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Abstract

It is well known that the Bernoulli polynomials Bn(x) have nonintegral coefficients
for n ≥ 1. However, ten cases are known so far in which the derivative B

′
n(x) has only

integral coefficients. One may assume that the number of those derivatives is finite.
We can link this conjecture to a recent conjecture about the properties of a product
of primes satisfying certain p-adic conditions. Using a related result of Bordellès,
Luca, Moree, and Shparlinski, we then show that the number of those derivatives is
indeed finite. Furthermore, we derive other characterizations of the primary conjecture.
Subsequently, we extend the results to higher derivatives of the Bernoulli polynomials.
This provides a product formula for these denominators, and we show similar finiteness
results.

1 Introduction

The Bernoulli polynomials Bn(x) are defined by the exponential generating function

text

et − 1
=

∞
∑

n=0

Bn(x)
tn

n!
(|t| < 2π) (1)

and explicitly given by the formula

Bn(x) =
n

∑

k=0

(

n

k

)

Bn−k x
k (n ≥ 0), (2)

1

mailto:bk@bernoulli.org


where Bn = Bn(0) ∈ Q is the nth Bernoulli number. It easily follows from (1) that Bn = 0
for odd n ≥ 3. For more properties see Cohen [4, Chapter 9]. The Bernoulli polynomials
Bn(x) ∈ Q[x] are Appell polynomials [1]. Therefore, they satisfy the rule

B′
n(x) = nBn−1(x) (n ≥ 1). (3)

While Bn(x) /∈ Z[x] for n ≥ 1, which is equivalent to denom(Bn(x)) > 1 for n ≥ 1 (the de-
nominators are discussed in the next section), it turns out that

B′
n(x) ∈ Z[x] for n ∈ S := {1, 2, 4, 6, 10, 12, 28, 30, 36, 60}.

The elements of S, viewed as an ordered sequence, equal the finite sequence A094960 in
the On-Line Encyclopedia of Integer Sequences (OEIS) [11] as published in 2004. So far, no
further terms have been found. It is mainly assumed that sequence A094960 is indeed finite
and completely determined by S. Note that we implicitly omit the trivial case for n = 0,
since B0(x) = B0 = 1. Define

S := {n ≥ 1 : B′
n(x) ∈ Z[x]}.

For our purposes, we split the conjecture into two parts as follows.

Conjecture 1. We have the following statements.

(i) The set S is finite.

(ii) We have S = S.

We link the above conjecture to a more recent conjecture of the author [5] in a p-adic
context, where p always denotes a prime. The function sp(n) gives the sum of the base-p
digits of an integer n ≥ 0. Let ω(n) be the additive function that counts the distinct prime
divisors of n. As usual, an empty product is defined to be 1, and an empty sum is defined
to be 0. We consider the product

D+
n :=

∏

p>
√
n

sp(n)≥ p

p (n ≥ 1), (4)

where p runs over the primes. Note that the above product is always finite, since sp(n) = n
for p > n. By Kellner [5, Theorem 4], we have a further relation that

ω(D+
n ) =

∑

p>
√
n

⌊n−1

p−1
⌋> ⌊n

p
⌋

1 <
√
n (n ≥ 1). (5)

We shall clarify the notation of D+
n in a more general setting in the next section.

Conjecture 2 (Kellner [5, Conjectures 1, 2]). We have the following statements.
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(i) We have D+
n > 1, respectively, ω(D+

n ) > 0 for n > 192.

(ii) There exists a constant κ > 1 such that

ω(D+
n ) ∼ κ

√
n

log n
as n → ∞. (6)

At first glance, Conjectures 1 and 2 seem to be incompatible. However, we can establish
the following connection.

Theorem 3. Conjecture 2(i) and (ii) imply Conjecture 1(ii) and (i), respectively.

Meanwhile, Conjecture 2(ii) with κ = 2 was proven by Bordellès et al. [2] for sufficiently
large n > n0. This result was achieved by exploiting (5), since the condition sp(n) ≥ p as
in (4) is replaced by ⌊n−1

p−1
⌋ > ⌊n

p
⌋ in (5), which enabled them to use powerful analytic tools.

Unfortunately, their methods do not lead to an explicit or computable bound n0. Using their
results, we arrive at the following corollary.

