $n+1$, thereby proving the theorem.
Theorem 3. For positive integers p, k and a nonnegative integer n, we have

$$
\sum_{i=0}^{n} \mathcal{L}_{p, k}(i)=\mathcal{L}_{p, k}(n+p+1)-k(n+1)-1
$$

Proof. By the definition of $\mathcal{L}_{p, k}(n)$, write

$$
\mathcal{L}_{p, k}(i)=\mathcal{L}_{p, k}(i+p+1)-\mathcal{L}_{p, k}(i+p)-k .
$$

Summing a telescoping series, we get

$$
\sum_{i=0}^{n} \mathcal{L}_{p, k}(i)=\mathcal{L}_{p, k}(n+p+1)-\mathcal{L}_{p, k}(p)-k(n+1)
$$

Since $\mathcal{L}_{p, k}(p)=1$, we obtain the desired result.
Theorem 4. Let m and n be nonnegative integers. For positive integers p, k, we have

$$
\sum_{i=0}^{n} \mathcal{L}_{p, k}((p+1) i+m)= \begin{cases}\mathcal{L}_{p, k}((p+1) n+m+1)-k n, & \text { if } 0 \leq m<p \\ \mathcal{L}_{p, k}((p+1)(n+1))-k(n+1)-1, & \text { if } m=p\end{cases}
$$

Proof. Since

$$
\mathcal{L}_{p, k}(i(p+1)+m)=\mathcal{L}_{p, k}(i(p+1)+m+1)-\mathcal{L}_{p, k}((i-1)(p+1)+m+1)-k,
$$

by summing a telescoping series we get

$$
\sum_{i=0}^{n} \mathcal{L}_{p, k}(i(p+1)+m)=\mathcal{L}_{p, k}((p+1) n+m+1)-\mathcal{L}_{p, k}(-p+m)-k(n+1)
$$

Since $\mathcal{L}_{p, k}(-i)=-k$ for $1 \leq i \leq p$ and $\mathcal{L}_{p, k}(0)=1$, the result follows.
Here are some examples of Theorem 4 where $p=2$.
(i) $\sum_{i=0}^{n} \mathcal{L}_{2, k}(3 i)=\mathcal{L}_{2, k}(3 n+1)-k n$
(ii) $\sum_{i=0}^{n} \mathcal{L}_{2, k}(3 i+1)=\mathcal{L}_{2, k}(3 n+2)-k n$
(iii) $\sum_{i=0}^{n} \mathcal{L}_{2, k}(3 i+2)=\mathcal{L}_{2, k}(3 n+3)-k(n+1)-1$.

Moreover, substituting $k=p$ in Theorem 2, Theorem 3 and Theorem 4, we obtain the identities of Theorem 1, Proposition 2 and Theorem 2, in [8], respectively.

3 Main results

In this section, we introduce a companion matrix of the generalized Leonardo p-numbers for $p \geq 2$ (for the case $p=1$, see [4, page 4]). For a given integer $p \geq 2$, let $H(p)$ consist of all those $(2 p+1)^{\text {th }}$ order recurrence sequences $\left\{\mathcal{H}_{p}(n)\right\}_{n \in \mathbb{Z}}$ of real numbers satisfying the relation

$$
\mathcal{H}_{p}(n)=\mathcal{H}_{p}(n-1)+\mathcal{H}_{p}(n-p)-\mathcal{H}_{p}(n-2 p-1) .
$$

Note that the sequences $\mathcal{L}_{p, k}(n)$ are elements of $H(p)$.
Two significant sequences A_{p} and B_{p} in $H(p)$ are defined with the following initial values:
(i) $A_{p}(1)=A_{p}(2)=\cdots=A_{p}(p)=1$ and $A_{p}(0)=A_{p}(-1)=\cdots=A_{p}(-p)=0$,
(i) $B_{p}(1)=B_{p}(2)=\cdots=B_{p}(p)=1, B_{p}(0)=B_{p}(-1)=\cdots=B_{p}(-p+2)=0$, $B_{p}(-p+1)=1$ and $B_{p}(-p)=0$.

