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Abstract

We explore a straightforward recursive relation for an incomplete binomial series.

Through this approach, we establish novel identities for the incomplete finite binomial

sum of harmonic numbers. Additionally, we introduce a new proof for an identity

related to the incomplete finite alternating binomial sum of harmonic numbers. These

identities act as analogues to their respective well-established formulas for complete

series and enable the characterization of the asymptotic behavior of the incomplete

binomial series of harmonic numbers.

1 Introduction

Let N be a positive integer, and let m be an integer satisfying 0 ≤ m ≤ N . We define the

incomplete finite binomial sum of harmonic numbers, and the incomplete finite alternating

binomial sum of harmonic numbers, respectively, as follows:

SN,m =
m
∑

k=1

(

N

k

)

Hk, and IN,m =
m
∑

k=1

(

N

k

)

(−1)k+1Hk.

Here, Hk represents the harmonic number, defined by

Hk = 1 +
1

2
+ · · ·+ 1

k
, for k ≥ 1, and H0 = 0. (1)
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Furthermore, for m = ⌊N/2⌋, we introduce the following notation:

SN = SN,⌊N/2⌋, and IN = IN,⌊N/2⌋.

For n ≥ 1, we prove the following new identities:

S2n−1 = 22n−2 (H2n−1 − 2C2n−1 +Dn−1) , (2)

S2n = 22n−1 (H2n − 2C2n +Dn) +
1

2

(

2n

n

)

Hn. (3)

In addition, for all positive integers N , and for all integers m satisfying 0 ≤ m ≤ N , we
present a new proof of the identity originally proved by Batir [2]:

IN,m =
1

N
+ (−1)m+1

(

N − 1

m

)(

Hm +
1

N

)

. (4)

Identities (2)–(3) are incomplete binomial sum analogues of the well-known identity for
the complete binomial sum of harmonic numbers:

N
∑

k=0

(

N

k

)

Hk = 2N (HN − CN) , (5)

proved by various techniques by Spivey [16], Paule and Schneider [14], Boyadzhiev [4], Gon-
zalez [9], Batir [1, 2], and Batir and Sofo [3]. Identity (4) is the incomplete analogue of the
complete alternating binomial sum of harmonic numbers:

N
∑

k=0

(

N

k

)

(−1)k+1Hk =
1

N
,

proved by various techniques by Euler [8], Jin and Du [11], Wang [17], Paule and Schneider
[14], Gonzalez [9], and Batir [1, 2]. Here we introduce the following notation:

Cn =
n
∑

k=1

1

k2k
, and Dn =

n
∑

k=1

1

(2k)22k

(

2k

k

)

, (6)

for n ≥ 1, with C0 = D0 = 0.
Combinatorial identities involving harmonic numbers, including their binomial sums,

have been extensively studied. In addition to the references mentioned previously, significant
contributions have been made by Spiess [15], Liu and Wang [13], Chu [6], Choi [5], and Wei
and Wang [18]. Batir [2] provides a comprehensive survey of the literature.

The term incomplete finite sum refers to a finite sum where the summation is taken
over only a part of the full index range, not over all integer indices k such that 0 ≤ k ≤ N .
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Incomplete binomial sums related to those presented in this work have been studied by Batir
[2, Corollaries 3–4], who proved the following identities for all m ∈ N and s ∈ C \ Z−:

m
∑

k=1

(

m+ s

k

)

Hk = 2m
m
∑

k=1

(

s+ k − 1

k

)

1

2k
Hk + 2m

m
∑

k=1

1

2k

k−1
∑

j=0

(

s+ k − 1

j

)

1

m+ 1
,

m
∑

k=1

(

m+ s

k

)

(−1)kHk = (−1)m
(

s+m− 1

m

)

Hm +
(−1)m

s+m

(

s+m− 1

m

)

− 1

s+m
.

By setting s = N − m and N ≥ m, the second identity reduces to (4), while the first one
transforms to

SN,m = 2m
m
∑

k=1

(

N −m+ k − 1

k

)

1

2k
Hk + 2m

m
∑

k=1

1

2k

k−1
∑

j=0

(

N −m+ k − 1

j

)

1

j + 1
.

