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Abstract

The Delannoy numbers satisfy a recurrence in two variables and have been used

to count lattice paths. We examine related arrays, the generalized Delannoy numbers.

We extend properties of the Delannoy numbers to these arrays using combinatorial

methods associating these numbers with lattice paths. We generalize these results to

any array that satisfies the Delannoy recurrence.

1 Introduction

Henri Auguste Delannoy (1833–1915) was a French army officer and later an amateur math-
ematician, historian, and painter. Correspondence with Édouard Lucas led to eleven articles
on recreational mathematics and probability theory. Delannoy’s work faded for a while into
relative obscurity until more recent discoveries of applications of the numbers he discovered
[1]. These Delannoy numbers count the number of queen’s walks, paths a queen can take
from one square to another on a chessboard, moving only right, up, or diagonally up to the
right. In the Cartesian plane, the number of queen’s walks from (0, 0) to (m,n) is known as
the Delannoy number D(m,n). Equivalently, the number D(m,n) counts how many lattice
paths go from (0,0) to (m,n), using only the steps (0,1), (1,0), and (1,1), which we also
denote, respectively, H, V, and D. Delannoy’s original results [2] in the area of lattice paths
were published in 1895.

Any lattice path from (0,0) to (m,n) has three possible final steps: a horizontal step
from (m − 1, n), a vertical step from (m,n − 1), or a diagonal step from (m − 1, n − 1).
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The Delannoy recurrence D(m,n) = D(m − 1, n) +D(m,n − 1) +D(m − 1, n − 1) follows
immediately. The standard formula, due to Delannoy, is given by

D(m,n) =
n

∑

j=0

(

m+ n− j

n

)(

n

j

)

.

The authors introduced [3] the generalized Delannoy numbers by adding a parameter
to the standard formula above. Combinatorial interpretations were introduced, including
counting certain lattice paths and counting certain types of words on three letters. The
generalized Delannoy numbers are defined, for m,n ≥ k ≥ 0, by

Dk(m,n) =
n

∑

j=0

(

m+ n− k − j

n− k

)(

n

j

)

.

While we could allow k to be negative, it is more convenient to define, for m,n, k ≥ 0, by

Dk(m,n) =
n

∑

j=0

(

m+ n+ k − j

n+ k

)(

n

j

)

.

We refer to both Dk(m,n) and Dk(m,n) as generalized Delannoy numbers. Obviously, we
have D(m,n) = D0(m,n) = D0(m,n). The authors proved a “central theorem” [4] which
relates these two types:

Dk(m,n) = 2kDk(n− k,m− k).

Consequently, Dk(m,n) is divisible by 2k. In addition, a number of “relationship” theo-
rems amongst the generalized Delannoy numbers were proved.

Both Dk(m,n) and Dk(m,n) satisfy the Delannoy recurrence:

Dk(m,n) = Dk(m− 1, n) +Dk(m,n− 1) +Dk(m− 1, n− 1)

and
Dk(m,n) = Dk(m− 1, n) +Dk(m,n− 1) +Dk(m− 1, n− 1).

In this paper, we catalogue various lattice path interpretations, some known, some new,
of the generalized Delannoy numbers. Using these interpretations, we provide new proofs
of some “relationship” theorems, and we provide alternate formulas for the generalized De-
lannoy numbers. Finally, we extend results about the generalized Delannoy numbers to all
arrays that satisfy the Delannoy recurrence.

For reference we provide some tables of generalized Delannoy numbers Dk(m,n) below.
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D0 0 1 2 3 4 5

0
(

0
0

) (

1
1

) (

2
2

) (

3
3

) (

4
4

) (

5
5

)

1
(

1
0

)

3 5 7 9 11

2
(

2
0

)

5 13 25 41 61

3
(

3
0

)

7 25 63 129 231

4
(

4
0

)

9 41 129 321 681

5
(

5
0

)

11 61 231 681 1683

D1 0 1 2 3 4 5

0
(

1
1

) (

2
2

) (

3
3

) (

4
4

) (

5
5

) (

6
6

)

1
(

2
1

)

4 6 8 10 12

2
(

3
1

)