We first derive a relationship between the sequences F_{p} and A_{p}.
Theorem 5. Let n be a positive integer. For positive integers p, we have

$$
\begin{equation*}
F_{p}(n)=A_{p}(n)-A_{p}(n-p) \tag{2}
\end{equation*}
$$

Proof. Observe that

$$
F_{p}(n)= \begin{cases}A_{p}(n), & \text { if } 0 \leq n \leq p \\ A_{p}(n)-1, & \text { if } p<n \leq 2 p\end{cases}
$$

So the identity (2) holds for all integers $n=0,1,2, \ldots, 2 p$. Now, assume that for some integer $n \geq 2 p$, the identity (2) holds for all integers m such that $0 \leq m \leq n$. By the definition and the inductive hypothesis,

$$
\begin{aligned}
A_{p}(n+1)-A_{p}(n-p+1) & =A_{p}(n)+A_{p}(n-p+1)-A_{p}(n-2 p)-A_{p}(n-p+1) \\
& =A_{p}(n)-A_{p}(n-p)+A_{p}(n-p)-A_{p}(n-2 p) \\
& =F_{p}(n)+F_{p}(n-p) \\
& =F_{p}(n+1),
\end{aligned}
$$

showing that the identity (2) holds for $n+1$.
Consequently, we can write $A_{p}(n)$ as a sum of the Fibonacci p-numbers.
Corollary 6. Let j be an integer such that $0 \leq j<p$. Then

$$
\begin{equation*}
A_{p}(m p+j)=\sum_{i=0}^{m} F_{p}(i p+j) . \tag{3}
\end{equation*}
$$

Some special cases of the sequences A_{p} and B_{p} and their first few terms are given in the tables.

- For $p=2$, the first 16 terms of $A_{2}(n)$ and $B_{2}(n)$ are

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$A_{2}(n)$	1	1	2	3	5	7	11	16	24	35	52	76	112	164	241	353
$B_{2}(n)$	1	1	2	2	4	5	8	11	17	24	36	52	77	112	165	241

- For $p=3$, the first 17 terms of $A_{3}(n)$ and $B_{3}(n)$ are

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$A_{3}(n)$	1	1	1	2	3	4	6	8	11	16	22	30	42	58	80	111	153
$B_{3}(n)$	1	1	1	2	2	3	5	6	8	12	16	22	31	42	58	81	111

- For $p=4$, the first 18 terms of $A_{4}(n)$ and $B_{4}(n)$ are

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$A_{4}(n)$	1	1	1	1	2	3	4	5	7	9	12	16	22	29	38	50	67	89
$B_{4}(n)$	1	1	1	1	2	2	3	4	6	7	9	12	17	22	29	38	51	67

The sequences A_{2}, A_{4}, B_{3} and B_{4} are the sequences $\underline{\text { A023435, A233522, A017819 and }}$ A017830, respectively.

Some additional properties of the sequences A_{p} and B_{p} are given below. The proof is a straightforward induction and shall be omitted.

Proposition 7. Let n be a nonnegative integer. Then
(i) $A_{p}(n)= \begin{cases}A_{p}(n-1)+A_{p}(n-p-1)+1, & \text { if } n \equiv 1(\bmod p) \text {; } \\ A_{p}(n-1)+A_{p}(n-p-1), & \text { otherwise. }\end{cases}$
(ii) $B_{p}(n)= \begin{cases}B_{p}(n-1)+B_{p}(n-p-1)+1, & \text { if } n \equiv 1(\bmod p) ; \\ B_{p}(n-1)+B_{p}(n-p-1)-1, & \text { if } n \equiv 2(\bmod p) ; \\ B_{p}(n-1)+B_{p}(n-p-1), & \text { otherwise. }\end{cases}$