Incomplete binomial sums were also studied by Worsch [19], Dence [7], and Katsuura [12].
Gould’s eight-volume online book [10] features a comprehensive list of various types of both
complete and incomplete finite binomial sums but lacks detailed proofs and references.

Our research is motivated by applications in which the binomial coefficient encodes the
probability distribution of states in a system, and the system measure exhibits a symmetry
k ↔ (N−k). Specifically, we focus on problems related to the mean time of self-organization
in abstract model systems, where the measured quantity is proportional to the harmonic
numbers Hk.

For proofs, we adapted techniques from Gonzalez [9], modifying them for incomplete
finite sums. Our method is based on a general recursive formula for finite binomial series of
an arbitrary sequence of real numbers, yielding a second-order linear recurrence relation for
SN and an explicit expression for IN,m.

The derived formulae enable the asymptotic analysis of SN and IN as N → ∞. Note
that such approximations cannot be simply deduced from the asymptotic behavior of Hk for
k ≫ 1, as the sums SN and IN include terms Hk for small values of k. We show that as
N → ∞,

SN

2N−1
= ln

(

N

2

)

+ γ + o(1),

and
IN
2N−1

√

πN

2
= (−1)⌊N

2
⌋+1

(

ln

(

N

2

)

+ γ + o(1)

)

.

Here, γ denotes the Euler-Mascheroni constant, γ
.
= 0.577.

2 Recursive combinatorial identity

Analogously to Gonzalez [9], we first derive a recursive combinatorial identity.
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Lemma 1. Let m and N be positive integers, with m ≤ N , and let (ak)
m
k=0

be a sequence of

real numbers. Then, the following equation holds:

m
∑

k=0

(

N

k

)

ak =
m−1
∑

k=0

(

N − 1

k

)

(ak + ak+1) +

(

N − 1

m

)

am. (7)

Here, we define
(

n
k

)

= 0 for all integers n and k, where n < k.

Proof. The claim is valid for all N ≥ 1 and is demonstrated by the following calculation:

m
∑

k=0

(

N

k

)

ak =

(

N

0

)

a0 +
m
∑

k=1

(

N

k

)

ak

=

(

N − 1

0

)

a0 +
m
∑

k=1

((

N − 1

k

)

+

(

N − 1

k − 1

))

ak

=
m
∑

k=0

(

N − 1

k

)

ak +
m−1
∑

k=0

(

N − 1

k

)

ak+1

=
m−1
∑

k=0

(

N − 1

k

)

(ak + ak+1) +

(

N − 1

m

)

am.

Note that Lemma 1 generalizes the identity derived in [9, Theorem 2.1] for the full sum:

N
∑

k=0

(

N

k

)

ak =
N−1
∑

k=0

(

N − 1

k

)

(ak + ak+1),

which holds for all N ≥ 1 and for all sequences (ak)
N
k=0

. This result follows from Lemma 1
by setting m = N .

In part of our work, we utilize a slight modification of the identity (7).

Corollary 2. Let n be a positive integer and let m be a nonnegative integer with m ≤ n.
Suppose (ak)

m+1

k=0
is a sequence of real numbers. Then,

m
∑

k=0

(

2n− 1

k

)

ak =
m
∑

k=0

(

2n− 2

k

)

(ak + ak+1)−
(

2n− 2

m

)

am+1. (8)

Similarly, let m and n be positive integers with m ≤ n, and let (ak)
m
k=0

be a sequence of real

numbers. Then,

m
∑

k=0

(

2n

k

)

ak =
m−1
∑

k=0

(

2n− 1

k

)

(ak + ak+1) +

(

2n− 1

m

)

am. (9)
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Proof. To prove equation (8) for all m and n where n ≥ 1 and 1 ≤ m ≤ n, we set N = 2n−1
in Lemma 1:

m
∑

k=0

(

2n− 1

k

)

ak =
m−1
∑

k=0

(

2n− 2

k

)

(ak + ak+1) +

(

2n− 2

m

)

am

=
m
∑

k=0

(

2n− 2

k

)

(ak + ak+1)−
(

2n− 2

m

)

am+1.