9 19 33 51 73

3
(

4
1

)

16 44 96 180 304

4
(

5
1

)

25 85 225 501 985

5
(

6
1

)

36 146 456 1182 2668

D2 0 1 2 3 4 5

0
(

2
2

) (

3
3

) (

4
4

) (

5
5

) (

6
6

) (

7
7

)

1
(

3
2

)

5 7 9 11 13

2
(

4
2

)

14 26 42 62 86

3
(

5
2

)

30 70 138 242 390

4
(

6
2

)

55 155 363 743 1375

5
(

7
2

)

91 301 819 1925 4043

D3 0 1 2 3 4 5

0
(

3
3

) (

4
4

) (

5
5

) (

6
6

) (

7
7

) (

8
8

)

1
(

4
3

)

6 8 10 12 14

2
(

5
3

)

20 34 52 74 100

3
(

6
3

)

50 104 190 316 490

4
(

7
3

)

105 259 553 1059 1865

5
(

8
3

)

196 560 172 2984 5908

Table 1: Values of D0, D1, D2, D3. We use m to count rows, n to count columns.

2 Interpretations of generalized Delannoy numbers

The lattice path interpretation of the Delannoy numbers inspires a number of interpretations
for the generalized Delannoy numbers. These interpretations occur in pairs which arise from
reflecting a path about the line y = x.

Theorem 1. For k ≥ 0, the number Dk(m,n) counts paths from (0,0) to

• (m,n+ k) with no diagonals above height n

• (n+ k,m) with no diagonals past x = n

• (m+ 1, n+ k) with highest diagonal at height n

• (n+ k,m+ 1) with rightmost diagonal at x = n

• (m,n+ k) where there are n or fewer diagonals, allowed only at n specified heights

• (n+ k,m) where there are n or fewer diagonals at n specified horizontal positions.
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Proof. The authors proved the first pair in Proposition 1 [4]. The second pair follows directly
from the first: change the vertical (1,0) step from height n to a diagonal (1,1) step, or alter
the horizontal (0,1) at x = n to a diagonal, to produce the desired lattice paths. The
third pair follows from the first by specifying positions i1, i2, . . . in, rather than positions
0, 1, 2, . . . n− 1 as the only positions where diagonals are allowed.

By step with “vertical component” we mean vertical or diagonal. By step with “horizontal
component” we mean horizontal or diagonal. We sometimes for convenience speak of a “step”
HV or V H, although these of course consist of two steps.

Theorem 2. For k ≥ 0, the number Dk(m,n) counts paths from (0,0) to

• (m,n) where each of the last k horizontal steps H is followed by a D or V. If there are
fewer than k horizontal steps, say i, for 0 ≤ i ≤ k − 1, then every horizontal step is
followed by a step with vertical component, and the final k− i+1 steps of the path are
steps with a vertical component

• (n,m) where each of the last k vertical steps V is followed by a D or H. If there are
fewer than k vertical steps, say i, for 0 ≤ i ≤ k− 1, then every vertical step is followed
by a step with horizontal component, and the final k− i+ 1 steps of the path are steps
with a horizontal component

• (m,n) where each of the last k steps with horizontal component is VH or D

• (n,m) where each of the last k steps with vertical component is either HV or D

• (m,n) where each of the last k steps with horizontal component is either HV or D

• (n,m) where each of the last k steps with vertical component is VH or D.

Proof. The authors proved the first pair in Proposition 2 [4]. From Theorem 1 above, we have
thatDk(n−k,m−k) counts the number of lattice paths to (n−k,m) with no diagonals above
height m− k. For each of the last k vertical steps V in said paths, choose between adding a
horizontal step after a V or changing the V to a diagonal step D. We have 2k choices, giving
all paths to (n,m) with the last k steps with vertical component V H or D. The second pair
now follows from the central theorem [4], which states that Dk(m,n) = 2kDk(n− k,m− k).
By swapping the occurrences as mentioned in the last k steps of HV and V H in the second
pair, we obtain the third pair.

