
23 11

Article 24.4.3

Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Empirical Verification of a Generalization of

Goldbach’s Conjecture

Zsófia Juhász
Dept. of Computer Algebra

Faculty of Informatics
Eötvös Loránd University

1117 Budapest
Hungary

jzsofia@inf.elte.hu

Máté Bartalos
bartmate@gmail.com

Péter Magyar and Gábor Farkas
Faculty of Informatics

Eötvös Loránd University Center Savaria
9700 Szombathely

Hungary
map115599@gmail.com

farkasg@inf.elte.hu

Abstract

We test Hardy and Littlewood’s generalization (GGC) of Goldbach’s and Lemoine’s
conjectures. According to GGC, for relatively prime positive integers m1 and m2,
every sufficiently large integer n satisfying certain simple congruence criteria can be
expressed as n = m1p +m2q for some primes p and q. We check GGC up to 1012 for
all (up to 1013 for some) relatively prime coefficients m1,m2 ≤ 40, and present the

1

mailto:jzsofia@inf.elte.hu
mailto:bartmate@gmail.com
mailto:map115599@gmail.com
mailto:farkasg@inf.elte.hu

largest counterexamples that cannot be obtained in this form. We verify Lemoine’s
conjecture up to a new record of 1013. We compare the running times of four natural
verification algorithms for all relatively prime m1 ≤ m2 ≤ 40. The algorithms seek to
find either the p- or the q-minimal (m1,m2)-partitions of all numbers tested, by either
a descending or an ascending search for the prime to be maximized or minimized,
respectively, in the partitions. For all m1,m2 descending searches were faster than
ascending ones. We provide a heuristic explanation. The relative speed of ascending
[descending] searches for the p- and the q-minimal partitions, respectively, varied by
m1,m2. Using the average of p∗m1,m2

(n)—the minimal p in all (m1,m2)-partitions of
n—up to a sufficiently large threshold, we introduce two functions ofm1,m2, which may
help predict these rankings. Our predictions correspond well with actual rankings, and
could inform new verification efforts. Numerical data are presented, including average
and maximum values of p∗m1,m2

(n) up to 109.

1 Introduction

One of the best known and longest standing open problems in number theory is due to
Goldbach [8], who formulated his famous conjecture in 1742, in a letter to Euler. In modern
form, the even (or strong) Goldbach conjecture states that every even number greater than
2 can be expressed as the sum of two primes. Search for a proof or disproof of this claim has
fascinated generations of scholars and curious minds since.

Progress includes Lu’s proof [26] that the number of even integers up to x which do
not have Goldbach partitions is O(x0.879). Chen showed that every sufficiently large even
number is the sum of a prime and a semiprime (the product of at most two primes) [4]. In
2013 Helfgott provided a proof for the odd (weak or ternary) Goldbach conjecture—a weaker
statement than the even Goldbach conjecture—asserting that every odd number greater than
5 is the sum of three primes [12, 13].

With a general proof out of reach, several efforts have targeted the verification of the
even Goldbach conjecture (GC) empirically up to increasing limits [21, 23, 24, 9]. Oliveira e
Silva et al. [20] achieved the current record of 4 ·1018 in a large scale computational project in
2014. A Goldbach partition of an even number n is an expression n = p+q where p and q are
prime. The Goldbach partition of n containing the smallest value of p is called the minimal
Goldbach partition of n, and p(n) and q(n) denote the corresponding values of p and q,
respectively [9, 20]. Oliveira e Silva et al. [20] carried out the verification by segments of size
1012, in each interval searching for the minimal Goldbach partitions of even numbers using
an efficient sieve method. Subsequently, they handled outstanding values n individually by
‘ascending search’ for p(n). For each interval to be tested they first generated primes—
potential candidates for q—in a somewhat larger interval, using a cache-efficient modified
segmented sieve of Eratosthenes.

The rate of growth of p(n) is of some theoretical interest. Granville et al. [9] conjec-
tured p(n) = O(log2 n log log n). Granville also suggested two more precise, incompatible
conjectures of the form p(n) ≤ (C + o(1)) log2 n log log n, where C is ‘sharp’ in the sense

2

that C is the smallest constant with this property: one with C = C−1
2 ≈ 1.51478 and the

other one with C = 2e−γC−1
2 ≈ 1.70098, where C2 ≈ 0.66016 is the twin prime constant

and γ ≈ 0.57722 is the Euler-constant [20]. Empirical comparison of the plausibility of these
conjectures was inconclusive due to the requirement of data up to even higher limits [20].

In 1894 Lemoine [15] proposed a stronger version of the weak Goldbach conjecture, stating
that every odd number n > 5 can be expressed as n = p + 2q for some primes p and q [6,
p. 424]. The highest threshold of verification of Lemoine’s conjecture (LC) the authors have
found claims of is 1010 [17].

In 1923 Hardy and Littlewood [11] introduced the following generalization (GGC) of the
even Goldbach conjecture, also generalizing LC: for all relatively prime positive integers m1

and m2, every sufficiently large integer n satisfying certain simple congruence conditions can
be expressed as n = m1p+m2q for some primes p and q. It appears that this generalization
is lesser known, and has not been studied again until 2017 [7]. Hence, current paper is the
second one concerned with the verification of GGC in its general form. The authors [7] tested
GGC up to 109 for each m1,m2 ≤ 25 relatively prime, and provided the smallest values of n
satisfying the conditions of GGC starting from which all integers ≤ 109 also satisfying these
can be (m1,m2)-partitioned.

We extend the scope and limit of verification of GGC to all coefficients m1,m2 ≤ 40
relatively prime up to 1012 (up to 1013 for some m1,m2), and present the greatest values
n ≤ 1012 satisfying the conditions of GGC which cannot be (m1,m2)-partitioned. The
relatively small sizes of the largest counterexamples support GGC. We confirm LC up to a
new record of 1013. We applied four different natural verification algorithms in case of every
pair m1 < m2. (For m1 = m2 = 1 we only have two different approaches.) We compare
their speed for each m1,m2, provide heuristic explanations for their speed rankings, and seek
predictions for the fastest one when testing up to large thresholds. In this paper we are not
aiming to fully optimize the algorithms, but interested in comparing four natural approaches
to testing. For each pair m1,m2, the fastest one can be further improved, and potentially
combined with other—perhaps more efficient, e.g., sieving—methods for testing up to higher
limits in the future.

After preliminaries, Section 3 describes the four algorithms. An (m1,m2)-partition of n
is an expression n = m1p + m2q where p and q are prime. We call the (m1,m2)-partition
of n containing the smallest value of p [q] the p-minimal [q-minimal] (m1,m2)-partition of
n. Searching for the minimal Goldbach partition at the verification of GC [20] has two ana-
logues when checking GGC with m1 ̸= m2: finding either the p- or the q-minimal (m1,m2)-
partitions of numbers. In either case one can search in descending order for the prime to
be maximized or in ascending order for the prime to be minimized in the partitions. These
considerations yield four approaches to testing. We also present some findings about the
functions p∗m1,m2

(n)—where p∗m1,m2
(n) is the smallest value of p in all (m1,m2)-partitions

of n— and about the largest numbers k̂m1,m2 found satisfying the conditions of GGC that
cannot be (m1,m2)-partitioned, which are relevant to the designs of the algorithms.

Section 4 provides information about the implementation of the algorithms and our mea-

3

sures to check the correctness of our computations.
Section 5 discusses the results regarding the speed ranking of the four algorithms for

each pair m1 ≤ m2 ≤ 40 relatively prime—presented in Section 7— with some heuristic
explanations by the first author. Since primes among larger numbers are scarcer on average,
one may hypothesize that descending search for the prime to be maximized in the partition
is faster than ascending search for the prime to be minimized. This is fully supported by our
data. According to the results, whether descending [ascending] search for the p- or for the
q-minimal partitions is faster depends on the pair m1,m2. We propose two hypotheses to
predict these rankings, using two functions ofm1,m2 and of the average of p∗m1,m2

(n) taken up
to a sufficiently large threshold. Predicted and actual rankings show reasonably good match.
Approximations for the functions p∗m1,m2

(n) would help estimate the time complexities of the
algorithms, and ascertain the plausibility of the hypotheses.

Section 6 outlines our conclusions and some questions for future work.
Section 7 contains a subset of the data generated, including the largest value n ≤ 1012

satisfying the conditions of GGC that cannot be (m1,m2)-partitioned for all m1,m2 ≤ 40,
and the maximum and average values of p∗m1,m2

(n) when n ≤ 109 for all relatively prime
m1,m2 ≤ 20. We show the actual speed rankings of the four algorithms and those predicted
by our hypotheses, for all relatively prime m1 < m2 ≤ 40.

Section 8 includes the pseudocode of the main program implementing one of the algo-
rithms.