Corollary 4 (Bordellès, Luca, Moree, and Shparlinski [2, Corollary 1.6]). Conjecture 2(ii)
is true, so Conjecture 1(i) is true.

Theorem 5. We have the following statements.

(i) If n ∈ S, then n+ 1 is prime.

(ii) If S 6= S and n ∈ S \ S, then n > 107.

As a consequence, the set

S + 1 = {2, 3, 5, 7, 11, 13, 29, 31, 37, 61, . . .}

contains only primes. It would be very unlikely that D+
n = 1 happens for n > 192. See

the graph [5, Figure B1] of ω(D+
n ) in the range below 107 and consider the coincident and

proven asymptotic formula of ω(D+
n ) for sufficiently large n. However, it is still an open task

to establish Conjectures 1(ii) and 2(i).
The paper is organized as follows. In the next section, we give a survey about p-adic

properties of the denominators of the Bernoulli polynomials. We also show further charac-
terizations of Conjecture 1. In Section 3, we extend the results to higher derivatives of the
Bernoulli polynomials. Section 4 contains the proofs of the theorems.

2 Denominators and p-adic properties

To study the denominators of the Bernoulli polynomials, it is convenient to consider for
n ≥ 1 the related denominators

Dn := denom(Bn) = 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, . . . ,

Dn := denom(Bn(x)−Bn) = 1, 1, 2, 1, 6, 2, 6, 3, 10, 2, . . . ,

Dn := denom(Bn(x)) = 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, . . . ,
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which are all squarefree. These are the sequences A027642, A195441, and A144845, respec-
tively. Obviously, we have by definition the relation

Dn = lcm(Dn,Dn). (7)

The denominators Dn of the Bernoulli numbers are given by the well-known von Staudt–
Clausen theorem of 1840 (Clausen [3] and von Staudt [12]), which states for even positive
integers n that

Bn +
∑

p−1 |n

1

p
∈ Z, which implies that Dn =

∏

p−1 |n
p.

However, the denominators Dn do not play a role here, since we follow the approaches of
Kellner [5] and Kellner and Sondow [8, 9, 10], which are concerned with the p-adic properties
of the denominators Dn. For n ≥ 1, these denominators are given by the remarkable formula

Dn =
∏

sp(n)≥ p

p, (8)

which arises from the p-adic product formula; see Kellner [5, Section 5]. The decomposition

Dn = D−
n · D+

n , (9)

where D+
n is defined as in (4) and

D−
n :=

∏

p<
√
n

sp(n)≥ p

p,

leads to Conjecture 2. Note that the decomposition (9) omits the possible term for p =
√
n,

but then we would have p2 = n and so sp(n) = 1.
For computational purposes, those products, which run over the primes p and contain

the condition sp(n) ≥ p, are trivially bounded by p < n. Moreover, the following bounds [5,
Lemmas 1, 2] are self-induced by properties of sp(n). Namely, we have for n ≥ 1 that

sp(n) < p, if p >
n+ 1

λ
where λ =

{

2, if n is odd;

3, if n is even.

For the sake of completeness, we show that the polynomials Bn(x)−Bn, which have no
constant term, arise in a natural context. For n ≥ 0, define the sum-of-powers function

Sn(m) :=
m−1
∑

ν=0

νn (m ≥ 0).
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It is well known that

Sn(x) =

∫ x

0

Bn(t) dt =
1

n+ 1
(Bn+1(x)−Bn+1). (10)

As a result of Kellner [5, Theorem 5] and Kellner and Sondow [8, Theorems 1, 2], we then
have for n ≥ 0 that

Dn := denom(Sn(x)) = (n+ 1)Dn+1 = 1, 2, 6, 4, 30, 12, 42, 24, 90, 20, . . . , (11)

which is sequence A064538.

Remark 6. Since the Bernoulli polynomials Bn(x) are Appell polynomials satisfying the
reflection relation Bn(1 − x) = (−1)nBn(x), the integral in (10) can be reinterpreted by
Faulhaber-type polynomials that are connected with certain reciprocal Bernoulli polynomi-
als, as recently shown by the author; see [6, Example 5.6] and [7, Section 11].