For m = 0, equation (8) simplifies to a0 = (a0 + a1)− a1. Equation (9) follows directly from
Lemma 1 by setting N = 2n.

3 Incomplete binomial sum of harmonic numbers

In this section, we use the recurrence relations (8)–(9) to derive formulae for the incomplete
binomial sum of harmonic numbers, where the summation is over half of the full index range.

Theorem 3. Let n be a positive integer. Then,

S2n−1 =
n−1
∑

i=0

(

2n− 1

i

)

Hi = 22n−2 (H2n−1 − 2C2n−1 +Dn−1) , (10)

S2n =
n
∑

i=0

(

2n

i

)

Hi = 22n−1 (H2n − 2C2n +Dn) +
1

2

(

2n

n

)

Hn. (11)

Proof. First, we define An = S2n−1 and Bn = S2n. Then, using equation (8) for m = n − 1
and ak = Hk for k = 0, . . . , n, we obtain

An =
n−1
∑

i=0

(

2n− 2

i

)

(Hi +Hi+1)−
(

2n− 2

n− 1

)

Hn

=
n−1
∑

i=0

(

2n− 2

i

)(

2Hi +
1

i+ 1

)

−
(

2n− 2

n− 1

)

Hn.

Therefore,

An = 2
n−1
∑

i=0

(

2n− 2

i

)

Hi +
n−1
∑

i=0

(

2n− 2

i

)

1

i+ 1
−
(

2n− 2

n− 1

)

Hn

= 2
n−1
∑

i=0

(

2n− 2

i

)

Hi +
1

2n− 1

n−1
∑

i=0

(

2n− 1

i+ 1

)

−
(

2n− 2

n− 1

)

Hn.
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Continuing, we find

An = 2
n−1
∑

i=0

(

2n− 2

i

)

Hi −
(

2n− 2

n− 1

)

Hn +

(

2n− 2

n− 1

)

1

n

+
1

2n− 1

(

−1 +
n−1
∑

i=0

(

2n− 1

i

)

)

.

Hence,

An = 2Bn−1 −
(

2n− 2

n− 1

)

Hn−1 +
22n−2 − 1

2n− 1
. (12)

Here, we used the identity

n−1
∑

i=0

(

2n− 1

i

)

=
2n−1
∑

i=n

(

2n− 1

i

)

=
1

2

2n−1
∑

i=0

(

2n− 1

i

)

= 22n−2.

Similarly, using the identity (9) for m = n and the same choice of (ak)
n
k=1

as in the first part,
we obtain the following expression for Bn:

Bn =
n−1
∑

i=0

(

2n− 1

i

)

(Hi +Hi+1) +

(

2n− 1

n

)

Hn

=
n−1
∑

i=0

(

2n− 1

i

)(

2Hi +
1

i+ 1

)

+

(

2n− 1

n

)

Hn.

Consequently,

Bn = 2
n−1
∑

i=0

(

2n− 1

i

)

Hi +
n−1
∑

i=0

(

2n− 1

i

)

1

i+ 1
+

(

2n− 1

n

)

Hn

= 2
n−1
∑

i=0

(

2n− 1

i

)

Hi +
1

2n

n−1
∑

i=0

(

2n

i+ 1

)

+

(

2n− 1

n

)

Hn

= 2
n−1
∑

i=0

(

2n− 1

i

)

Hi +

(

2n− 1

n

)

Hn +
1

2n

(

n
∑

i=0

(

2n

i

)

− 1

)

.

Thus,

Bn = 2An +

(

2n− 1

n

)

Hn +
22n−1 − 1

2n
+

1

4n

(

2n

n

)

. (13)

Here, we used the identity

n
∑

i=0

(

2n

i

)

=
2n
∑

i=n

(

2n

i

)

=
1

2

(

2n
∑

i=0

(

2n

i

)

+

(

2n

n

)

)

= 22n−1 +
1

2

(

2n

n

)

.
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Furthermore, let αn and βn, n ≥ 1, denote the terms

αn =
22n − 1

2n+ 1
−
(

2n

n

)

Hn,

βn =
22n−1 − 1

2n
+

(

2n− 1

n

)

Hn +
1

4n

(

2n

n

)

.