3 New proofs from lattice arguments

Using the lattice path interpretations from the previous section, we provide proofs of some
theorems previously proved [4]. We refer to the following properties as “relationship” theo-
rems.
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Theorem 3 (Horizontal sum). For m,n, k ≥ 0, we have Dk(m,n) + Dk(m,n + 1) =
2Dk+1(m,n).

Proof. Interpret Dk(m,n + 1) as counting paths to (m,n + k + 1) with no D above height
n+ 1. Such paths with no D above height n are exactly those counted by Dk+1(m,n). The
remaining paths have a D at height n. Change the D to a V , then add an H at the end, to
get paths counted by Dk+1(m,n) ending in H. The remaining paths to (m,n + k + 1) end
in V . Remove the final V to get paths counted by Dk(m,n).

Theorem 4 (Vertical sum). For m,n, k ≥ 0, we have Dk(m,n)+Dk(m+1, n) = Dk−1(m+
1, n+ 1).

Proof. Note that Dk−1(m+ 1, n+ 1) counts paths to (m+ 1, n+ k) with no D above height
n + 1. For every such path with a D at height n, changing this D to a V results in a path
to (m,n+ k) counted by Dk(m,n). Remaining paths have highest D below height n. These
are counted by Dk(m+ 1, n).

The Delannoy recurrence states that Dk(m,n) = Dk(m− 1, n)+Dk(m,n− 1)+Dk(m−

1, n− 1). Using this and re-indexing gives two corollaries.

Corollary 5 (Horizontal Difference). For m ≥ 1, n, k ≥ 0, we have Dk(m,n + 1) −
Dk(m,n) = 2Dk+1(m− 1, n).

Corollary 6 (Vertical Difference). For m,n, k ≥ 0, we have Dk(m + 1, n) − Dk(m,n) =
Dk−1(m+ 1, n).

The central theorem can be used to prove corresponding results for Dk(m,n).

Theorem 7. For m,n ≥ 0 and k ≥ 1, we have

Dk(m,n) +Dk(m,n+ 1) = 2Dk−1(m,n),

Dk(m,n) +Dk(m+ 1, n) = Dk+1(m+ 1, n+ 1),

Dk(m,n+ 1)−Dk(m,n) = 2Dk−1(m− 1, n),

Dk(m+ 1, n)−Dk(m,n) = Dk+1(m+ 1, n).

4 Alternate formulas

We next prove alternate formulas for the Delannoy numbers using lattice path methods. For
the first formula, which is known (see A008288 in [6]), we give a constructive proof using the
usual interpretation that D(m,n) counts lattice paths to (m,n). The idea is that the lattice
path is completely determined by the location of a “corner”, by which we mean HV or D.

Theorem 8. For all integers m,n ≥ 0, we have

D(m,n) =

min(m,n)
∑

j=0

(

m

j

)(

n

j

)

2j .

5

https://oeis.org/A008288


Proof. Postponing the use of D for a moment, we interpret the binomial coefficients in the
formula as specifying which of the m horizontal steps H are followed by which of the n

vertical steps V . Here j counts the number of instances of HV . Let
(

m

j

)

select which H’s are

followed by V , and
(

n

j

)

which V ’s follow an H. Any unselected H’s are either before another
H or at the end. Likewise, any unselected V ’s are either after a V or at the beginning. The
factor 2j counts the number of ways to change HV to D.

Theorem 9. For all integers m,n ≥ k ≥ 0, we have

Dk(m,n) =

min(m−k,n−k)
∑

j=0

(

m− k

j

)(

n

j + k

)

2j+k.

Proof. Note that Dk(m,n) counts paths to (m,n) where the last k steps with horizontal
component are either D or HV . As above, from the first m− k H’s, choose j to be followed
by V . From the n V ’s, choose j + k. The first j chosen V ’s follow the chosen j H’s. The
next k chosen follow the last k H’s. Everything else works as in the proof above.

The next theorem follows immediately from the previous theorem and the central theo-
rem.

Theorem 10. For all integers m,n, k ≥ 0, we have

Dk(m,n) =

min(m,n)
∑

j=0

(

m+ k

j + k

)(

n

j

)

2j .