Let n ≥ 1, and let rad(n) be the squarefree kernel of n. As introduced in [10], define the
decompositions

Dn = D⊤
n · D⊥

n and rad(n) = D⊤
n · D⊤⋆

n , (12)

where
D⊤

n :=
∏

p |n
sp(n)≥ p

p, D⊥
n :=

∏

p ∤n
sp(n)≥ p

p, and D⊤⋆

n :=
∏

p |n
sp(n)<p

p. (13)

The sequences of D⊤
n , D

⊥
n , and D⊤⋆

n are sequences A324369, A324370, and A324371, respec-
tively. We arrive at the following theorem.

Theorem 7 (Kellner and Sondow [10, Theorem 3.1]). For n ≥ 1, the denominator Dn of
the Bernoulli polynomial Bn(x) splits into the triple product

Dn = D⊥
n+1 · D⊤

n+1 · D⊤⋆

n+1.

Consequently, the interplay of the factors of Dn yields the relations

Dn = D⊥
n+1 · rad(n+ 1) = Dn+1 · D⊤⋆

n+1 = lcm(Dn+1, rad(n+ 1)). (14)

Compared with the classical relation (7), one may observe that the right-hand sides of the
above equations involve the numbers and indices n + 1 in place of n. To simplify notation,
we include the case D0 = 1, which coincides with (14). Apart from that, we explicitly avoid
the case n = 0 of the related symbols of Dn in view of their product identities (12) and (13).

Corollary 8. Let n ≥ 1. The following statements hold.

(i) We have that Dn = rad(Dn).

(ii) We have that Dn is even, which implies that Bn(x) /∈ Z[x].

(iii) We have that D⊥
n is even, if n ≥ 3 is odd; otherwise, D⊥

n is even.
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A different proof of part (ii) via (7) is given by Kellner and Sondow [8, Theorem 4].

Proof. Let n ≥ 1. We show three parts. (i). From (11) and (14), we derive that Dn =
lcm(Dn+1, rad(n + 1)) = rad(Dn+1 (n + 1)) = rad(Dn). (iii). We have D⊥

1 = 1. If 2 | n, then
2 ∤ D⊥

n . Otherwise, for odd n ≥ 3, it follows that 2 ∤ n and s2(n) ≥ 2. By (13), this shows
that 2 | D⊥

n . (ii). Considering (14), the factor rad(n+ 1) is even for odd n, whereas 2 | D⊥
n+1

when n is even using part (iii). Both cases show that Dn is even for n ≥ 1. This completes
the proof.

The properties of Dn and D⊥
n lead to the following characterizations, which are connected

with Conjecture 1. For this purpose, we define the sets

R := {n ≥ 1 : Dn = rad(n+ 1)} and R := {3, 5, 8, 9, 11, 27, 29, 35, 59}.

Theorem 9. Let n ≥ 1. We have that B′
n(x) ∈ Z[x] if and only if D⊥

n = 1, or equivalently,
Dn−1 = rad(n). In these cases, the number n+ 1 is prime.

Theorem 10. If n ∈ R, then n+ 1 is composite. In particular, if n is odd, then D⊥
n+1 = 1.

Otherwise, we have that n = 2e for some e ≥ 1. Moreover, the set R is finite.

Conjecture 11. We have R = R.

Theorem 12. Conjecture 11, reduced to odd numbers n ∈ R, implies Conjecture 1.

3 Denominators and higher derivatives

In this section, we extend the results to higher derivatives of Bn(x). Let (n)k denote the
falling factorial such that

(

n

k

)

= (n)k/k!. We define the related denominators by

D
(k)
n := denom(B(k)

n (x)) (k, n ≥ 1).

Theorem 13. Let k, n ≥ 1. Then we have

D
(k)
n =

Dn−k

gcd(Dn−k, (n)k)
=

D⊥
n−k+1

gcd(D⊥
n−k+1, (n)k−1)

=
∏

p ∤ (n)k
sp(n−k+1)≥ p

p (n ≥ k). (15)

Otherwise, we have D
(k)
n = 1. Moreover, the denominators D

(k)
n have the property that

p ∤ D
(k)
n for all primes p ≤ k. In particular, we have

D
(1)
n =

Dn−1

rad(n)
= D⊥

n (n ≥ 1).
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Define the related sets

Sk := {n ≥ 1 : B(k)
n (x) ∈ Z[x]} (k ≥ 1),

where S1 = S. Let Sk denote the computable subsets of Sk with S1 = S.

