
23 11

Article 24.3.1
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Fibonacci Generating Functions

Michael P. Knapp
Department of Mathematics and Statistics

Loyola University Maryland
4501 North Charles Street
Baltimore, MD 21210

USA
mpknapp@loyola.edu

Abstract

Define an integer sequence (Gn)n∈Z by setting G0 = a, G1 = b, and Gn = Gn−1 +
Gn−2 for all n. In this paper, we explore the problem of finding all rational numbers x
such that the generating function of the sequence yields an integer when evaluated at
x. We show that these numbers can be naturally divided into families and find some
families that are always present. Then we give an algorithm that, for each choice of a
and b, reduces the problem of finding all of the families to a finite computation.

1 Introduction

In a 2015 article [3] in the College Mathematics Journal, Hong studied the generating func-
tions for the Fibonacci (A000045) and Lucas (A000032) numbers. For each sequence, Hong
found a set of rational values of x such that the generating function evaluated at x is an
integer, and asked whether more such values existed. This question was answered in 2017
by Pongsriiam [7], who found additional values of x which worked, and gave a proof that
he had found all such values. Around the same time Bulawa & Lee [1] proved that for the
Fibonacci sequence, if one only considers values inside the interval of convergence of the gen-
erating function, then Hong had found all the values of x such that the generating function
is an integer. Moreover, they extended this work to more general sequences. If (an)n≥0 is a
sequence with a0 = 0 and a1 = 1 that satisfies a recurrence of the form an = Man−1+Nan−2,
where M,N are positive integers with N |M , then Bulawa & Lee found all values of x in the
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interval of convergence of the generating function which make the generating function an
integer.

In this article, we prove similar results for every sequence satisfying the Fibonacci recur-
rence. For integers a, b, we define the Fibonacci-like sequence G

(a,b)
n by

G
(a,b)
0 = a, G

(a,b)
1 = b, and G

(a,b)
n = G

(a,b)
n−1 +G

(a,b)
n−2 for n ≥ 2.

For example, the G
(3,1)
n sequence (A104449) begins

3, 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, . . . .

Setting (a, b) = (0, 1) gives the Fibonacci sequence Fn, and setting (a, b) = (2, 1) gives the
Lucas sequence. Note that we can extend these sequences to negative indices by using the
recurrence relation. For example, the relation says that we should have G

(3,1)
1 = G

(3,1)
0 +G

(3,1)
−1 ,

and so we obtain G
(3,1)
−1 = −2. This generalization of the Fibonacci sequence has been studied

by many authors over a long period of time. See [8, 4, 5, 6, 2] for some examples of work
done with these sequences. These are only examples, as a search for “generalized Fibonacci”
on MathSciNet yields almost 2,000 results.

For each of these sequences, our goal is to find all the rational x-values which make
its generating function an integer. We will show how to find all of these x-values for each
possible pair (a, b). It turns out that these x-values come in families, where the elements of
each family are ratios of consecutive terms of a sequence satisfying the Fibonacci recurrence.
We show this in our first theorem.

Theorem 1. Let (a, b) ∈ Z
2, define the sequence G

(a,b)
n as above and let G(a,b)(x) be the

generating function for this sequence. Suppose that G(a,b)(p/q) is an integer, where p and q
are relatively prime integers. If p+ q 6= 0, then G(a,b)(q/(p+ q)) is an integer. Also, if p 6= 0,
then G(a,b)((q − p)/p) is an integer.

After proving Theorem 1, we prove a corollary which, for each (a, b), gives two families
of rational x-values such that G(a,b)(x) is an integer. This corollary generalizes some of
Pongsriiam’s results [7].

Corollary 2. Let (a, b) ∈ Z
2 and define G

(a,b)
n and G(a,b)(x) as above. The values Fn/Fn+1

produce integer values of G(a,b)(x) for all integers n 6= −1, and the values x = −G
(a,b)
n+1/G

(a,b)
n

produce integer values of G(a,b)(x) whenever G
(a,b)
n 6= 0.

As we will see in Lemmas 8 and 9, we can also describe the second family as ratios of
consecutive terms of a sequence Hn satisfying the Fibonacci recurrence, where H0 = −b and
H1 = a. To make our results somewhat easier to state, we will say that a number x is good
for (a, b) if x is rational and G(a,b)(x) is an integer. For example, the first part of Corollary 2
says that the ratio Fn/Fn+1 is good for all (a, b) whenever n 6= −1. If the pair (a, b) is clear
from context, then we will just say that the number x is good.