If we allow negative values of k by interpreting, for k positive, the expression D
−k(m,n)

as equal to the number Dk(m,n), a version of this last form works for all cases.

Theorem 11. For all integers k, and all integers m,n ≥ k, we have

Dk(m,n) =

min(m,n)
∑

j=max(0,k)

(

m− k

j − k

)(

n

j

)

2j.

5 Delannoy constructions

Now we generalize our results to any array satisfying the Delannoy recurrence.

Definition 12. Let R(m,n) be any array of numbers, for m,n ≥ 0. We say that R(m,n) is
a Delannoy array if it satisfies the Delannoy recurrence.
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If we set R1(m,n) = R(m,n) +R(m,n+1), then using this and the recurrence, we have
that R1(m,n) equals

(R(m− 1, n) +R(m,n− 1) +R(m− 1, n− 1)) + (R(m− 1, n+ 1) +R(m,n) +R(m− 1, n))

= (R(m− 1, n) +R(m− 1, n+ 1)) + (R(m,n− 1) +R(m,n))

+ (R(m− 1, n− 1) +R(m− 1, n))

= R1(m− 1, n) +R1(m,n− 1) +R1(m− 1, n− 1).

Thus the array R1(m,n), for m,n ≥ 0 is also a Delannoy array.
We call the function h : R → R1 defined by

h(R(m,n)) = R(m,n) +R(m,n+ 1) = R1(m,n)

the horizontal sum function. Due to the recurrence, we have R(m,n) + R(m,n + 1) =
R(m + 1, n + 1) − R(m + 1, n) (the horizontal identity), so we could just as well define
R1(m,n) = R(m+ 1, n+ 1)−R(m+ 1, n).

We can continue this process to create subsequent arrays h(R1(m,n)) = R2(m,n),
h(R2(m,n)) = R3(m,n), and so on, giving a sequence R,R1, R2, R3 . . . .

We also have a vertical identity, R(m,n) +R(m+1, n) = R(m+1, n+1)−R(m,n+1).
We define R1(m,n) = R(m,n) + R(m + 1, n), and v : R → R1, the vertical sum, by
v(R(m,n)) = R(m,n) + R(m+ 1, n) = R1(m,n). As above, R1 is a Delannoy array, and as
above we can define subsequent arrays by iterating v, giving R,R1, R2, R3, . . . .

Now consider

h(R1(m,n)) = R1(m,n) +R1(m,n+ 1)

= (R(m,n) +R(m+ 1, n)) + (R(m,n+ 1) +R(m+ 1, n+ 1))

= (R(m,n) +R(m,n+ 1) +R(m+ 1, n)) +R(m+ 1, n+ 1)

= R(m+ 1, n+ 1) +R(m+ 1, n+ 1) = 2R(m+ 1, n+ 1).

This shows that the horizontal sum maps R1 onto 2R, or, equivalently, it maps 1
2
R1 onto R,

and continuing in this fashion we have a sequence

· · · →
1

22
R2 →

1

2
R1 → R → R1 → R2 → · · · ,

where all the maps are horizontal sum. Similar considerations give the sequence

· · · →
1

22
R2 →

1

2
R1 → R → R1 → R2 → · · · ,

where all the maps are vertical sum.
We call these two types of sequences Delannoy constructions R. In the case where the

horizontal seeds for R are identical to the vertical seeds, the arrays in the two sequences are
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transposes. An example of this case is the Delannoy numbers, where all the seeds are 1. As
a result of the relationship theorems, we have

· · · →
1

22
D2 →

1

2
D1 → D → 2D1 → 22D2 → · · · ,

· · · → D2 → D1 → D → D1 → D2 → · · · .

So we conclude that 2kDk and Dk are transposes, which is the central theorem of gener-
alized Delannoy numbers.

We wish to consider the parity of Delannoy constructions which have particular seeds,
but we begin with some more general considerations. Given a Delannoy array of numbers
R, we have the following result.