2 Preliminaries

For every integer a and b, let gcd (a, b) denote the greatest common divisor of a and b. Hardy
and Littlewood [11] introduced the following conjecture:

Conjecture 1. Let m1 and m2 be positive integers such that gcd(m1,m2) = 1. Then for
every sufficiently large integer n satisfying the conditions

1. gcd(n,m1) = gcd(n,m2) = 1 and

2. n ≡ m1 +m2 (mod 2),

there exist primes p and q such that

n = m1p+m2q. (1)

Furthermore, they also conjectured the following estimate for the number of ways N(n)
in which an integer n satisfying the conditions of GGC can be expressed in the form 1:

N(n) ∼ 2C2

m1m2

n

(log n)2

∏(
p− 1

p− 2

)
,

where C2 is the twin prime constant, and the product is taken over all odd primes p which
divide m1,m2 or n.

4

We let GGCm1,m2 denote the claim of GGC for given coefficients m1,m2. Then GGC1,1

and GGC1,2 are Goldbach’s and Lemoine’s conjectures, respectively. It is easy to see [7] that
GGC is equivalent to the following:

Conjecture 2. Let m1 and m2 be positive integers. Then for every sufficiently large integer
n satisfying the conditions

1. gcd(n,m1) = gcd(n,m2) = gcd(m1,m2) and

2. n ≡ m1 +m2 (mod 2s+1), where 2s is the largest power of 2 that is a common divisor
of m1 and m2,

there exist primes p and q such that

n = m1p+m2q.

In the sequel we consider GGC. The letters n, m1, and m2 denote positive integers such
that m1 and m2 are relatively prime.

Definition 3. An expression of the form 1 where p and q are primes is called an (m1,m2)-
Goldbach partition (or (m1,m2)-partition) of n. We say that n can be (m1,m2)-partitioned
if it possesses at least one (m1,m2)-partition.

For every m1,m2, the number n = m1 + m2 satisfies the conditions of GGCm1,m2 and
cannot be (m1,m2)-partitioned. Hence, if GGCm1,m2 is true then there exists a largest
positive integer satisfying the conditions of GGCm1,m2 that cannot be (m1,m2)-partitioned,

which we denote by km1,m2 . Let k̂m1,m2 stand for the largest integer ≤ 1012 satisfying the

conditions of GGCm1,m2 that cannot be (m1,m2)-partitioned. We conjecture that k̂m1,m2 =
km1,m2 for every pair m1,m2 tested.

Definition 4. If n can be (m1,m2)-partitioned then the smallest and the largest values
of p [q] in all (m1,m2)-partitions of n are denoted by p∗m1,m2

(n) [q∗m1,m2
(n)] and p∗∗m1,m2

(n)
[q∗∗m1,m2

(n)], respectively. We call n = m1p
∗
m1,m2

(n) + m2q
∗∗
m1,m2

(n) the p-minimal (or q-
maximal) and n = m1p

∗∗
m1,m2

(n) + m2q
∗
m1,m2

(n) the p-maximal (or q-minimal) (m1,m2)-
partition of n.

Clearly, for allm1,m2 the conditions of GGCm1,m2 and GGCm2,m1 on n are equivalent, and
every (m1,m2)-partition of n is also an (m2,m1)-partition if the order of terms is disregarded.
Hence, a number n can be (m1,m2)-partitioned if and only if it can be (m2,m1)-partitioned,
and in this case p∗m1,m2

(n) = q∗m2,m1
(n) and p∗∗m1,m2

(n) = q∗∗m2,m1
(n). Also, we have k̂m1,m2 =

k̂m2,m1 . Conjectures GGCm1,m2 and GGCm2,m1 are equivalent, and if they hold, then km1,m2 =
km2,m1 .

5

2.1 Notation

In the sequel pi denotes the ith prime number (i ∈ N+), e.g., we have p1 = 2, p2 = 3, etc.
For every n, the value φ(n) of Euler’s totient function at n is the number of positive integers
less than or equal to n that are relatively prime to n. For given m1 and m2, we let lcmm1,m2

denote the least common multiple of m1,m2, and 2. For every L > k̂m1,m2 for which there

is at least one n satisfying the conditions of GGCm1,m2 such that k̂m1,m2 < n ≤ L, we refer

to the average and the maximum values of p∗m1,m2
(n) over all k̂m1,m2 < n ≤ L satisfying

the conditions of GGCm1,m2 more succinctly as the average and maximum, respectively, of
p∗m1,m2

up to L. For every integer a and m ̸= 0, the modulo m residue of a is denoted by
a mod m.

3 Verifying algorithms

In this section we describe the four algorithms applied for checking GGCm1,m2 up toNm1,m2 ≈
1012 for every pairm1 ≤ m2 ≤ 40 relatively prime. (This means 490 different pairsm1 ≤ m2.)
We also present some results about the functions p∗m1,m2

(n) and the values k̂m1,m2 .

3.1 Input, output, and some notes on p∗m1,m2
(n) and k̂m1,m2

3.1.1 Input and output

All algorithms verify GGCm1,m2 in a segmented fashion. The input are m1 and m2 relatively
prime, the threshold of verification N , the length △ of the segments to be checked at a
time, and a further, implementation dependent parameter α. These can be set as required—
subject to the constraints on the input provided in the outline of the algorithms—giving
flexibility to our codes. We chose N to be the smallest multiple of 2m1m2 greater than or
equal to 1012—denoted by Nm1,m2—and △ to be the smallest multiple of 2m1m2 greater
than or equal to 5 · 107. (Assuming N and △ are divisible by 2m1m2 slightly simplified our
code at parts.)

For every n satisfying the conditions of GGCm1,m2 the algorithms only check if n has an
(m1,m2)-partition n = m1p + m2q such that m1p ≤ α (or m2q ≤ α). The output is the
array residual containing those n ≤ Nm1,m2 satisfying the conditions of GGCm1,m2 which do
not possess such a partition. After an algorithm has finished, it remains to check by another
method if numbers in residual can be (m1,m2)-partitioned.

3.1.2 Functions p∗m1,m2
(n) and the choice of α

We aimed to set the value of α so that residual only contains numbers that cannot be
(m1,m2)-partitioned at all, by ensuring that m1p

∗
m1,m2

(n) ≤ α holds for all relatively prime
m1,m2 ≤ 40 and n ≤ Nm1,m2 satisfying the conditions of GGCm1,m2 that can be (m1,m2)-
partitioned. We observed that p∗m1,m2

(n) remains relatively small even for large values of n.

6

For example, Figure 1 demonstrates the slow growth of p∗m1,m2
(n) by showing the average of

p∗m1,m2
(n) in each interval of length 106 centred at x = 106k+5 · 105 (0 ≤ k ≤ 103− 1) in the

cases m1 = 1,m2 = 2 (Subfigure 1a), m1 = 4,m2 = 17 (Subfigure 1b), and m1 = 7,m2 = 3
(Subfigure 1c). Table 5 contains the maximum and average values of p∗m1,m2

(n) up to n ≤ 109

for each m1,m2 ≤ 20 relatively prime. For n ≤ 109, over all m1,m2 ≤ 40 relatively prime the
maximum of p∗m1,m2

(n) is 78697 (at m1 = 32, m2 = 37), and the maximum of m1p
∗
m1,m2

(n)
is 2858879 (at m1 = 37, m2 = 38). Experimentally we also found that m1p

∗
m1,m2

(n) ≤ 5 · 107
for all n ≤ Nm1,m2 satisfying the conditions of GGCm1,m2 that can be (m1,m2)-partitioned,
for all m1,m2 ≤ 40 relatively prime. Hence, in our implementation α = 5 · 107, and so
for all m1,m2, the largest number in residual equals k̂m1,m2 . Choosing smaller suitable α
could have been possible, but the resulting improvements in running times would have been
insignificant.

(a) m1 = 1,m2 = 2 (b) m1 = 4,m2 = 17 (c) m1 = 7,m2 = 3

Figure 1: The average value of p∗m1,m2
(n) in the interval of length 106 centred at x = 106k+

5 · 105 for 0 ≤ k ≤ 103 − 1, in cases of m1,m2 indicated under each subfigure.

3.1.3 Values of k̂m1,m2

Table 4 shows k̂m1,m2 for all relatively prime m1,m2 ≤ 40. The maximum (at m1 = 32,

m2 = 37) and average of k̂m1,m2 are 412987 and 52004.84, respectively. The relatively small

sizes of k̂m1,m2 support GGC, and also meant that the extra time required for checking
numbers in residual was negligible.