Our next theorem is a partial converse of Theorem 1, in which we start with a given
sequence Hn.
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Theorem 3. Suppose that p and q are integers with gcd(p, q) = 1, and let Hn be the sequence
with H0 = p, H1 = q, and Hn = Hn−1 +Hn−2 for all integers n. Then there exist infinitely
many pairs (a, b) such that all the values x = Hn/Hn+1 (with Hn+1 6= 0) are good for (a, b).
Specifically, these ratios are good for (a, b) if and only if

a ≡ −bp(q − p)−1 ≡ −bqp−1 (mod |q2 − pq − p2|).

In this theorem, if |q2 − pq − p2| = 1, then we interpret congruence modulo 1 as being
the trivial ring, and so the congruence condition is always satisfied. This occurs when Hn

is the sequence of Fibonacci numbers, possibly multiplied by −1 and possibly with shifted
indices (for example, when Hn = Fn+3). In particular, this interpretation gives meaning to
the theorem when either p or q − p equals 0.

Finally, given the pair (a, b), we show how to find all x-values that are good for (a, b).
We will prove the following theorem.

Theorem 4. Let (a, b) ∈ Z
2 with (a, b) 6= (0, 0), and define G(a,b)(x) as above. Set

C =

{√

|a2 + ab− b2|, if a2 + ab− b2 < 0;
√

1
5
(a2 + ab− b2), if a2 + ab− b2 > 0,

and find all integers M with |M | ≤ C such that the equation M2+3MN +N2 = a2+ab− b2

has an integer solution N . For each of these M-values, let k be a nonzero integral solution
of the equation M2 = 5k2 + (2b− 6a)k + (a− b)2, and set x = (a− b− k +M)/2k. Then x
is good for (a, b) and generates a family of good values. All families of good values for (a, b)
can be found in this way, except possibly the one corresponding to the Fibonacci sequence
and the one containing the solution of G(a,b)(x) = 0.

The remainder of this article is divided into three sections. In the next section, we will
give the relatively simple proofs of Theorem 1, Corollary 2, and Theorem 3. In Section 3, we
prove Theorem 4 and give some examples of using the method to find all the good values for
some specific choices of (a, b). The final section acknowledges the contributions of colleagues
with whom the author had some valuable conversations.

2 Families of good x-values

In this section, we prove Theorem 1, Corollary 2, and Theorem 3. For a pair (a, b), define

the sequence G
(a,b)
n as in the introduction. Since this notation is somewhat awkward, we will

drop the superscript from all of our notation unless we need the superscript to ensure clarity.
Thus we will write G0 = a, G1 = b, etc., and the generating function for this sequence will
be written as G(x).

As a trivial case, if a = b = 0, then Gn = 0 for all n, and G(x) is identically zero. Clearly,
every rational number is good, and then Theorem 1, Corollary 2, and the congruence in
Theorem 3 are trivially true. For the rest of this article, we will assume that (a, b) 6= (0, 0).

We begin by finding a formula for G(x).
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Lemma 5. The generating function for the sequence Gn is

G(x) =
(b− a)x+ a

1− x− x2
. (1)

Proof. The generating function for our sequence is

G(x) = G0 +G1x+G2x
2 +G3x

3 +G4x
4 + · · · .

This immediately yields

xG(x) = G0x+G1x
2 +G2x

3 +G3x
4 + · · ·

and
x2G(x) = G0x

2 +G1x
3 +G2x

4 + · · · .

We can then see that

G(x)− xG(x)− x2G(x)

= G0 + (G1 −G0)x+ (G2 −G1 −G0)x
2 + (G3 −G2 −G1)x

3 + · · ·

= a+ (b− a)x.

Note that the recursion relation for the sequence ensures that the coefficients of x2, x3, . . .
are all zero. The formula for G(x) now follows.

Now that we have a formula for G(x), we prove a lemma about when a rational number
p/q is good for (a, b). This allows us to avoid repeating the same argument several times in
the proofs below.

Lemma 6. Suppose that (a, b) 6= (0, 0), and suppose that p and q are relatively prime inte-
gers. Then x = p/q is good for (a, b) if and only if we have

a ≡ −bp(q − p)−1 ≡ −bqp−1 (mod |q2 − pq − p2|).