The pair of equations (12)–(13) reduces to

An = 2Bn−1 + αn−1, Bn = 2An + βn. (14)

By combining these two recurrence relations, we obtain

An = 4An−1 + αn−1 + 2βn−1, (15)

Bn = 4Bn−1 + βn + 2αn−1. (16)

We set ωk = αk + 2βk for 1 ≤ k ≤ n− 1. Then, for all k, 1 ≤ k ≤ n− 1, we can express ωk

as follows:

ωk =
22k − 1

2k + 1
−
(

2k

k

)

Hk +
2(22k−1 − 1)

2k
+ 2

(

2k − 1

k

)

Hk +
1

2k

(

2k

k

)

=
22k − 1

2k + 1
−
(

2k

k

)

Hk +
22k − 2

2k
+

((

2k − 1

k

)

+

(

2k − 1

k − 1

))

Hk +
1

2k

(

2k

k

)

=
22k

2k + 1
− 1

2k + 1
−
(

2k

k

)

Hk +
22k

2k
− 2

2k
+

(

2k

k

)

Hk +
1

2k

(

2k

k

)

= 22k
(

1

2k + 1
+

1

2k

)

−
(

1

2k + 1
+

2

2k

)

+
1

2k

(

2k

k

)

. (17)

By a recursive application of equation (15), we derive

An = 22An−1 + ωn−1 = 24An−2 + ωn−1 + 4ωn−2 = · · ·

= 22n−2A1 +
n−1
∑

k=1

22k−2ωn−k =
n−1
∑

k=1

22k−2ωn−k.

Using the identity A1 = 0 in the last equality, we then have

An =

(

22n−2

(

1

2n− 1
+

1

2n− 2

)

−
(

1

2n− 1
+

2

2n− 2

)

+
1

2n− 2

(

2n− 2

n− 1

))

+ 22
(

22n−4

(

1

2n− 3
+

1

2n− 4

)

−
(

1

2n− 3
+

2

2n− 4

)

+
1

2n− 4

(

2n− 4

n− 2

))

+ · · ·+ 22n−4

(

22
(

1

3
+

1

2

)

−
(

1

3
+

2

2

)

+
1

2

(

2

1

))

= 22n−2

2n−1
∑

k=2

1

k
− 22n−1

2n−1
∑

k=2

1

k2k
+ 22n−2

n−1
∑

k=1

1

(2k)22k

(

2k

k

)

.

7



Using the notation Hn, Cn, Dn introduced in equations (1) and (6), the last identity yields
the claim (10) of the Theorem:

An = 22n−2 (H2n−1 − 1)− 22n−1

(

C2n−1 −
1

2

)

+ 22n−2Dn−1

= 22n−2H2n−1 − 22n−1C2n−1 + 22n−2Dn−1. (18)

Combining equations (14) and (18), we obtain the identity (11):

Bn = 2An + βn = 2
(

22n−2H2n−1 − 22n−1C2n−1 + 22n−2Dn−1

)

+
22n−1 − 1

2n
+

(

2n− 1

n

)

Hn +
1

4n

(

2n

n

)

= 22n−1H2n−1 − 22n
2n−1
∑

k=1

1

k2k
+ 22n−1

n−1
∑

k=1

1

(2k)22k

(

2k

k

)

+ 22n−1
1

2n
− 1

2n
+

(

2n− 1

n

)

Hn +
1

4n

(

2n

n

)

= 22n−1H2n −
1

2n
− 22n

(

2n
∑

k=1

1

k2k
− 1

(2n)22n

)

+ 22n−1

(

n
∑

k=1

1

(2k)22k
− 1

(2n)22n

(

2n

n

)

)

+

(

2n− 1

n

)

Hn +
1

4n

(

2n

n

)

= 22n−1H2n − 22nC2n + 22n−1Dn +

(

2n− 1

n

)

Hn

= 22n−1H2n − 22nC2n + 22n−1Dn +
1

2

(

2n

n

)

Hn.

Let δN , for N ≥ 1, denote

δN =







0, if N odd;
1

2

(

N

N/2

)

HN/2, if N even.