Next, we derive a relationship between the sequences A_{p} and B_{p}.
Proposition 8. Let $n \geq 0$ be an integer. Then

$$
A_{p}(n)= \begin{cases}B_{p}(n+1)-1, & \text { if } n \equiv 0 \quad(\bmod p) \tag{4}\\ B_{p}(n+1), & \text { otherwise }\end{cases}
$$

Proof. It is easy to see that the base cases of the identity (4) hold. Now assume that, for some integer $n \geq 2 p$, the identity (4) holds for all integers m such that $0 \leq m \leq n$. By the definition and the inductive hypothesis, we obtain

$$
\begin{aligned}
& A_{p}(n+1)=A_{p}(n)+A_{p}(n-p+1)-A_{p}(n-2 p) \\
& \quad= \begin{cases}B_{p}(n+1)-1+B_{p}(n-p+2)-B_{p}(n-2 p+1)+1, & \text { if } n \equiv 0(\bmod p) ; \\
B_{p}(n+1)+B_{p}(n-p+2)-1-B_{p}(n-2 p+1), & \text { if } n \equiv-1(\bmod p) ; \\
B_{p}(n+1)+B_{p}(n-p+2)-B_{p}(n-2 p), & \text { otherwise }\end{cases} \\
& \quad= \begin{cases}B_{p}(n+2)-1, & \text { if } n+1 \equiv 0(\bmod p) ; \\
B_{p}(n+2), & \text { otherwise },\end{cases}
\end{aligned}
$$

thereby proving the theorem.
Now we proceed to the main result. For $n \geq p \geq 2$, define the $(2 p+1) \times(2 p+1)$ companion matrix $Q_{p}=\left[q_{i j}\right]$ where

$$
q_{i j}= \begin{cases}1, & \text { if } i=1, p \text { and } j=1, \text { and } i=j+1 \\ -1, & \text { if } i=2 p+1, j=1 \\ 0, & \text { otherwise }\end{cases}
$$

For instance, the matrices Q_{p} for $p=2,3,4$ are as follows:

$$
Q_{2}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right], \quad Q_{3}=\left[\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

$$
Q_{4}=\left[\begin{array}{ccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Theorem 9. Let n be a nonnegative integer. Then

$$
Q_{p}^{n}=\left[\begin{array}{ccccc}
A_{p}(n+1) & A_{p}(n) & A_{p}(n-1) & \cdots & A_{p}(n-2 p+1) \\
B_{p}(n-p+2) & B_{p}(n-p+3) & B_{p}(n-p+4) & \cdots & B_{p}(n-3 p+2) \\
B_{p}(n-p+3) & B_{p}(n-p+4) & B_{p}(n-p+5) & \cdots & B_{p}(n-3 p+3) \\
\vdots & \vdots & \ddots & & \vdots \\
B_{p}(n) & B_{p}(n-1) & B_{p}(n-2) & \cdots & B_{p}(n-2 p) \\
-A_{p}(n-p) & -A_{p}(n-p-1) & A_{p}(n-p-2) & \cdots & A_{p}(n-3 p) \\
\vdots & \vdots & \ddots & & \vdots \\
-A_{p}(n-1) & -A_{p}(n-2) & A_{p}(n-3) & \cdots & A_{p}(n-2 p-1) \\
-A_{p}(n) & -A_{p}(n-1) & A_{p}(n-2) & \cdots & A_{p}(n-2 p)
\end{array}\right] .
$$

Proof. The case $n=1$ follows from the initial values of the sequences A_{p} and B_{p}. Write

$$
Q_{p}^{n+1}=Q_{p}^{n} Q_{p}
$$

By the inductive hypothesis and the definitions of A_{p} and B_{p}, a straightforward matrix multiplication shows that the result holds for $n+1$.