Proof. Since gcd(p, q) = 1, it is easy to check that gcd(q− p, q2− pq− p2) = gcd(p, q2− pq−
p2) = 1, and so both inverses exist. Moreover, since p2 ≡ q(q − p) (mod |q2 − pq − p2|), we
always have −bp(q − p)−1 ≡ −bqp−1 (mod |q2 − pq − p2|).

Now, we have

G(p/q) =
(b− a)

(

p

q

)

+ a

1− p

q
− p2

q2

=
q
(

(b− a)p+ aq
)

q2 − pq − p2
. (2)

Since the numerator and denominator are integers (and since having (p, q) 6= (0, 0) implies
that q2 − pq − p2 6= 0), the final fraction is an integer if and only if we have

q
(

(b− a)p+ aq
)

≡ 0 (mod |q2 − pq − p2|).
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Since gcd(q, q2 − pq − p2) = 1, the number G(p/q) is an integer if and only if

(b− a)p+ aq ≡ 0 (mod |q2 − pq − p2|).

A little algebra shows that this is equivalent to having

a ≡ −bp(q − p)−1 (mod |q2 − pq − p2|). (3)

This completes the proof of the lemma.

Now that we have Lemma 6, we can give the proof of Theorem 1. Suppose that p and
q are relatively prime integers, and that G(p/q) is an integer. By Lemma 6, we know that
a ≡ −bp(q − p)−1 ≡ −bqp−1 (mod |q2 − pq − p2|). To show that G((q − p)/p) is an integer
when p 6= 0, we have

G((q − p)/p) =
p
(

(b− a)(q − p) + ap
)

p2 − (q − p)p− (q − p)2
=

p
(

b(q − p)− a(q − p) + ap
)

−(q2 − pq − p2)
.

The negative sign in the denominator does not matter for determining whether this expres-
sion is an integer, so we have G((q − p)/p) ∈ Z if and only if

p
(

b(q − p)− a(q − p) + ap
)

≡ 0 (mod |q2 − pq − p2|).

However, if we replace the first occurrence of a by −bp(q−p)−1 and the second by −bqp−1, we
can see that the expression on the left-hand side is in fact congruent to zero. This completes
the proof that G((q− p)/p) ∈ Z. The proof that G(q/(p+ q)) ∈ Z when p+ q 6= 0 is similar,
and will be omitted. This completes the proof of Theorem 1.

By Theorem 1, we can see that if we have a good x-value x = p/q (in lowest terms),
then if we form a sequence Hn by setting H0 = p, H1 = q, and Hn = Hn−1 + Hn−2 for all
n ∈ Z, then all of the values x = Hn/Hn+1 are good for (a, b), provided only that we have
Hn 6= 0 for all n. However, if we define our sequence this way, then since gcd(p, q) = 1,
we have gcd(Hn, Hn+1) = 1 for all n. Therefore, the only way that we could have Hn = 0
is if we have either (Hn−2, Hn−1) = (1,−1) or (Hn−2, Hn−1) = (−1, 1). But both of these
possibilities occur in the Fibonacci sequence (extended to negative subscripts). Hence, if we
have a good x-value x = p/q such that p and q are not consecutive elements of the Fibonacci
sequence, then no element of the sequence Hn is equal to 0.

Given these observations, we can prove Corollary 2 without much difficulty. First we deal
with the quotients of Fibonacci numbers.

Lemma 7. If (a, b) ∈ Z
2, then the values x = Fn/Fn+1 with n 6= −1 are all good for (a, b).

Proof. The value n = −1 is excluded because F0 = 0 may not be the denominator. For
the rest of the values, by Theorem 1 it suffices to prove that both x = F0/F1 = 0 and
x = F−2/F−1 = −1 are good. But it is trivial to see that G(0) = a and G(−1) = 2a− b are
both integers. This completes the proof.
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Now that we have shown that the x-values coming from the Fibonacci sequence are good
for all (a, b), we will often assume throughout the rest of this article that the family of x-
values that we are dealing with does not come from the Fibonacci sequence. This allows us
to simplify our proofs a bit, since as mentioned above, for other families of x-values we do
not need to worry about the possibility that the recursion formula gives us a denominator
of zero. We now begin the proof of the second half of Corollary 2.