3.2 The algorithms

3.2.1 Different approaches to testing

The main difference between Algorithms 1a, 1b, 2a, and 2b lies in their methods for check-
ing if a number can be (m1,m2)-partitioned. These—for given ordered pair (m1,m2)—are
summarized below:

Algorithm 1a [1b]: ‘Descending search for the prime to be maximized’ in the parti-
tions. Algorithm 1a [1b] searches for the p-minimal [q-minimal] (m1,m2)-partition n =
m1p

∗
m1,m2

(n) + m2q
∗∗
m1,m2

(n) [n = m1p
∗∗
m1,m2

(n) + m2q
∗
m1,m2

(n)] by trying all possible candi-
dates q [p] for q∗∗m1,m2

(n) [for p∗∗m1,m2
(n)] in decreasing order until it finds that n−m2q = m1p

7

[n−m1p = m2q] for some prime p [q].
Algorithm 2a [2b]: ‘Ascending search for the prime to be minimized’ in the parti-

tions. Algorithm 2a [2b] searches for the p-minimal [q-minimal] (m1,m2)-partition n =
m1p

∗
m1,m2

(n) + m2q
∗∗
m1,m2

(n) [n = m1p
∗∗
m1,m2

(n) + m2q
∗
m1,m2

(n)] by trying all possible candi-
dates p [q] for p∗m1,m2

(n) [for q∗m1,m2
(n)] in increasing order until it finds that n−m1p = m2q

[n−m2q = m1p] for some prime q [p].
Algorithms 1a and 1b [2a and 2b] can be implemented by the same program by inter-

changing the values of m1 and m2. Hence, only Algorithms 1a and 2a are described in this
section, referred to as Algorithms 1 and 2, respectively.

3.2.2 Simplified outlines of Algorithms 1 and 2

Input: m1,m2, N , △, α ∈ N+ such that gcd(m1,m2) = 1, N > 9, 2m1m2|N , 2m1m2|△, and
α ≤ △.
Output: array residual containing all numbers n ≤ N satisfying the conditions of GGCm1,m2

for which there are no primes p and q such that n = m1p+m2q and m1p ≤ α.

1. Phase I: Unsegmented phase

(a) Generate ‘small’ primes up to K = max (⌊
√
N/m2⌋, ⌊α/m1⌋).

(proc. SmallPrimes(K))

(b) Generate all numbers m1p ≤ α where p is prime. In Algorithm 2 these are sorted
and stored separately according to their residues modulo m2.

(proc. GenerateIsm1p(α) [Generatem1pr(α)] in Algorithm 1 [2])

(c) Generate the modulo lcmm1,m2 ‘residue wheel’, i.e., the array of all lcmm1,m2

residues relatively prime to m1m2 and congruent to m1 + m2 modulo 2. (proc.
GenerateResiduePattern(m1,m2))

2. Phase II: Check GGCm1,m2 segment by segment. For each interval [A,B):

(a) Generate m2-times multiples of ‘large’ primes in an interval.

(proc. Generatem2qr(C,D) [Generateism2q(C,D)] in Algorithm 1 [2])

i. Generate all primes in interval [C/m2, D/m2). (The values C and D depend
on A and B.)

ii. Generate all numbers of the form m2q in interval [C,D), where q is prime.
Algorithm 1 sorts and stores these numbers separately according to their
residues modulo m1.

(b) Check GGCm1,m2 in interval [A,B).

(proc. Check1(A,B) [Check2(A,B)] in Algorithm 1 [2])

8

3.2.3 Some ideas applied in both algorithms

In order to check if every number in an interval [A,B) satisfying the conditions of GGCm1,m2

has a partitionm1p+m2q such thatm1p ≤ α, it is sufficient to possess the lists of all numbers
m1p ≤ α where p is prime, and of all numbers m2q in interval [max (0, A− α), B) where q
is prime. These lists are generated in Phases I and II, respectively. Although methods with
lower asymptotic time complexities exist [3, 1, 18, 2, 22], in Phases I and II the sieve of
Eratosthenes and a segmented version of this, respectively, is used to generate primes.

If n = m1p+m2q is an (m1,m2)-partition then

m2q ≡ n (mod m1) and (2)

m1p ≡ n (mod m2). (3)

Therefore, for each n, Algorithm 1 [2] in Phase II tries as candidates for q∗∗m1,m2
(n) [p∗m1,m2

(n)]
only primes q [p] satisfying congruence (2) [(3)], which reduces the number of candidates
tested by approximately a factor of 1/φ(m1) [1/φ(m2)]. In order to facilitate this, when
generating numbers of the form m2q [m1p] in an interval [up to α] Algorithm 1 [2] also sorts
them by their residues modulo m1 [m2].

3.2.4 Detailed description of the steps in Algorithm 1

Phase I: Procedure SmallPrimes(K) generates a list of all ‘small’ primes up to K =
max (⌊

√
Nm1,m2/m2⌋, ⌊α/m1⌋), using the sieve of Eratosthenes. Procedure GenerateIsm1p(α)

outputs the boolean array ism1p of length α + 1 such that for all 0 ≤ i ≤ α: ism1p[i] = 1
if and only if i = m1p for some prime p. When checking GGCm1,m2 only those numbers n
need to be tested which satisfy the conditions of GGCm1,m2 , which holds if and only if the
residue n mod lcmm1,m2 satisfies these. Procedure GenerateResiduePattern(m1,m2) gen-
erates boolean array res of length lcmm1,m2 such that for all 0 ≤ i ≤ lcmm1,m2 −1: res[i] = 1
if and only if gcd(i,m1) = gcd(i,m2) = 1 and i ≡ m1 +m2 (mod 2).

Phase II: For given integers 0 ≤ C < D such that 2m1m2|C and 2m1m2|D, procedure
Generatem2qr(C,D) generates all numbers of the form m2q in interval [C,D) where q is
prime, and stores each m2q in array m2q[r] where r = m2q mod m1 (0 ≤ r < m1). For given
integers 0 ≤ A < B where 2m1m2|A and 2m1m2|B, procedure Check1(A,B) checks for every
n in [A,B) satisfying the conditions of GGCm1,m2 if there exist primes p and q such that
n = m1p+m2q and m1p ≤ α. The procedure looks for the p-minimal (m1,m2)-partition of
n, applying a ‘descending’ search for q∗∗m1,m2

(n): trying in decreasing order the values m2q
where q is prime such that m2q ≡ n (mod m1) —taking these from array m2q[r] where
r = n mod m1—and checking if n −m2q is of the form m1p for some prime p. If such m2q
is found then q∗∗(n) = q and p∗(n) = (n−m2q)/m1. Otherwise n is added to array residual.
The output is array residual of those n in [A,B) satisfying the conditions of GGCm1,m2 for
which there exist no primes p and q such that n = m1p+m2q and m1p ≤ α.

Section 8 contains the pseudocode of procedure GGC1(N,m1,m2,△, α) implementing
Algorithm 1.

9

4 Implementation and checking for correctness

We implemented Algorithms 1 and 2 in C++. For each m1 ≤ m2 ≤ 40 relatively prime, we
checked GGCm1,m2 up to Nm1,m2 by Algorithms 1a, 1b, 2a, and 2b. (For m1 = m2 = 1,
Algorithms 1a and 1b [2a and 2b] are identical.) The program for Algorithm 1 [2] performed
both Algorithms 1a and 1b [2a and 2b], with the values of m1 and m2 interchanged (with
m1 < m2 in Algorithms 1a and 2a). Each algorithm ran on one core of a 32-core 64-bit Intel
Xeon Scalable processor.

For each pair m1 ≤ m2 the output arrays residual of the four algorithms (only two
different algorithms in case m1 = m2 = 1) were identical. We generated the values p∗m1,m2

(n)

[q∗m1,m2
(n)] and q∗∗m1,m2

(n) [p∗∗m1,m2
(n)] for all k̂m1,m2 < n ≤ 106 satisfying the conditions of

GGCm1,m2 , which were also identical.

5 Comparing the running times of the algorithms

5.1 Experimental data on running times

For each pair m1 ≤ m2 ≤ 40 relatively prime, Algorithms 1a and 1b were both faster than
Algorithms 2a and 2b, the former two significantly outperforming on average the latter. The
speed rankings of Algorithms 1a and 1b [2a and 2b] varied depending on the pair m1 < m2.
On average over all pairs m1 ≤ m2, Algorithms 1a and 1b [2a and 2b] showed very similar
speed performances. Table 1 presents the average, lowest, and highest running times of each
algorithm, and the pair m1,m2 where the latter occurred.

Algorithm Lowest Highest Average time (sec)
m1 m2 time (sec) m1 m2 time (sec)

Alg. 1a 7 30 22473 16 29 114177 56045
Alg. 1b 6 35 23345 1 16 108614 54461
Alg. 2a 33 35 55742 31 32 293279 132154
Alg. 2b 35 39 57391 32 37 293734 134559

Table 1: Lowest, highest, and average running times (sec) of the algorithms up to Nm1,m2 ≈
1012 over all pairs m1 ≤ m2 ≤ 40 relatively prime.