For positive integers m, define the $(2 p+1) \times(2 p+1)$ matrix $R_{p, m}$ by

$$
R_{p, m}=\left[\begin{array}{ccccc}
\mathcal{H}_{p}(m) & \mathcal{H}_{p}(m-1) & \mathcal{H}_{p}(m-2) & \cdots & \mathcal{H}_{p}(m-2 p) \\
\mathcal{H}_{p}(m-1) & \mathcal{H}_{p}(m-2) & \mathcal{H}_{p}(m-3) & \cdots & \mathcal{H}_{p}(m-2 p-1) \\
\mathcal{H}_{p}(m-2) & \mathcal{H}_{p}(m-3) & \mathcal{H}_{p}(m-4) & \cdots & \mathcal{H}_{p}(m-2 p-2) \\
\vdots & \vdots & \ddots & & \vdots \\
\mathcal{H}_{p}(m-2 p) & \mathcal{H}_{p}(m-2 p-1) & \mathcal{H}_{p}(m-2 p-2) & \cdots & \mathcal{H}_{p}(m-4 p)
\end{array}\right]
$$

where \mathcal{H}_{p} is an element of $H(p)$.
Theorem 10. Let $n \geq 0$ be an integer. For every positive integer m, we have

$$
\begin{equation*}
R_{p, m} Q_{p}^{n}=R_{p, m+n} \tag{5}
\end{equation*}
$$

Proof. The case $n=0$ is trivial. Now assume that the identity (5) is true for an integer $n \geq 0$. Since

$$
R_{p, m} Q_{p}^{n+1}=\left(R_{p, m} Q_{p}^{n}\right) Q_{p},
$$

by the inductive hypothesis and the definition of \mathcal{H}_{p}, a straightforward matrix multiplication shows that the result holds for $n+1$.

Equating the $(1,1)$-entry on both sides of the equation (5), we obtain the following corollary.

Corollary 11. Let $m, n>0$ be two integers. For a sequence $\mathcal{H}_{p} \in H(p)$, we have
$\mathcal{H}_{p}(m+n)=\mathcal{H}_{p}(m) A_{p}(n+1)+\sum_{i=1}^{p-1} \mathcal{H}_{p}(m-i) B_{p}(n-p+i+1)-\sum_{i=0}^{p} \mathcal{H}_{p}(m-p-i) A_{p}(n-p+i)$.
Note that, since $\mathcal{L}_{p, k}, A_{p}, B_{p} \in H(p)$, the identity of Corollary 11 holds for each of these sequences as well.

Lastly, we derive the analogous version of Honsberger's formula for the generalized Leonardo p-numbers.

Lemma 12. Let n be a positive integer. Then

$$
(k+1) \sum_{i=0}^{p} F_{p}(n+i)=\mathcal{L}_{p, k}(n+2 p-1)+k .
$$

Proof. Using the sum of Fibonacci p-numbers formula (see, e.g., [7])

$$
\sum_{i=1}^{n} F_{p}(i)=F_{p}(n+p+1)-1
$$

we get that

$$
\begin{aligned}
\sum_{i=0}^{p} F_{p}(n+i) & =\sum_{i=1}^{n+p} F_{p}(i)-\sum_{i=1}^{n-1} F_{p}(i) \\
& =F_{p}(n+2 p+1)-F_{p}(n+p) \\
& =F_{p}(n+2 p)
\end{aligned}
$$

Using Theorem 2, we obtain

$$
(k+1) \sum_{i=0}^{p} F_{p}(n+i)=(k+1) F_{p}(n+2 p)=\mathcal{L}_{p, k}(n+2 p-1)+k
$$

as desired.