Lemma 8. For a choice of the parameter (a, b), define a sequence Hn by setting H0 = −b,
H1 = a, and Hn = Hn−1 +Hn−2 for all n ∈ Z. Then the values x = Hn/Hn+1 are good for
(a, b) whenever Hn+1 6= 0.

Proof. If −b and a are consecutive Fibonacci numbers, or if they are consecutive Fibonacci
numbers multiplied by the same nonzero integer, then we are done by Lemma 7. Otherwise,
we have Hn 6= 0 for all n, and it suffices to check that x = H0/H1 = −b/a is good for (a, b).
But we can see that G(−b/a) = a, completing the proof.

Our next lemma completes the proof of Corollary 2.

Lemma 9. The values of x obtained in Lemma 8 are exactly the values x = −Gn+1/Gn,
where n ∈ Z.

Proof. We begin by showing that for all n, we have

Hn = (−1)n+1G1−n. (4)

This is true for n = 0 and n = 1. Suppose that it is true for all nonnegative n up to n = k−1.
Then we have

Hk = Hk−1 +Hk−2

= (−1)kG2−k + (−1)k−1G3−k

= (−1)k−1(−G2−k +G3−k)

= (−1)k−1G1−k

= (−1)k+1G1−k,

as desired. The proof that the formula holds for all negative n is similar.
Finally, using the relation (4), we have

Hn/Hn+1 = −G−n+1/G−n and −Gn+1/Gn = H−n/H−n+1

for each integer n. This shows that the values of −Gn+1/Gn are exactly the ratios of succes-
sive terms of the H sequence, completing the proof.
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We now prove Theorem 3, in which we study the problem from the other point of view.
That is, we assume that we are given a sequence Hn satisfying the Fibonacci recurrence
and ask for which (a, b) the values x = Hn/Hn+1 are good. The proof essentially just
combines Lemma 6 and Theorem 1. Theorem 3 is clearly true when Hn is the Fibonacci
sequence, so suppose that this is not the case. Then no term of the sequence Hn is zero.
Theorem 1 then implies that the all the values x = Hn/Hn+1 are good for (a, b) if and
only if x = H0/H1 = p/q is good for (a, b). But Lemma 6 says that this happens if and
only if a ≡ −bp(q − p)−1 ≡ −bqp−1 (mod |q2 − pq − p2|). Finally, to show that there are
infinitely many pairs (a, b) for which the family is good, we simply note that we can choose
any integer we like for b, and then there are infinitely many integers a such that a ≡ −bqp−1

(mod |q2 − pq − p2|).

Example 10. Let Ln be the Lucas sequence, so that p = L0 = 2 and q = L1 = 1. Then
Theorem 3 shows that the ratios Ln/Ln+1 all produce integer values of G(x) = G(a,b)(x) if
and only if a ≡ 2b (mod 5). Thus, for each b, there are infinitely many a such that the ratios
of successive Lucas numbers are good for (a, b).

3 Finding all good x-values for (a, b)

In this section, we will prove Theorem 4. That is, given the pair (a, b), we will see how to
find all rational x such that G(x) = G(a,b)(x) is an integer. Following Pongsriiam’s [7] ideas,
suppose that k ∈ Z with k 6= 0 and that G(x) = k. Solving this equation for x, we find that

x =
a− b− k ±

√

5k2 + (2b− 6a)k + (a− b)2

2k
. (5)

In order for x to be rational, we need the expression under the square root to be a perfect
square. For a particular value x = p/q, we will write the square root term as M(a, b, p, q),
where we take M to be positive or negative as needed so that we can write

x =
p

q
=

a− b− k +M(a, b, p, q)

2k
. (6)

Solving this for M(a, b, p, q) and using the fact that

k = G

(

p

q

)

=
q
(

(b− a)p+ aq
)

q2 − pq − p2
,

we find that

M(a, b, p, q) =
(2p+ q)

(

(b− a)p+ aq
)

q2 − pq − p2
− a+ b. (7)

We now give some facts about the expression M(a, b, p, q) which are useful. Note that since
we are no longer considering x-values coming from the Fibonacci sequence, the conditions
that q 6= 0 and p+ q 6= 0 and p+ 2q 6= 0 are automatically satisfied.
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Lemma 11. Suppose that (a, b) ∈ Z
2 and that p, q ∈ Z with q 6= 0 and p + q 6= 0 and

p+ 2q 6= 0. Then we have

M(a, b, p+ q, p+ 2q) = −3M(a, b, q, p+ q)−M(a, b, p, q) (8)

and

M(a, b, p, q)2 + 3M(a, b, p, q)M(a, b, q, p+ q) +M(a, b, q, p+ q)2 = a2 + ab− b2. (9)