For each pair m1 < m2 tested the running times of the four algorithms ranked in one of
the following four orders from fastest to slowest:

• Group A: Algorithms 1a, 1b, 2a, 2b

• Group B: Algorithms 1a, 1b, 2b, 2a

• Group C: Algorithms 1b, 1a, 2a, 2b

• Group D: Algorithms 1b, 1a, 2b, 2a

10

Groups A, B, C, and D contain 21, 218, 242, and 8 pairs, respectively, as shown by Table
6 in Section 7. The dominance of groups B and C raises the question whether the pairs in
groups A and D would also move to one of these groups when testing up to sufficiently large
thresholds. In all 8 pairs in group D the running times of Algorithms 1a and 1b or those of
2a and 2b were ‘very close’. We ran all four algorithms for the pairs (9, 32), (11, 29), (17, 19),
and (23, 29) in group D—and for six other pairs including (1, 2)—up to ≈ 1013. The running
times are shown in Table 2. The speed rankings changed for all four pairs in group D. The
pairs (9, 32), (11, 29), (17, 19), and (23, 29) moved to groups B, C, A, and A, respectively.
In the latter two cases the running times of Algorithms 1a and 1b were ‘very close’ to each
other, which makes it plausible that the pairs might move again to another group if testing
until even higher thresholds. These results suggest that the remaining other four pairs in
group D may also leave this group in case of larger thresholds.

m1 m2 Running times (sec) up to ≈ 1012 Running times (sec) up to ≈ 1013

Alg. 1a Alg. 1b Alg. 2a Alg. 2b Alg. 1a Alg. 1b Alg. 2a Alg. 2b
1 2 77192 104914 290478 182075 754817 1052855 2290673 1873002
1 3 42991 67452 106733 110383 423373 671771 1125928 1154959
1 5 56912 77743 129483 142355 555759 786325 1350077 1515172
1 7 63372 82353 137414 158389 627182 823687 1479262 1704191
1 9 44371 69002 101032 111152 431663 687392 1065525 1172360
1 11 69622 86173 143534 169134 745476 860608 1470691 1753254
9 32 43546 43514 132022 111549 549958 582308 1331716 1146279
11 29 74485 52092 148247 145263 744006 706943 1404459 1563704
17 19 55562 55052 143130 143104 736166 738674 1458811 1545744
23 29 80070 59988 155817 155277 800289 807146 1567925 1676299

Table 2: Running times (sec) of the algorithms up to ≈ 1012 and ≈ 1013 for some m1,m2.

5.2 Estimations for the running times

The significant parts of the computation in Algorithm 1 [2] are Generatem2qr and Check1

[Generateism2q and Check2]. During all iterations procedure Generatem2qr [Generateism2q]
generates all primes up to N/m2, and their m2-times multiples, using O(N log logN) [25]
and π(N/m2) ∼ N/(m2(lnN − lnm2)) = o(N log logN) operations, respectively. Hence,
Generatem2qr [Generateism2q] takes O(N log logN) time.

In absence of approximations for the functions p∗m1,m2
(n) it is difficult to estimate the

number of operations performed by Check1 [Check2]. However, we can establish the follow-
ing. For given m1,m2 relatively prime, the number of values n ≤ Nm1,m2 tested—i.e., of
those satisfying the conditions of GGCm1,m2—is approximately φ(m1m2)Nm1,m2/ lcmm1,m2 ≈
1012φ(m1m2)/ lcmm1,m2 .

In Algorithm 1, for each n tested, the number of candidates Check1 tries for q∗m1,m2
(n) is

approximately the number of primes q in the interval between n/m2−m1p
∗
m1,m2

(n)/m2 and
n/m2 of length m1p

∗
m1,m2

(n)/m2 satisfying m2q ≡ n (mod m1). Using π(x) − π(x − y) ≈
y/ ln(x) [14], this can be estimated as follows:

m1p
∗
m1,m2

(n)

φ(m1)m2 ln(n/m2)
≈

m1p
∗
m1,m2

(n)

φ(m1)m2 ln(n)
. (4)

11

In Algorithm 2 for each value n tested, the number of candidates Check2 checks for p∗m1,m2
(n)

is equal to the number of primes p up to p∗m1,m2
(n) satisfying m1p ≡ n (mod m2), which is

approximately the following:

π(p∗m1,m2
(n))

φ(m2)
∼

p∗m1,m2
(n)

φ(m2) ln p∗m1,m2
(n)

. (5)

5.3 Some heuristics

Currently possessing no approximations for p∗m1,m2
(n), and thus for the number of operations

performed by Check1 and Check2, it is unclear how the time complexities of Generatem2qr
and Check1 [Generateism2q and Check2] compare. In order to obtain empirical data, we ran
Algorithm 1a for four pairs m1 ≤ m2 up to the thresholds of approximately 106, 107, 108, and
109, and measured the times taken by Check1 and Generatem2qr. In one case Check1 took
around 66%, and in all other cases above 80% (usually above 90%), whereas Generatem2qr
took in one case 16%, but in all other cases below 10%, and usually below 5% of the total
time. As the threshold increased, Algorithm 1a spent an increasing and a decreasing fraction
of the total time on Check1 and on Generatem2qr, respectively.

In the arguments below we assume that in Algorithm 1 [2] Check1 [Check2] is the most
time consuming part of the computation, with higher time complexity than Generatem2qr

[Generateism2q]; hence, the relative speed performances of Algorithms 1a, 1b, 2a, and 2b
are determined by Check1 and Check2.

5.3.1 Comparing the running times of Algorithms 1a and 2a [1b and 2b]

Granville et al. [9] conjectured that p(n) = p∗1,1(n) = O(log2 n log log n), implying p∗1,1(n) =
o(nε) for every ε ∈ R+. Based on our data we also conjecture that for all m1 and m2 and
ε ∈ R+ we have p∗m1,m2

(n) = o(nϵ). This assumption yields ln p∗m1,m2
(n) = o(ln(n)). Hence

m1p
∗
m1,m2

(n)

φ(m1) ln(n)
= o

(
p∗m1,m2

(n)

φ(m2) ln p∗m1,m2
(n)

)
,

which heuristically suggests that Algorithm 1a [1b] is faster than Algorithm 2a [2b] for all
m1,m2, when run until sufficiently large threshold. This prediction is in complete accordance
with our results: for each pair m1,m2 tested Algorithms 1a and 1b were both faster than
Algorithms 2a and 2b.

5.3.2 Comparing the running times of Algorithms 1a and 1b [2a and 2b]

Since for given m1,m2, in Algorithms 1a and 1b [2a and 2b] Check1 [Check2] checks the
same number of values n, one may attempt to explain their relative speed performances
using some estimate of the ‘average’ time spent by Check1 [Check2] on processing each value

12

n. Based on estimates 4 and 5, we introduce the following functions for every sufficiently
large number L:

f
L
(m1,m2) :=

m1p∗L
(m1,m2)

φ(m1)m2

and g
L
(m1,m2) :=

p∗
L
(m1,m2)

φ(m2) ln p∗L
(m1,m2)

,

where p∗
L
(m1,m2) is the average of p

∗
m1,m2

(n) up to L. Then for all m1,m2 and all L and N
sufficiently large, the following hypotheses can be considered when testing GGCm1,m2 up to
N :

H1(L,N) : Algorithm 1a is faster than Algorithm 1b if and only if

f
L
(m1,m2) < f

L
(m2,m1)

(
⇔

p∗
L
(m1,m2)

p∗
L
(m2,m1)

<
m2

2φ(m1)

m2
1φ(m2)

)
(6)

H2(L,N) : Algorithm 2a is faster than Algorithm 2b if and only if

g
L
(m1,m2) < g

L
(m2,m1)

(
⇔

p∗
L
(m1,m2) ln p∗L(m2,m1)

p∗
L
(m2,m1) ln p∗L(m1,m2)

<
φ(m2)

φ(m1)

)
. (7)

Then H1 is the hypothesis that H1(L,N) is true for all N ≥ L where L is sufficiently large.
Hypothesis H2 is the claim that H2(L,N) is true for all N ≥ L where L is sufficiently large.

We tested H1(10
9, Nm1,m2) and H2(10

9, Nm1,m2) for all 489 pairsm1 < m2 relatively prime.
The pairs can be categorized as follows:

• Group a: f
109

(m1,m2) < f
109

(m2,m1) and g
109

(m1,m2) < g
109

(m2,m1).

• Group b: f
109

(m1,m2) < f
109

(m2,m1) and g
109

(m1,m2) > g
109

(m2,m1).

• Group c: f
109

(m1,m2) > f
109

(m2,m1) and g
109

(m1,m2) < g
109

(m2,m1).

• Group d: f
109

(m1,m2) > f
109

(m2,m1) and g
109

(m1,m2) > g
109

(m2,m1).

Group a is empty, while groups b, c, and d contain 227, 258, and 4 pairs, respectively. For
all four pairs in group d at least one of the differences |f109(m1,m2) − f109(m2,m1)| and
|g

109
(m1,m2)− g

109
(m2,m1)| is ‘small’ (less than 0.4). Hence, it is plausible that their group

allocation may change if L is sufficiently large.
Table 6 shows the classification of the pairs into groups A, B, C, and D and a, b, c, and

d, respectively. In our experiment H1(10
9, Nm1,m2) is true for 467 pairs (groups Ab, Bb, Cc,

and Dc), and H2(10
9, Nm1,m2) holds for 476 pairs (groups Ac, Bb, Cc, Bd, and Db). Both

claims hold for 458 pairs (groups Bb and Cc) among all 489 pairs. Among those 22 pairs
for which H1(10

9, Nm1,m2) fails (groups Ac, Ad, Bc, Bd, and Db) in case of 15 pairs either
the running times of Algorithms 1a and 1b were ‘close’ (i.e., differed by less than 104 sec) or
|f

109
(m1,m2) − f

109
(m2,m1)| was ‘small’ (i.e., less than 1). For all those 13 pairs for which

H2(10
9, Nm1,m2) fails (groups Ab, Ad, Bc, and Dc) either the running times of Algorithms 2a

and 2b were ‘close’ (differed by less than 104 sec) or |g
109

(m1,m2)− g
109

(m2,m1)| was ‘small’

13

(less than 1). Hence, it is plausible that for sufficiently large N and L the hypotheses may
also hold for most (or for all) of these pairs.