Theorem 13. Let m and n be two positive integers. Then

$$
\begin{aligned}
& \mathcal{L}_{p, k}(m) \mathcal{L}_{p, k}(n+1)+\sum_{i=1}^{p} \mathcal{L}_{p, k}(m-j) \mathcal{L}_{p, k}(n-p+i) \\
& \quad=(k+1) \mathcal{L}_{p, k}(m+n+1)-k\left(\mathcal{L}_{p, k}(m+p)+\mathcal{L}_{p, k}(n+p+1)\right)+p k^{2}+k
\end{aligned}
$$

Proof. By Theorem 2, write

$$
\mathcal{L}_{p, k}(m) \mathcal{L}_{p, k}(n)=(k+1)^{2} F_{p}(m+1) F_{p}(n+1)-k(k+1)\left(F_{p}(m+1)+F_{p}(n+1)\right)+k^{2} .
$$

Applying Lemma 12 and Honsberger's formula for the Fibonacci p-numbers [9], we have

$$
\begin{aligned}
& \mathcal{L}_{p, k}(m) \mathcal{L}_{p, k}(n+1)+\sum_{i=1}^{p} \mathcal{L}_{p, k}(m-j) \mathcal{L}_{p, k}(n-p+i) \\
&=(k+1)^{2}\left(F_{p}(m+1) F_{p}(n+2)+\sum_{i=1}^{p} F_{p}(m-i+1) F_{p}(n-p+i+1)\right) \\
&-k(k+1)\left(F_{p}(m+1)+F_{p}(n+2)+\sum_{i=1}^{p} F_{p}(m-i+1) F_{p}(n-p+i+1)\right) \\
&+(p+1) k^{2} \\
&=(k+1)^{2} F_{p}(m+n+2)-k(k+1)\left(\sum_{i=0}^{p} F_{p}(m-i+1)+\sum_{i=1}^{p+1} F_{p}(n-p+i+1)\right) \\
&+(p+1) k^{2} \\
&=(k+1)\left(\mathcal{L}_{p, k}(m+n+1)+k\right)-k\left(\mathcal{L}_{p, k}(m+p)+\mathcal{L}_{p, k}(n+p+1)+2 k\right) \\
&+(p+1) k^{2} \\
&=(k+1) \mathcal{L}_{p, k}(m+n+1)-k\left(\mathcal{L}_{p, k}(m+p)+\mathcal{L}_{p, k}(n+p+1)\right)+p k^{2}+k
\end{aligned}
$$

as desired.
Substuting $k=p$ in Theorem 13 and using Lemma 12, we obtain Theorem 1 of [8].

4 Acknowledgment

The authors are truly grateful to the anonymous referee for his/her helpful comments and suggestions.

References

[1] Y. Alp and E. G. Kocer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), 183-189.
[2] P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89 (2019), 75-86.
[3] P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), \#A43.
[4] K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integers 22 (2022), \#A48.
[5] A. G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (2019), 97-101.
[6] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2024. Available at https://oeis.org.
[7] A. P. Stakhov, Fibonacci matrices, a generalization of the Cassini formula, and a new coding theory, Chaos Solitons Fractals 30 (2006), 56-66.
[8] N. Tuglu, E. G. Kocer, and A. Stakhov, Bivariate Fibonacci like p-polynomials, Appl. Math. Comput. 217 (2011), 10239-10249.
[9] E. Tan and H. H. Leung, On Leonardo p-numbers, Integers 23 (2023), \#A7.

2020 Mathematics Subject Classification: Primary 11B37; Secondry 11B39.
Keywords: Leonardo number, Fibonacci number, Leonardo p-number.
(Concerned with sequences $\underline{\text { A000045 }}, \underline{\mathrm{A} 000930, ~} \underline{\mathrm{~A} 001595, ~} \underline{\mathrm{~A} 017819}$, $\underline{\mathrm{A} 017830, ~} \underline{\mathrm{~A} 023435, ~ A 111314}$, A233522, and A362255.)

Received October 2 2023; revised versions received October 9 2023; March 18 2024; March 21 2024. Published in Journal of Integer Sequences, April 112024.

Return to Journal of Integer Sequences home page.