Proof. We use the computer algebra system Maple to do the algebra necessary to verify these
identities. If we define M(a, b, p, q) as in (7), then the command

simplify(M(a, b, p + q, p + 2*q) + 3*M(a, b, q, p + q) +

M(a, b, p, q));

produces the output 0 and the command

simplify(M(a, b, p, q)^2 + 3*M(a, b, p, q)*M(a, b, q, p + q) +

M(a, b, q, p + q)^2);

produces the output a2 + ab− b2. This completes the proof.

We can use (8) and (9) to reduce the problem of finding all families of good x-values to a
finite computation. To do this, suppose that x is good for (a, b) and consider the M -values
coming from the family of good values containing x. We will show that at least one of these
M -values is small in a sense that we make precise in the next two lemmas. The results of
these lemmas depend on the sign of a2 + ab − b2, so we note that since (a, b) 6= (0, 0), this
expression cannot equal 0.

Lemma 12. Suppose that a2 + ab − b2 < 0 and that x is good for (a, b). Then the set of
M-values corresponding to the family of good numbers including x contains an element M0

with |M0| ≤
√

|a2 + ab− b2|.

Proof. Choose M0 = M(a, b, p, q) such that |M0| is minimal among the M -values under
consideration, and define M1 = M(a, b, q, p + q) and M−1 = M(a, b, q − p, p). Note that
M0 = 0 is impossible by (9). Also, since a2 + ab − b2 < 0, we see by (9) that both M1 and
M−1 have the opposite sign from M0.

Suppose first that M0 > 0. Then M1,M−1 < 0. Since |M0| is minimal, we in fact have
M1,M−1 ≤ −M0. Using (8), we see that

M1 = −3M0 −M−1 ≤ −M0,

which gives M−1 ≥ −2M0. Therefore, there is a real number t, with −2 ≤ t ≤ −1, such that
M−1 = tM0. An essentially identical argument shows that we can also find such a t when
M0 < 0. From (9), we have

M2
−1 + 3M−1M0 +M2

0 = a2 + ab− b2,
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whence

M2
0 =

a2 + ab− b2

t2 + 3t+ 1
=

|a2 + ab− b2|

|t2 + 3t+ 1|
.

Since −2 ≤ t ≤ −1, we have −1.25 ≤ t2 + 3t+ 1 ≤ −1, and therefore |t2 + 3t+ 1| ≥ 1. This
gives us

M2
0 ≤ |a2 + ab− b2|,

which obviously implies |M0| ≤
√

|a2 + ab− b2|.

Lemma 13. Suppose that a2 + ab − b2 > 0, and that x is good for (a, b). Then the set of
M-values corresponding to the family of good numbers including x contains an element M0

with |M0| ≤
√

1
5
(a2 + ab− b2).

Proof. Define M−1, M0, and M1 as in the proof of Lemma 12. If it happens that M0 = 0,
then we are done, so suppose that M0 6= 0. We first show that either the pair M−1,M0 or
the pair M0,M1 have the same sign. Assume that this is false, and that M−1 and M1 both
have the opposite sign from M0. Then we may proceed as in the proof of Lemma 12 to show
that

M2
0 =

a2 + ab− b2

t2 + 3t+ 1
, (10)

where −2 ≤ t ≤ −1. However, the right-hand side of (10) is negative, providing a contra-
diction.

Now, set N to be either M−1 or M1, whichever value has the same sign as M0. Then by
(9), we have

a2 + ab− b2 = M2
0 + 3M0N +N2

= |M0|
2 + 3|M0||N |+ |N |2

≥ 5|M0|
2,

where the inequality follows from the minimality of |M0|. This immediately leads to the

bound |M0| ≤
√

1
5
(a2 + ab− b2).

We can now reduce the problem of finding all the good x-values for (a, b) to a finite
computation. Suppose that (a, b) is given. We know that the family coming from the
Fibonacci sequence is good for (a, b). Next, if possible, we solve the equation G(x) = 0,
obtaining the good value x = −a/(b−a). This also yields a family of good x-values. Finally,
we find all the remaining families. Define

C =

{√

|a2 + ab− b2|, if a2 + ab− b2 < 0;
√

1
5
(a2 + ab− b2), if a2 + ab− b2 > 0.