Further computational experiments, understanding the behaviours of, and developing
estimations for the functions p∗m1,m2

(n) could help ascertain the plausibility of the two hy-
potheses.

5.4 Further observations regarding p∗m1,m2
(n)

(a) m1 = 1,m2 = 2 (b) m1 = 2,m2 = 5

(c) m1 = 23,m2 = 40 (d) m1 = 1,m2 = 33

Figure 2: The quotient
average p∗m1,m2

(n)

average q∗m1,m2
(n)

in each interval of length 106 centred at x, for x =

106k+5 · 105 (k = 0, 1, . . . , 103− 1), in cases of some m1,m2 indicated under each subfigure.

In Figure 1, one can note the slow growths of the average p∗m1,m2
(n) in intervals of length

106 up to 109. The graphs are close to smooth curves and similar in shape.
Figure 2 displays the functions x 7→ average of p∗m1,m2

(n)/average of q∗m1,m2
(n) in inter-

vals of length 106 centred at x = 106k + 5 · 105 (0 ≤ k ≤ 103 − 1) for m1 = 1,m2 = 2
(Subfigure 2a), m1 = 2,m2 = 5 (Subfigure 2b), m1 = 23,m2 = 40 (Subfigure 2c), and
m1 = 1,m2 = 33 (Subfigure 2d). The graphs—especially the first three—appear to be re-
markably close to straight lines: the trend lines with equations y = −2 · 10−11x + 2.4745,
y = 3 · 10−11x + 2.8297, y = 5 · 10−12x + 1.851, and y = 3 · 10−9x + 50.374, respectively,

14

indicated in each subfigure. The values of the functions fall within the following narrow
intervals between their minima and maxima (correct to 3 decimal places): [2.408, 2.519],
[2.711, 2.945], [1.663, 2.01], and [42.200, 55.582] (Subfigures 2a, 2b, 2c, and 2d, respectively).
If the smoothly increasing or decreasing trends of these functions continue, it suggests that
the functions L 7→ p∗

L
(m1,m2)/p∗L

(m2,m1) may also be increasing or decreasing, accord-
ingly. In this case inequality 6 is either simultaneously true or false for all L sufficiently
large.

6 Conclusion and future work

The relatively small sizes of k̂m1,m2 in cases of all pairs m1,m2 tested support the plausibility
of GGC, suggesting that the conjecture merits further investigation.

For all pairs m1,m2 ≤ 40 relatively prime, algorithms applying descending search were
faster than those using ascending search. Heuristic arguments suggest that this is proba-
bly the case in general. However, speed rankings of the two algorithms using descending
[ascending] search varied by m1,m2. The fastest algorithm can be further developed, and
potentially combined with sieving methods. Hence, it would be useful to obtain predic-
tions for the fastest one for given m1,m2 when testing up to large thresholds. Hypotheses
H1(10

9, Nm1,m2) and H2(10
9, Nm1,m2) were true in our implementation for mostm1,m2 tested,

providing support to H1 and H2. Further computational experiments, and developing ap-
proximations to p∗m1,m2

(n) could help assess their plausibility, and possibly propose better
predictions. It would be interesting to devise predictions for the speed rankings purely based
on m1,m2.

Ranking by size of the averages p∗L(m1,m2) for different m1,m2 ≤ 40 for L sufficiently
large appears to be independent of L. (We could observe this in our data only when L ≤ 1012,
but this is likely to be the case also for all larger L.) Explaining this ranking—and, in
particular, the observation that p∗109(m1,m2) > p∗109(m2,m1) for all m1 < m2 tested (Table
5)—by the properties of m1 and m2 is a future goal.

Efficient sieving methods could be developed (and potentially combined with one of the
four algorithms described) for testing GGC up to higher thresholds.

15

7 Tables of data

5 greatest values 5 smallest values Average
value (m1,m2) value (m1,m2) value

max p∗m1,m2
up to 109 78697 (32, 37) 449 (30, 1) 22889.33538

77723 (23, 37) 557 (17, 1)
77267 (37, 38) 571 (39, 1)
76379 (29, 38) 599 (21, 1)
75989 (1, 38) 631 (24, 1)

p∗
m1,m2

up to 109 2064.47552 (1, 37) 12.74269 (30, 1) 687.7063317

2059.89836 (1, 38) 15.37864 (15, 1)
2059.17801 (16, 37) 16.68819 (21, 1)
2059.1531 (32, 37) 17.27778 (36, 1)
2058.97664 (2, 37) 17.27898 (6, 1)

k̂m1,m2 412987 (32, 37), (37, 32) 2 (1, 1) 52004.838776
403357 (34, 37), (37, 34) 5 (1, 2), (2, 1)
390367 (37, 38), (38, 37) 10 (1, 3), (3, 1)
377122 (29, 37), (37, 29) 13 (1, 6), (6, 1)
370837 (29, 32), (32, 29) 17 (2, 3), (3, 2)

Table 3: The five greatest, smallest, and the average values of max p∗m1,m2
and of p∗m1,m2

up

to 109 and of k̂m1,m2 over all pairs m1,m2 ≤ 40 relatively prime.

m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2

1 1 2 5 32 12541 12 13 11449 20 31 102659
1 2 5 5 33 3182 12 17 15101 20 33 29797
1 3 10 5 34 13511 12 19 8737 20 37 156137
1 4 77 5 36 4699 12 23 16739 20 39 26251
1 5 24 5 37 12718 12 25 10477 21 22 29191
1 6 13 5 38 14527 12 29 25889 21 23 21962
1 7 36 5 39 4954 12 31 18547 21 25 20554
1 8 49 6 7 421 12 35 14303 21 26 33767
1 9 28 6 11 1361 12 37 67777 21 29 30746
1 10 29 6 13 1723 13 14 17827 21 31 30112
1 11 54 6 17 2447 13 15 3802 21 32 44473
1 12 25 6 19 3133 13 16 32507 21 34 47323
1 13 116 6 23 4901 13 17 28876 21 37 41794
1 14 163 6 25 2489 13 18 11239 21 38 54287
1 15 46 6 29 10987 13 19 30782 21 40 22943
1 16 473 6 31 10369 13 20 25913 22 23 108041
1 17 526 6 35 2059 13 21 6542 22 25 91277
1 18 37 6 37 9427 13 22 49631 22 27 49333
1 19 452 7 8 2711 13 23 44446 22 29 161383
1 20 109 7 9 754 13 24 14221 22 31 133283
1 21 88 7 10 2453 13 25 25658 22 35 91579
1 22 401 7 11 2294 13 27 16078 22 37 229309
1 23 832 7 12 2371 13 28 74849 22 39 56323
1 24 97 7 13 12326 13 29 64634 23 24 39959

Table 4: The value of k̂m1,m2 for all relatively prime m1 ≤ m2 ≤ 40.

16

m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2

1 25 296 7 15 1192 13 30 12949 23 25 76528
1 26 337 7 16 10463 13 31 82826 23 26 106201
1 27 136 7 17 8104 13 32 80609 23 27 50872
1 28 1157 7 18 6841 13 33 16024 23 28 136651
1 29 1588 7 19 17846 13 34 99131 23 29 172076
1 30 61 7 20 8387 13 35 48364 23 30 26633
1 31 2918 7 22 10729 13 36 31249 23 31 201812
1 32 1951 7 23 13492 13 37 92006 23 32 225457
1 33 214 7 24 6583 13 38 91009 23 33 51094
1 34 1313 7 25 8618 13 40 63913 23 34 163993
1 35 226 7 26 22657 14 15 2921 23 35 81274
1 36 397 7 27 4556 14 17 43423 23 36 68507
1 37 1616 7 29 29516 14 19 56237 23 37 269506
1 38 1117 7 30 3217 14 23 42709 23 38 273151
1 39 272 7 31 25304 14 25 23447 23 39 85906
1 40 1241 7 32 28057 14 27 19787 23 40 181699
2 3 17 7 33 5224 14 29 63871 24 25 44329
2 5 163 7 34 36461 14 31 71413 24 29 83609
2 7 89 7 36 6091 14 33 19571 24 31 83507
2 9 115 7 37 39896 14 37 83717 24 35 50339
2 11 673 7 38 21691 14 39 17189 24 37 100333
2 13 719 7 39 6472 15 16 8221 25 26 110687
2 15 173 7 40 30407 15 17 6668 25 27 39586
2 17 2371 8 9 1633 15 19 9664 25 28 88909
2 19 1757 8 11 6509 15 22 8161 25 29 102808
2 21 275 8 13 18461 15 23 12428 25 31 165446
2 23 2209 8 15 1399 15 26 13421 25 32 215743
2 25 2399 8 17 22273 15 28 16963 25 33 28454
2 27 781 8 19 19427 15 29 29396 25 34 146911
2 29 4339 8 21 3517 15 31 22636 25 36 87859
2 31 3229 8 23 47249 15 32 15227 25 37 251206
2 33 659 8 25 14081 15 34 19219 25 38 197587
2 35 3733 8 27 10427 15 37 21236 25 39 40738
2 37 11251 8 29 43711 15 38 23873 26 27 39293
2 39 1679 8 31 57719 16 17 42103 26 29 174451
3 4 55 8 33 10841 16 19 62507 26 31 233429
3 5 62 8 35 46243 16 21 12349 26 33 65059
3 7 94 8 37 57173 16 23 61861 26 35 142981
3 8 251 8 39 21799 16 25 62849 26 37 262897
3 10 133 9 10 811 16 27 26209 27 28 56647
3 11 140 9 11 2066 16 29 133321 27 29 74744
3 13 322 9 13 3008 16 31 128783 27 31 54784
3 14 461 9 14 2789 16 33 26981 27 32 82343