Theorem 14. We have that all sets Sk are finite for k ≥ 1. Moreover, we have that

S1 ⊂ S2 ⊂ S3 ⊂ · · · .

Recall that
S1 = {1, 2, 4, 6, 10, 12, 28, 30, 36, 60}.

We use the notation, e.g., {a− b} = {a, . . . , b} for ranges. We compute the sets

S2 = {1− 7, 9− 13, 15, 16, 21, 25, 28− 31, 36, 37, 55, 57, 60, 61, 70, 121, 190},
S3 = {1− 18, 20− 22, 25, 26, 28− 32, 35− 38, 42, 50, 52, 55− 58, 60− 62,

66, 70− 72, 78, 80, 92, 110, 121, 122, 156, 176, 177, 190, 191, 210, 392}.

Conjecture 15. We have S2 = S2 and S3 = S3.

4 Proofs of the theorems

We give the proofs of the theorems in the order of their dependencies. First, we need some
key lemmas.

Lemma 16. Let n ≥ 1. We have the following properties.

(i) We have that Dn is odd if and only if n = 2e for some e ≥ 0.

(ii) If n+ 1 is composite, then rad(n+ 1) | Dn and rad(n+ 1) | D⊥
n .

(iii) If n ≥ 3 is odd, then Dn = lcm(Dn+1, rad(n+ 1)).

Proof. (i). See [8, Theorem 1]. (ii). See [5, Theorem 1] and [9, Corollary 2], respectively.
(iii). See [10, Theorem 3.2].

Lemma 17. For n ≥ 1, we have D+
n | D⊥

n .

Proof. Let n ≥ 1, and assume that D+
n > 1. Otherwise, we are done. If a prime p | D+

n , then
by (4) we have p >

√
n and sp(n) ≥ p. Thus, we have p2 > n implying the p-adic expansion

n = a0 + a1p. It then follows from a0 + a1 = sp(n) ≥ p that a0 6= 0 and p ∤ n. Finally, this
shows by (13) that p | D⊥

n .

Lemma 18. For k ≥ 1, there exists a number nk such that D+
n > (n+ k)k for every n > nk.
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Proof. Let k ≥ 1. Using the result of Bordellès et al. [2, Corollary 1.6], we have that (6)
holds with κ = 2. Thus, there exists a number nk such that ω(D+

n ) ≥ 2k for n > nk. Now
consider any set of 2k prime divisors p1 < p2 < · · · < p2k of D+

n . Since p | D+
n implies

p >
√
n, we infer that n + 1 < p1p2 < p3p4 < · · · < p2k−1p2k. Consequently, we get

D+
n > (n+ 1) · · · (n+ k) = (n+ k)k for every n > nk.

Proof of Theorem 9. Let n ≥ 1. If B′
n(x) ∈ Z[x], then we have by (3) that

denom(B′
n(x)) = denom(nBn−1(x)) = 1.

As a consequence, we have that Dn−1 | n. Applying Theorem 7 and (14), it follows that

D⊥
n · rad(n) | n. (16)

Since D⊥
n is coprime to n, we conclude that D⊥

n = 1. In the other direction, condition (16) is
satisfied only if D⊥

n = 1. By (14), this is equivalent to Dn−1 = rad(n). From Lemma 16(ii),
it further follows that n+1 must be prime. Otherwise, we would have that rad(n+1) | D⊥

n .
This completes the proof.

Proof of Theorem 3. First, we assume Conjecture 2(i). Let n > 192. We then have that
D+

n > 1. By Lemma 17, this property transfers to D⊥
n > 1. From Theorem 9, it follows

that B′
n(x) /∈ Z[x] for n > 192. We have to check the remaining cases 1 ≤ n ≤ 192. By

Theorem 9, it then suffices to check the numbers D⊥
n when n + 1 is prime. Finally, this

confirms that B′
n(x) ∈ Z[x] if and only if n ∈ S, implying Conjecture 1(ii). Secondly, we

now assume Conjecture 2(ii). It follows from (6) that there exists a number n0 such that
D+

n > 1 for n > n0. Similar to the first part above, this implies that B′
n(x) /∈ Z[x] for n > n0.

Hence, the set S is finite, which is Conjecture 1(i).