First, we find all values of M with 0 ≤ M ≤ C such that the equation

M2 + 3MN +N2 = a2 + ab− b2 (11)

9



has an integer solution N . These values, along with their negatives, are all the possible
M -values with |M | ≤ C. For each M -value, we may use the relation

M2 = 5k2 + (2b− 6a)k + (a− b)2 (12)

to find all the possible k associated with this value of M . Then the equation (6) gives a
good x-value, which generates a family of good x-values. Since every family of good x-values
yields at least one M -value in our range, all families of good x-values are found in this way.
This completes the proof of Theorem 4.

Example 14. As a first example, we will take (a, b) = (14, 1) and find all families of good
x-values. First, we know that all values in the family coming from the Fibonacci sequence
are good for (14, 1). Solving the equation G(x) = 0 gives x = 14/13, which leads to the
family

. . . ,
−16

15
,
15

−1
,
−1

14
,
14

13
,
13

27
,
27

40
,
40

67
, . . .

of good x-values, which is the family given in Lemma 8. To find other families, the equation
(11) becomes

M2 + 3MN +N2 = 209,

and we need to find all M with |M | ≤
√

209/5 ≈ 6.46 such that (11) has an integer
solution N . If we test all the integers M with 0 ≤ M ≤ 6, then we find that M = 1 and
M = 5 have the property we need. Hence the values with |M | ≤ 6 having the property are
M = −5,−1, 1, 5. For M = −5, the relation (12) becomes

25 = 5k2 − 82k + 169.

This leads to the possible k-values of 2 and 72/5. We discard the latter as 72/5 is not an
integer, and we see that (a, b, k,M) = (14, 1, 2,−5) leads by (6) to x = 3/2. Thus every
element of the family

. . . ,
−5

4
,
4

−1
,
−1

3
,
3

2
,
2

5
,
5

7
,
7

12
, . . .

is a good x-value for (a, b) = (14, 1). Similarly, the value M = −1 leads to x = −1/14,
which yields (again) the family given in Lemma 8, and the value M = 1 leads to x = 0,
which yields (again) the family of ratios of Fibonacci numbers given in Lemma 7. Finally,
the value M = 5 leads to the family

. . . ,
−10

7
,
7

−3
,
−3

4
,
4

1
,
1

5
,
5

6
,
6

11
, . . . ,

which is the last family of good x-values for (14, 1).

Example 15. Let a = 1 and b = 11, so that a2 + ab − b2 = −109. As above, we know
that the family coming from the Fibonacci sequence is good for (1, 11). Solving the equation
G(x) = 0 gives x = −1/10, which leads to the family

. . . ,
23

−12
,
−12

11
,
11

−1
,
−1

10
,
10

9
,
9

19
,
19

28
, . . .
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of good values, which is the family from Lemma 8. Searching for other families, the equation
(11) becomes M2 + 3MN + N2 = −109, and we need to find integers M with |M | ≤
√

| − 109| ≈ 10.4 such that at least one corresponding N is an integer. The only such values
are M = 10 and M = −10. However, when we use (12) to find the corresponding value of k,
we see that both of these M -values yield k = 0. Thus we do not obtain additional families
of good x-values.

Remark 16. Note that in Example 15, we did not obtain the family coming from the Fibonacci
sequence when solving the equation (9) and using the M -values. This is because the smallest
M -value in this family is M(a, b, p, q) = M(1, 11, 1, 0) = −10. However, (p, q) = (1, 0)
corresponds to the “fraction” 1/0, which is undefined. It is for this reason that we treat this
family in separately in our method. Similarly, we treat the family coming from the solution
of G(x) = 0 separately because having k = 0 leads to a zero in the denominator of (5). No
other family can lead to any of our equations having zeros in the denominator, so only these
two families need to be treated separately.

Remark 17. After this example, it seems natural to ask about pairs (a, b) for which the only
good families of x-values are those given in Lemma 7 and Lemma 8. If we study pairs of
the form (a, 1), a computer search shows that there are 311 values of a with 3 ≤ a ≤ 1000
such that the pair (a, 1) has only these two families of good x-values. We conjecture that
infinitely many such pairs exist. Note in the opposite direction that Theorem 4 shows that
there are infinitely many (a, b) that have more families of good x-values than the two given
by these lemmas.
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