Table 4: The value of k̂m1,m2 for all relatively prime m1 ≤ m2 ≤ 40.

17

m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2

3 16 853 9 16 7657 16 35 55963 27 34 86791
3 17 554 9 17 3968 16 37 186427 27 35 41098
3 19 616 9 19 7498 16 39 48067 27 37 94342
3 20 1247 9 20 3803 17 18 16151 27 38 86143
3 22 817 9 22 11119 17 19 48058 27 40 63599
3 23 2204 9 23 7454 17 20 37717 28 29 202273
3 25 838 9 25 6658 17 21 13382 28 31 180791
3 26 1777 9 26 10271 17 22 83597 28 33 78469
3 28 1951 9 28 6469 17 23 89464 28 37 250961
3 29 1178 9 29 12058 17 24 39791 28 39 69259
3 31 3358 9 31 14422 17 25 39332 29 30 60619
3 32 3131 9 32 17021 17 26 89533 29 31 243562
3 34 1423 9 34 14803 17 27 34108 29 32 370837
3 35 608 9 35 5392 17 28 51589 29 33 105254
3 37 3814 9 37 18976 17 29 101834 29 34 244907
3 38 5741 9 38 21271 17 30 13703 29 35 166534
3 40 2347 9 40 20533 17 31 109916 29 36 97793
4 5 361 10 11 7489 17 32 120691 29 37 377122
4 7 1691 10 13 11051 17 33 52004 29 38 289069
4 9 629 10 17 13813 17 35 64166 29 39 117254
4 11 2383 10 19 14621 17 36 45109 29 40 228577
4 13 4073 10 21 3811 17 37 203162 30 31 54337
4 15 1291 10 23 22993 17 38 173681 30 37 56227
4 17 7759 10 27 10537 17 39 45572 31 32 344761
4 19 12167 10 29 28411 17 40 86201 31 33 87794
4 21 1537 10 31 35303 18 19 35353 31 34 317567
4 23 24499 10 33 10567 18 23 28153 31 35 176636
4 25 7181 10 37 45817 18 25 10843 31 36 171971
4 27 6511 10 39 12731 18 29 48683 31 37 363658
4 29 15133 11 12 3623 18 31 37957 31 38 348349
4 31 17723 11 13 13018 18 35 16937 31 39 121438
4 33 2773 11 14 11293 18 37 53407 31 40 313541
4 35 9271 11 15 1646 19 20 76319 32 33 108593
4 37 21881 11 16 25723 19 21 12112 32 35 195197
4 39 5443 11 17 18404 19 22 76493 32 37 412987
5 6 191 11 18 6893 19 23 110416 32 39 113111
5 7 458 11 19 35254 19 24 34129 33 34 136343
5 8 1333 11 20 17911 19 25 91904 33 35 39994
5 9 274 11 21 4022 19 26 120737 33 37 99146
5 11 1516 11 23 44204 19 27 26038 33 38 132331
5 12 953 11 24 9707 19 28 78671 33 40 71023
5 13 4582 11 25 31634 19 29 125218 34 35 166597
5 14 3379 11 26 42073 19 30 27077 34 37 403357

Table 4: The value of k̂m1,m2 for all relatively prime m1 ≤ m2 ≤ 40.

18

m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2 m1 m2 k̂m1,m2

5 16 4889 11 27 10994 19 31 169292 34 39 139459
5 17 2542 11 28 39167 19 32 171469 35 36 52631
5 18 1187 11 29 70618 19 33 68188 35 37 201062
5 19 3082 11 30 11021 19 34 156803 35 38 206653
5 21 656 11 31 45646 19 35 69442 35 39 53336
5 22 7523 11 32 63601 19 36 44647 36 37 113177
5 23 9218 11 34 64321 19 37 162286 37 38 390367
5 24 4229 11 35 31228 19 39 50608 37 39 140548
5 26 16543 11 36 18121 19 40 103619 37 40 264023
5 27 2858 11 37 68018 20 21 16129 38 39 188473
5 28 8237 11 38 84419 20 23 78457 39 40 145279
5 29 10246 11 39 26018 20 27 20663
5 31 11668 11 40 59399 20 29 142097

Table 4: The value of k̂m1,m2 for all relatively prime m1 ≤ m2 ≤ 40.

m1 m2 p∗m1,m2
(n) q∗m1,m2

(n) m1 m2 p∗m1,m2
(n) q∗m1,m2

(n) m1 m2 p∗m1,m2
(n) q∗m1,m2

(n)

avg max avg max avg max avg max avg max avg max
1 1 4 9 241.822 7927 97.774 3001 9 13 333.584 10193 222.26 6761
1 2 80.839 3037 32.8 1609 4 11 494.758 19507 160.372 5939 9 14 331.513 10067 198.584 6337
1 3 72.911 2371 20.072 743 4 13 607.515 24919 163.502 6311 9 16 463.174 13627 241.826 7219
1 4 181.026 6971 32.806 1453 4 15 327.845 9257 73.338 2153 9 17 464.765 13007 227.655 6481
1 5 176.526 6833 26.767 1093 4 17 841.539 29669 167.531 6553 9 19 528.846 15649 229.533 6301
1 6 157.484 4969 17.279 643 4 19 960.026 32801 168.921 6947 9 20 449.818 13921 180.773 5519
1 7 281.84 9431 29.376 1129 5 6 118.745 3457 93.492 2801 10 11 370.28 13093 339.42 12241
1 8 393.604 15497 32.806 1493 5 7 211.95 8969 145.513 6871 10 13 454.483 15731 345.898 11117
1 9 245.866 8431 20.072 647 5 8 295.392 10369 172.142 6229 10 17 632.311 21647 354.305 14369
1 10 382.522 13009 23.958 1153 5 9 184.588 5333 97.315 2731 10 19 721.599 25057 357.248 13033
1 11 500.068 17093 31.678 1499 5 11 375.582 11839 156.587 5881 11 12 304.228 8821 267.184 8293
1 12 342.648 11261 17.279 673 5 12 257.838 7309 93.511 2969 11 13 542.8 17299 452.035 16829
1 13 612.063 23663 32.294 1297 5 13 459.273 16477 159.551 5521 11 14 542.423 20359 406.549 15227
1 14 611.042 20359 26.557 1129 5 14 459.822 15773 141.315 4651 11 15 295.49 8941 203.796 5527
1 15 332.373 9127 15.379 557 5 16 638.409 24677 172.167 6451 11 16 754.067 26839 494.633 17863
1 16 849.623 33997 32.803 1597 5 17 637.215 22751 163.446 5657 11 17 751.415 25621 463.029 17713
1 17 846.422 32779 33.084 1381 5 18 398.036 10499 93.511 2963 11 18 470.391 14251 267.222 7681
1 18 529.975 15313 17.28 701 5 19 726.834 25609 164.784 5711 11 19 856.789 27581 466.872 15467
1 19 964.977 33791 33.364 1321 6 7 149.317 4597 129.94 3923 11 20 734.055 26497 370.239 12853
1 20 825.834 29209 23.957 1069 6 11 267.139 8543 139.856 4813 12 13 328.85 9871 310.206 9479
2 3 69.352 2083 43.626 1399 6 13 328.759 10883 142.486 4957 12 17 459.61 13033 317.598 10657
2 5 172.137 6379 60.482 2459 6 17 459.546 14731 145.948 4201 12 19 523.692 14699 320.198 9437
2 7 277.107 12011 66.282 2663 6 19 523.593 16703 147.126 4423 13 14 552.943 19889 499.815 16843
2 9 241.78 7129 43.628 1549 7 8 323.92 12589 277.119 11197 13 15 301.049 8539 250.574 7151
2 11 494.633 21107 71.487 3061 7 9 202.501 5717 154.108 4271 13 16 768.659 28463 607.268 25127
2 13 607.339 21383 72.924 3049 7 10 315.347 9769 207.433 6841 13 17 765.986 25747 566.894 21851
2 15 327.714 9049 32.917 1031 7 11 411.838 15131 249.973 9439 13 18 479.435 15199 328.849 9277
2 17 841.438 30859 74.71 3121 7 12 282.761 9137 149.358 4663 13 19 873.509 33703 571.528 22079
2 19 959.87 34039 75.341 3001 7 13 504.267 18593 254.754 10099 13 20 748.115 27953 454.483 14851
3 4 97.757 2939 69.363 2411 7 15 274.865 7499 116.406 3583 14 15 270.331 7789 248.994 6689
3 5 97.292 2909 55.338 1709 7 16 700.594 22783 277.12 10357 14 17 693.436 25121 566.271 20717
3 7 154.073 4517 60.42 1789 7 17 698.137 24109 260.916 11069 14 19 791.453 27277 570.866 20873
3 8 211.872 6869 69.37 2383 7 18 436.631 13367 149.359 4481 15 16 347.11 9521 327.84 8893
3 10 208.887 6359 51.951 1471 7 19 796.433 27583 263.145 10289 15 17 349.899 9539 308.256 8179
3 11 271.626 8231 64.839 2113 7 20 682.396 23689 207.435 6841 15 19 398.729 10979 310.687 9109
3 13 333.472 10733 66.064 1999 8 9 241.796 7027 211.92 6961 16 17 841.42 30727 787.381 29531
3 14 331.38 10259 57.045 1867 8 11 494.594 18481 348.832 13499 16 19 959.865 35327 793.796 28631
3 16 463.076 13553 69.361 2239 8 13 607.287 23887 355.623 12107 17 18 491.044 14149 459.684 12953
3 17 464.638 12503 67.628 2269 8 15 327.799 9091 158.333 4817 17 19 894.547 33721 790.894 26927
3 19 528.697 15217 68.167 2063 8 17 841.438 31081 364.403 15749 17 20 765.917 28429 632.339 25237
3 20 449.579 12659 51.956 1579 8 19 959.894 42727 367.416 13999 18 19 523.747 14897 495.035 16943
4 5 172.187 7109 135.388 5521 9 10 208.976 6469 180.762 5501 19 20 772.014 28729 721.715 24071
4 7 277.169 11497 148.746 5939 9 11 271.709 8363 218.093 6827