Proof of Theorem 5. We have to show two parts. (i). By Theorem 9, we have that n ∈ S
implies that n+ 1 is prime. (ii). This follows from computations of the graph [5, Figure B1]
of ω(D+

n ) in the range below 107.

Proof of Theorem 10. Let n ∈ R. Assume that Dn = rad(n+ 1), where p = n+ 1 is prime.
Then Dn = p contradicts (8), since sp(n) = n < p. Therefore, the number n+1 is composite.
If n is even, then Dn = rad(n + 1) implies that Dn is odd. From Lemma 16(i), it follows
that n = 2e for some e ≥ 1. Now, we assume that n ≥ 3 is odd, neglecting the case D1 = 1.
Using Lemma 16(iii), we infer that

Dn = lcm(Dn+1, rad(n+ 1)) = D⊥
n+1 lcm(D⊤

n+1, rad(n+ 1)) = rad(n+ 1),

so D⊥
n+1 = 1 as desired. It remains to show that R is finite. Applying Lemma 18 with k = 1

shows that there exists n1 such that D+
n > n+1 for n > n1. Since Dn ≥ D+

n by (9), it follows
that R is finite. This completes the proof.
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Proof of Theorem 12. Let R′ = {3, 5, 9, 11, 27, 29, 35, 59} be the reduced set of R consisting
only of odd numbers. From Theorems 9 and 10, we derive that n ∈ R′ implies that D⊥

n+1 = 1
and so n+ 1 ∈ S. Since R′ + 1 = S \ {1, 2}, the result follows.

Proof of Theorem 13. First assume that 1 ≤ n < k. By (2), the Bernoulli polynomial Bn(x)
is a monic polynomial of degree n. Thus, the kth derivative of Bn(x) vanishes, yielding

D
(k)
n = 1. If n = k ≥ 1, then B

(k)
n (x) = n! and so D

(k)
n = 1. As D0 = D⊥

1 = 1, this case
coincides with (15). Now, let n > k ≥ 1. From (3), it follows that

D
(k)
n = denom(B(k)

n (x)) = denom((n)k Bn−k(x)) =
Dn−k

gcd(Dn−k, (n)k)
.

Using (14), we have Dn−k = D⊥
n−k+1 rad(n−k+1). Recall that Dn−k is squarefree. Together

with (n)k = (n)k−1(n− k + 1), we infer that

gcd(Dn−k, (n)k) = gcd(D⊥
n−k+1, (n)k−1) rad(n− k + 1).

As a consequence, we obtain

D
(k)
n =

D⊥
n−k+1

gcd(D⊥
n−k+1, (n)k−1)

. (17)

Note that p | (n)k−1 implies p ∤ D
(k)
n . By (13), we have

D⊥
n−k+1 =

∏

p ∤n−k+1
sp(n−k+1)≥ p

p. (18)

Putting (17) and (18) together, we get

D
(k)
n =

∏

p ∤ (n)k
sp(n−k+1)≥ p

p.

From k! | (n)k and p ∤ (n)k, we derive that p ∤ D
(k)
n for p ≤ k. At the end, we consider the

case k = 1 for n ≥ 1. Recall that D
(1)
1 = D⊥

1 = 1. For n > 1, we have D
(1)
n = D⊥

n by (17).

From (14) and D0 = 1, it finally follows that D
(1)
n = Dn−1/ rad(n) = D⊥

n for all n ≥ 1.

Proof of Theorem 14. Let k ≥ 1. Combining Lemmas 17 and 18, we see that there exists a
number nk such that

D⊥
n ≥ D+

n > (n+ k)k (n > nk).

By Theorem 13 and shifting the index n to n+ k − 1 in (15), we obtain

D
(k)
n+k−1 =

D⊥
n

gcd(D⊥
n , (n+ k − 1)k−1)

(n ≥ 1).
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Since gcd(D⊥
n , (n+ k − 1)k−1) ≤ (n+ k − 1)k−1 < (n+ k)k, we then deduce that

D
(k)
n+k−1 >

D⊥
n

(n+ k)k
> 1 (n > nk),

showing that Sk is finite. As B
(k)
n (x) ∈ Z[x] also implies that B

(k+1)
n (x) ∈ Z[x], we infer that

Sk ⊂ Sk+1. Hence, this yields S1 ⊂ S2 ⊂ S3 ⊂ · · · , completing the proof.
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