A combination of the identities (2)–(3) and (5) implies

N
∑

k=⌊N/2⌋+1

(

N

k

)

Hk = 2N−1(HN − CN)− 2N−1
(

CN −D⌊N/2⌋

)

− δN .

The last identity allows us to quantify an asymmetry between the first and the second half
of the binomial sum of harmonic series

⌊N/2⌋
∑

k=0

(

N

k

)

Hk −
N
∑

k=⌊N/2⌋+1

(

N

k

)

Hk = 2N
(

CN −D⌊N/2⌋

)

+ δN .
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Note that an analogous calculation can be used to prove a generalization of the recurrence
relations (15)–(16) for the incomplete binomial sums of harmonic numbers S2n−1,m and S2n,m.
However, the cancellation of the terms

(

2n
m

)

Hm and 2
(

2n−1

m

)

Hm in equation (17) only occurs
for m = n. In the general case, where m 6= n, these terms do not cancel, and the explicit
formula (18) contains a binomial sum of harmonic numbers on the right hand side, meaning
the double sums are not eliminated in the calculation.

4 Incomplete binomial sum of alternating harmonic

numbers

Using Lemma 1, we provide a proof of (4) that differs from the original proof by Batir [2].

Theorem 4. Consider a positive integer N and a non-negative integer m. Then

IN,m =
1

N
+ (−1)m+1

(

N − 1

m

)(

Hm +
1

N

)

. (19)

Proof. The claim of the theorem reduces to the equality 0 = 0 for m = 0. Therefore, we
assume that m ≥ 1. The identity (7) for ak = (−1)k+1Hk, with 0 ≤ k ≤ m, implies

IN,m =
m−1
∑

i=0

(

N − 1

i

)

(

(−1)i+1Hi + (−1)i+2Hi+1

)

+

(

N − 1

m

)

(−1)m+1Hm

=
m−1
∑

i=0

(

N − 1

i

)

(−1)i (−Hi +Hi+1) + (−1)m+1

(

N − 1

m

)

Hm

=
m−1
∑

i=0

(−1)i
(

N − 1

i

)

1

i+ 1
+ (−1)m+1

(

N − 1

m

)

Hm.

Thus,

IN,m =
1

N

m−1
∑

i=0

(−1)i
(

N

i+ 1

)

+ (−1)m+1

(

N − 1

m

)

Hm

=
1

N

m−1
∑

i=0

(−1)i
((

N − 1

i

)

+

(

N − 1

i+ 1

))

+ (−1)m+1

(

N − 1

m

)

Hm.

We conclude the proof of (19) by observing that the telescopic sum on the right-hand side
of the previous equation reduces to

m−1
∑

i=0

(−1)i
((

N − 1

i

)

+

(

N − 1

i+ 1

))

=

(

N − 1

0

)

+ (−1)m−1

(

N − 1

m

)

.
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5 Asymptotic approximation

While there is no explicit formula for the finite sum Cn, the infinite sum can be evaluated as

∞
∑

k=1

1

k2k
= ln 2.

This identity directly follows from the Taylor expansion of ln(1−x) = −∑∞
k=1

xk

k
, for |x| < 1,

evaluated at x = 1

2
.

Another straightforward calculation yields the Taylor expansion for the generating func-
tion, valid for |x| ≤ 1

2
:

∞
∑

k=1

(

2k

k

)

x2k

2k
= ln

2√
1− 4x2 + 1

.

For x = 1

2
, it implies

∞
∑

k=1

(

2k

k

)

1

(2k)22k
= ln 2.

The calculation of the asymptotic approximation of An as n → ∞ is then as follows:

An = 22n−2 (ln(2n− 1) + γ)− 22n−1 ln 2 + 22n−2 ln 2 + 22n−2o(1)

= 22n−2 (lnn+ γ + o(1)) .

Similarly, for Bn, as n → ∞, we have Bn = 22n−1 (lnn+ γ + o(1)). This implies

SN = 2N−1 (lnN − ln 2 + γ + o(1)) .

for N → ∞. A similar calculation yields an asymptotic approximation of IN :

IN =
(−1)⌊N/2⌋+1

√

πN/2
2N−1 (lnN − ln 2 + γ + o(1)) .
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