Table 5: Average and maximum values of p∗m1,m2
(n) and q∗m1,m2

(n) where n ≤ 109, for all
relatively prime m1 ≤ m2 ≤ 40.

19

Group The ordered pairs (m1,m2) contained by the group

Ab: (1, 3), (1, 9), (1, 15), (1, 21), (1, 33), (1, 39)

Ac: (1, 7), (1, 11), (1, 13), (1, 17), (1, 19), (1, 25), (1, 31), (1, 37), (2, 9), (2, 15), (2, 21), (7, 11)

Ad: (1, 5), (1, 27), (1, 35)

Bb: (1, 2), (1, 4), (1, 6), (1, 8), (1, 10), (1, 12), (1, 14), (1, 16), (1, 18), (1, 20), (1, 22), (1, 24), (1, 26), (1, 28), (1,

30), (1, 32), (1, 34), (1, 36), (1, 38), (1, 40), (3, 4), (3, 8), (3, 10), (3, 14), (3, 16), (3, 20), (3, 22), (3, 26), (3,

28), (3, 34), (3, 38), (3, 40), (5, 6), (5, 8), (5, 9), (5, 12), (5, 14), (5, 16), (5, 18), (5, 21), (5, 22), (5, 24), (5,

26), (5, 27), (5, 28), (5, 32), (5, 33), (5, 34), (5, 36), (5, 38), (5, 39), (7, 8), (7, 9), (7, 10), (7, 12), (7, 15), (7,

16), (7, 18), (7, 20), (7, 22), (7, 24), (7, 26), (7, 27), (7, 30), (7, 32), (7, 33), (7, 34), (7, 36), (7, 38), (7, 39), (7,

40), (9, 10), (9, 14), (9, 16), (9, 20), (9, 22), (9, 26), (9, 28), (9, 34), (9, 38), (9, 40), (11, 12), (11, 14), (11, 15),

(11, 16), (11, 18), (11, 20), (11, 21), (11, 24), (11, 25), (11, 26), (11, 27), (11, 28), (11, 30), (11, 32), (11, 34),

(11, 35), (11, 36), (11, 38), (11, 39), (11, 40), (13, 14), (13, 15), (13, 16), (13, 18), (13, 20), (13, 21), (13, 22),

(13, 24), (13, 25), (13, 27), (13, 28), (13, 30), (13, 32), (13, 33), (13, 34), (13, 35), (13, 36), (13, 38), (13, 40),

(15, 16), (15, 22), (15, 26), (15, 28), (15, 34), (15, 38), (17, 18), (17, 20), (17, 21), (17, 22), (17, 24), (17, 25),

(17, 26), (17, 27), (17, 28), (17, 30), (17, 32), (17, 33), (17, 35), (17, 36), (17, 38), (17, 39), (17, 40), (19, 20),

(19, 21), (19, 22), (19, 24), (19, 25), (19, 26), (19, 27), (19, 28), (19, 30), (19, 32), (19, 33), (19, 34), (19, 35),

(19, 36), (19, 39), (19, 40), (21, 22), (21, 26), (21, 32), (21, 34), (21, 38), (21, 40), (23, 24), (23, 25), (23, 26),

(23, 27), (23, 28), (23, 30), (23, 32), (23, 33), (23, 34), (23, 35), (23, 36), (23, 38), (23, 39), (25, 26), (25, 27),

(25, 28), (25, 32), (25, 33), (25, 34), (25, 36), (25, 38), (25, 39), (27, 28), (27, 32), (27, 34), (27, 38), (27, 40),

(29, 30), (29, 32), (29, 33), (29, 34), (29, 35), (29, 36), (29, 38), (29, 39), (31, 32), (31, 33), (31, 34), (31, 35),

(31, 36), (31, 38), (31, 39), (33, 34), (33, 38), (33, 40), (35, 36), (35, 38), (35, 39), (37, 38), (37, 39), (39, 40)

Bc: (15, 32)

Bd: (3, 32)

Cc: (1, 23), (1, 29), (2, 3), (2, 5), (2, 7), (2, 11), (2, 13), (2, 17), (2, 19), (2, 23), (2, 25), (2, 27), (2, 29), (2, 31), (2,

33), (2, 35), (2, 37), (2, 39), (3, 5), (3, 7), (3, 11), (3, 13), (3, 17), (3, 19), (3, 23), (3, 25), (3, 29), (3, 31), (3,

35), (3, 37), (4, 5), (4, 7), (4, 9), (4, 11), (4, 13), (4, 15), (4, 17), (4, 19), (4, 21), (4, 23), (4, 25), (4, 27), (4, 29),

(4, 31), (4, 33), (4, 35), (4, 37), (4, 39), (5, 7), (5, 11), (5, 13), (5, 17), (5, 19), (5, 23), (5, 29), (5, 31), (5, 37),

(6, 7), (6, 11), (6, 13), (6, 17), (6, 19), (6, 23), (6, 25), (6, 29), (6, 31), (6, 35), (6, 37), (7, 13), (7, 17), (7, 19),

(7, 23), (7, 25), (7, 29), (7, 31), (7, 37), (8, 9), (8, 11), (8, 13), (8, 15), (8, 17), (8, 19), (8, 21), (8, 23), (8, 25),

(8, 27), (8, 29), (8, 31), (8, 33), (8, 35), (8, 37), (8, 39), (9, 11), (9, 13), (9, 17), (9, 19), (9, 23), (9, 25), (9, 29),

(9, 31), (9, 35), (9, 37), (10, 11), (10, 13), (10, 17), (10, 19), (10, 21), (10, 23), (10, 27), (10, 29), (10, 31), (10,

33), (10, 37), (10, 39), (11, 13), (11, 17), (11, 19), (11, 23), (11, 31), (11, 37), (12, 13), (12, 17), (12, 19), (12,

23), (12, 25), (12, 29), (12, 31), (12, 35), (12, 37), (13, 17), (13, 19), (13, 23), (13, 29), (13, 31), (13, 37), (14,

15), (14, 17), (14, 19), (14, 23), (14, 25), (14, 27), (14, 29), (14, 31), (14, 33), (14, 37), (14, 39), (15, 17), (15,

19), (15, 23), (15, 29), (15, 31), (15, 37), (16, 17), (16, 19), (16, 21), (16, 23), (16, 25), (16, 27), (16, 29), (16,

31), (16, 33), (16, 35), (16, 37), (16, 39), (17, 23), (17, 29), (17, 31), (17, 37), (18, 19), (18, 23), (18, 25), (18,

29), (18, 31), (18, 35), (18, 37), (19, 23), (19, 29), (19, 31), (19, 37), (20, 21), (20, 23), (20, 27), (20, 29), (20,

31), (20, 33), (20, 37), (20, 39), (21, 23), (21, 25), (21, 29), (21, 31), (21, 37), (22, 23), (22, 25), (22, 27), (22,

29), (22, 31), (22, 35), (22, 37), (22, 39), (23, 31), (23, 37), (24, 25), (24, 29), (24, 31), (24, 35), (24, 37), (25,

29), (25, 31), (25, 37), (26, 27), (26, 29), (26, 31), (26, 33), (26, 35), (26, 37), (27, 29), (27, 31), (27, 35), (27,

37), (28, 29), (28, 31), (28, 33), (28, 37), (28, 39), (29, 31), (29, 37), (30, 31), (30, 37), (31, 37), (32, 33), (32,

35), (32, 37), (32, 39), (33, 35), (33, 37), (34, 35), (34, 37), (34, 39), (35, 37), (36, 37), (38, 39)

Db: (9, 32), (23, 40), (29, 40), (31, 40), (37, 40)

Dc: (11, 29), (17, 19), (23, 29)

Table 6: Classification of all pairs m1 < m2 ≤ 40 relatively prime into groups A, B, C, and D
and a, b, c, and d, indicated in the first column by upper and lower case letters, respectively.