Theorem 13. For all integers m ≥ 0, if R(m, 0) ≡ R(m+1, 0) (mod 2), then for all i ≥ 0,
we have R(m, i) ≡ R(m + 1, i) (mod 2). If R(m, 0) 6≡ R(m + 1, 0) (mod 2), then for all
i ≥ 0, we have R(m, i) 6≡ R(m+ 1, i) (mod 2).

Proof. We proceed by induction on i. The base case for both statements is true by hypothesis.
If R(m, i) ≡ R(m+ 1, i) (mod 2), then

R(m+ 1, i+ 1) = R(m, i) +R(m+ 1, i) +R(m, i+ 1) ≡ R(m, i+ 1) (mod 2).

On the other hand, if R(m, i) 6≡ R(m+ 1, i) (mod 2), then

R(m+ 1, i+ 1) = R(m, i) +R(m+ 1, i) +R(m, i+ 1) ≡ 1 +R(m, i+ 1) (mod 2).

This shows that the parities of R(m, i) and R(m + 1, i) either agree for all i or disagree
for all i. Consequently, the parities of any two rows of R are either identical in every term or
differ in every term. So modulo 2, there are only two different types of rows. A consequence
is that for both types of rows, and thus for all rows, the horizontal sum gives the same result
modulo 2.

Corollary 14. For i ≥ 1, every row of Ri modulo 2 is identical to every other row of Ri

modulo 2.

We next consider a family of examples where the seeds are binomial coefficients. These
examples give a generalization of properties enjoyed by the generalized Delannoy numbers.

Lemma 15. For m ≥ 0, k ≥ 1, we have
(

n

k

)

+
(

n+1
k

)

≡
(

n

k−1

)

(mod 2).

Proof. Pascal’s theorem says that
(

n

k−1

)

+
(

n

k

)

=
(

n+1
k

)

, so
(

n

k−1

)

+
(

n

k

)

≡
(

n+1
k

)

(mod 2).

Equivalently, we have
(

n

k

)

+
(

n+1
k

)

≡
(

n

k−1

)

(mod 2).
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Lemma 16. If the horizontal seeds of R are
(

k

k

)

,
(

k+1
k

)

,
(

k+2
k

)

, . . . , then every element of
Rk+1 is divisible by 2, but for j ≤ k, the array Rj has elements that are odd.

Proof. Working modulo 2 and using the horizontal sum, the rows of R1 are
(

k

k−1

)

,
(

k+1
k−1

)

,
(

k+2
k−1

)

, . . . . The rows of R2 are
(

k

k−2

)

,
(

k+1
k−2

)

,
(

k+2
k−2

)

, . . . . Continuing with the horizontal sum,

the rows of Rk are
(

k

0

)

,
(

k+1
0

)

,
(

k+2
0

)

, . . . , i.e., every element of Rk is odd. The horizontal sum

on Rk gives the divisibility result. Kung [5] has shown that
(

2i−1
n

)

is odd for any n ≥ 0, so
Rj has odd elements.

Theorem 17. If the horizontal seeds of R are
(

k

k

)

,
(

k+1
k

)

,
(

k+2
k

)

, . . . , then R1, modulo 2, has

identical rows, namely
(

k

k−1

)

,
(

k+1
k−1

)

,
(

k+2
k−1

)

, . . . .

Our final theorem generalizes the fact that every generalized Delannoy number Dk(m,n)
is divisible by 2k.

Theorem 18. If the horizontal seeds of R are
(

k

k

)

,
(

k+1
k

)

,
(

k+2
k

)

, . . . , then for i ≥ 1, every
element of Rk+i is divisible by 2i, but Rk+i has elements that are not divisible by 2i+1.

Proof. We show the divisibility by induction, where Lemma 5.5 has provided the base case.
Since every element of Rk is odd, by the horizontal sum, every element of Rk+1 is even, and
so divisible by 21. Suppose that for some integer s ≥ 1, every element of Rk+s is divisible
by 2s. Then by the horizontal sum, we have Rk+s+1(m,n) = Rk+s(m,n) + Rk+s(m,n + 1).
The two terms on the right are divisible by 2s, which makes Rk+s+1(m,n) divisible by 2s+1.
Finally, every element in the first row of Rk+i is 2i, which is not divisible by 2i+1.
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