20

8 Pseudocode for Algorithm 1

1 Function GGC1(N,m1,m2,△, α)
Input : positive integers N,m1,m2, △, and α such that gcd(m1,m2) = 1, N > 9, 2m1m2|N ,

2m1m2|△, and α ≤ △.
Output : array residual containing all numbers n ≤ N satisfying the conditions of GGCm1,m2

for which there do not exist primes p and q such that n = m1p+m2q and m1p ≤ α.
/* Start Phase I: Unsegmented phase */

/* Generating array primes. */

2 SmallPrimes(max (⌊
√

Nm1,m2

m2
⌋, ⌊ α

m1
⌋));

/* Assigning values to array ism1p. */

3 GenerateIsm1p(α);
/* Assigning values to array res. */

4 GenerateResiduePattern(m1,m2);
/* Start Phase II: Segmented phase */

/* Initialization */

5 Set arrays residual and m2q[r] (0 ≤ r < m1) empty;
6 A← 0;

/* Start segmented computation */

7 while A < N do
8 B ← min (A+△, N);

/* Keeping only those values in each array m2q[r] generated in previous

iteration which are greater than A− α and removing all other values. */

9 if A > 0 then
10 for r = 0 to m1 − 1 do
11 i← 0;
12 while i < length(m2q[r]) and m2q[r][i] < A− α do
13 i← i+ 1;
14 end
15 if i ̸= 0 then
16 remove interval(mq2[r], [0, . . . , i− 1])
17 end

18 end

19 end
/* Assigning new values to arrays m2q[r]. */

20 Generatem2qr(A,B);
/* Checking GGCm1,m2

in new interval. */

21 Check1(A,B);
22 A← A+△;

23 end

24 end

Algorithm 1: Pseudocode for the main program implementing Algorithm 1.

9 Acknowledgments

We thank the anonymous referees for their helpful comments and suggestions regarding both
content and presentation, which have lead to a much improved version of the paper.

21

References

[1] D. R. Barstow, An experiment in knowledge-based automatic programming, Artificial
Intelligence 12 (1979), 73–119.

[2] S. Bengelloun, An incremental primal sieve, Acta Inform. 23 (1986), 119–125.

[3] C. Bays and R. H. Hudson, The segmented sieve of Eratosthenes and primes in arith-
metic progressions to 1012, BIT 17 (1977), 121–127.

[4] J. R. Chen, On the representation of a large even number as the sum of a prime and
the product of at most two primes, Sci. Sin. 16 (1973), 157–176.

[5] L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messenger of
Mathematics 33 (1904), 155–161.

[6] L. E. Dickson, History of the Theory of Numbers, Vol. I, Carnegie Institution of Wash-
ington, 1919.

[7] G. Farkas and Zs. Juhász, A generalization of Goldbach’s conjecture, Ann. Univ. Sci.
Budapest. Sect. Comput. 46 (2017), 39–53.

[8] P. N. Fuss, Correspondance Mathématique et Physique de Quelques Célèbres Géomètres
du XVIIIème Siècle, L’Impr. de l’Académie impériale des sciences, 1843.

[9] A. Granville, J. van de Lune, and H. J. J. te Riele, Checking the Goldbach conjecture
on a vector computer, in R. A. Mollin, ed., Number Theory and Applications, Kluwer
Academic Publishers, 1989, pp. 423–433.

[10] D. Gries and J. Misra, A linear sieve algorithm for finding prime numbers, Commun.
ACM 21 (1978), 999–1003.

[11] G. H. Hardy and J. E. Littlewood, Some problems of ‘Partitio numerorum’; III: On the
expression of a number as a sum of primes, Acta Math. 44 (1923), 1–70.

[12] H. A. Helfgott, The ternary Goldbach conjecture is true, arxiv preprint arXiv:1312.7748
[math.NT], 2013. Available at https://arxiv.org/abs/1312.7748.

[13] H. A. Helfgott, The ternary Goldbach problem, arxiv preprint arXiv:1501.05438
[math.NT], 2015. Available at https://arxiv.org/abs/1501.05438.

[14] D. R. Heath-Brown, The number of primes in a short interval, J. Reine Angew. Math.
389 (1988), 22–63.

[15] É. Lemoine, Lemoine’s conjecture, L’Intermédiaire des Mathématiciens 1 (1894), 179.

[16] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221–225.

22

https://arxiv.org/abs/1312.7748
https://arxiv.org/abs/1501.05438

[17] Make the Brain Happy, Lemoine’s conjecture verified to 1010, 2019, https://www.

makethebrainhappy.com/2019/06/lemoines-conjecture-verified-to-1010.html.

[18] J. Misra, An exercise in program explanation, ACM Transactions on Programming
Languages and Systems 3 (1981), 104–109.

[19] T. Oliveira e Silva, Goldbach conjecture verification, 2015, http://sweet.ua.pt/tos/
goldbach.html.

[20] T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach
conjecture and computation of prime gaps up to 4 ·1018, Math. Comp. 83 (2014), 2033–
2060.

[21] N. Pipping, Die Goldbachsche Vermutung und der Goldbach-Vinogradovsche Satz, Acta
Acad. Aboensis, Math. Phys. 11 (1938), 4–25.

[22] P. Pritchard, Linear prime-number sieves: a family tree, Sci. Comput. Program. 9
(1987), 17–35.

[23] J. Richstein, Verifying the Goldbach conjecture up to 4 · 1014, Math. Comp. 70 (2000),
1745–1749.

[24] M. K. Sinisalo, Checking the Goldbach conjecture up to 4·1011, Math. Comp. 61 (1993),
931–934.

[25] J. Sorenson, An introduction to prime number sieves, Computer Sciences Technical
Report #909, University of Wisconsin-Madison, Department of Computer Sciences,
1990. Available at: https://minds.wisconsin.edu/handle/1793/59248.

[26] W. C. Lu, Exceptional set of Goldbach number, J. Number Theory 130 (2010), 2359–
2392.

2020 Mathematics Subject Classification: Primary 11A41; Secondary 11P32.
Keywords: Goldbach conjecture, Lemoine’s conjecture, prime number.

(Concerned with sequences A000040, A002091, A002092, A046927, A194828, A195352, A195353,
and A195354.)

Received March 31 2023; revised versions received April 1 2023; July 24 2023; February 2
2024. Published in Journal of Integer Sequences, March 18 2024.

Return to Journal of Integer Sequences home page.

23

https://www.makethebrainhappy.com/2019/06/lemoines-conjecture-verified-to-1010.html
https://www.makethebrainhappy.com/2019/06/lemoines-conjecture-verified-to-1010.html
http://sweet.ua.pt/tos/goldbach.html
http://sweet.ua.pt/tos/goldbach.html
https://minds.wisconsin.edu/handle/1793/59248
https://oeis.org/A000040
https://oeis.org/A002091
https://oeis.org/A002092
https://oeis.org/A046927
https://oeis.org/A194828
https://oeis.org/A195352
https://oeis.org/A195353
https://oeis.org/A195354
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Notation

	Verifying algorithms
	Input, output, and some notes on Lg and Lg
	Input and output
	Functions Lg and the choice of Lg
	Values of Lg

	The algorithms
	Different approaches to testing
	Simplified outlines of Algorithms 1 and 2
	Some ideas applied in both algorithms
	Detailed description of the steps in Algorithm 1

	Implementation and checking for correctness
	Comparing the running times of the algorithms
	Experimental data on running times
	Estimations for the running times
	Some heuristics
	Comparing the running times of Algorithms 1a and 2a [1b and 2b]
	Comparing the running times of Algorithms 1a and 1b [2a and 2b]

	Further observations regarding Lg

	Conclusion and future work
	Tables of data
	Pseudocode for Algorithm 1
	Acknowledgments

