Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.3

On the Reciprocal Sums and Products of m th-order Linear Recursive Sequences

Tingting Du
Research Center for Number Theory and Its Application
Northwest University
Xi'an, Shaanxi 710127
China
dutingtingaaa@163.com

Abstract

The m th-order linear recursive sequence of $\left(w_{n}\right)_{n \geq 0}$ is defined by the recursion $w_{n}=a_{1} w_{n-1}+a_{2} w_{n-2}+\cdots+a_{m} w_{n-m}$ for $n>m$. In previous discussions of the reciprocal sums and products of $\left(w_{n}\right)_{n \geq 0}$, the condition $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$ was typically imposed. In this paper, we extend previous research and allow the coefficients to be arbitrary positive integers.

1 Introduction

For positive integers $a_{1}, a_{2}, \ldots, a_{m}$ with $a_{m} \neq 0$, the m th-order linear recursive sequence $\left(w_{n}\right)_{n \geq 0}$ is defined by

$$
\begin{equation*}
w_{n}=a_{1} w_{n-1}+a_{2} w_{n-2}+\cdots+a_{m} w_{n-m}, \quad n>m \tag{1}
\end{equation*}
$$

where the initial values $w_{i} \in \mathbb{N}$, and at least one is not zero. The characteristic polynomial of the sequence $\left(w_{n}\right)_{n \geq 0}$ is

$$
\begin{equation*}
\varphi(x)=x^{m}-a_{1} x^{m-1}-\cdots-a_{m-1} x-a_{m}=\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{l}\right)^{m_{l}}, \tag{2}
\end{equation*}
$$

where the λ_{i} are called the roots of the sequence. If the absolute value of a root of the sequence $\left(w_{n}\right)_{n \geq 0}$ is strictly largest, the root is called the dominant root.

If $m=2, a_{1}=a_{2}=1$, and $w_{0}=0, w_{1}=1$, the resulting sequence $\left(w_{n}\right)_{n \geq 0}$ is the famous Fibonacci sequence $\left(f_{n}\right)_{n \geq 0}$. Ohtsuka and Nakamura [10] considered the reciprocal sums of the Fibonacci sequence and obtained the following result:

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{f_{k}}\right)^{-1}\right\rfloor= \begin{cases}f_{n-2}, & \text { if } n \text { is even and } n \geq 2 \\ f_{n-2}-1, & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

where $\lfloor z\rfloor$ denotes the floor function.
Computing the floor function of $\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}$ is a difficult problem. Some researchers have studied the nearest integer to $\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}$. For example, Wu and Zhang [13] proved that there exists a positive integer n_{1} such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}\right\|=w_{n}-w_{n-1}, \quad n \geq n_{1}
$$

where $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$ and $\|z\|$ denotes the nearest integer function, defined by $\|z\|=\left\lfloor z+\frac{1}{2}\right\rfloor$.

If two sequences $\left(u_{n}\right)_{n \geq 0}$ and $\left(v_{n}\right)_{n \geq 0}$ satisfy the condition that $\left(u_{n} / v_{n}\right)_{n \geq 0}$ tends to 1 as $n \rightarrow \infty$, we call them asymptotically equivalent. Some researchers have continued the study of reciprocal sums by finding a sequence that is asymptotically equivalent to $\left(\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}\right)$. Specifically, Trojovský [12] proved that the sequences

$$
\left(\left(\sum_{k=n}^{\infty} \frac{1}{P\left(w_{k}\right)}\right)^{-1}\right)_{n} \quad \text { and } \quad\left(P\left(w_{n}\right)-P\left(w_{n-1}\right)\right)_{n}
$$

are asymptotically equivalent, where $P(z)$ is a non-constant polynomial with $P(z) \in \mathbb{C}[z]$. For more on reciprocal sums and products, see $[3,6,15,2,1,4,9,14,16,8]$.

In previous research concerning reciprocal sums and products of $\left(w_{n}\right)_{n \geq 0}$, the condition $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 1$ was typically imposed. In this paper, we allow the coefficients to be arbitrary positive integers, and obtain a series of sequences that are asymptotically equivalent to $\left(\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}\right)$ and $\left.\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}\right)$. The main results are summarized in the following theorem.

Theorem 1. Let $\left(w_{n}\right)_{n \geq 0}$ be an mth-order linear recursive sequence defined by (1). The sequences

$$
\begin{equation*}
\left(\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}\right) \quad \text { and } \quad\left(w_{n}-w_{n-1}\right) \tag{3}
\end{equation*}
$$

are asymptotically equivalent, and the sequences

$$
\begin{equation*}
\left(\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}\right)_{n} \quad \text { and } \quad\left(w_{n}-w_{n-1}\right)_{n} \tag{4}
\end{equation*}
$$

are asymptotically equivalent.

2 Some lemmas

In this section, we shall give several lemmas that are useful for the proofs of the theorem.
Lemma 2. (Descartes rule of signs). Let $\phi(x)=a_{n_{1}} x^{n_{1}}+\cdots+a_{n_{k}} x^{n_{k}}$ be a polynomial where the n_{i} are integers and $n_{1}>n_{2}>\cdots>n_{k} \geq 0$. The number of positive roots of $\phi(x)$ is at most the number of sign changes of adjacent nonzero coefficients.
Lemma 3. ([5, 7] Eneström-Kakeya theorem). Let $\phi^{\prime}(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial of order n with real coefficients. If $0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{n}$, then all complex roots z of $\phi^{\prime}(x)$ satisfy $|z| \leq 1$.
Lemma 4. Let $\varphi(x)=x^{m}-a_{1} x^{m-1}-\cdots-a_{m-1} x-a_{m}$ be the characteristic polynomial of $\left(w_{n}\right)_{n \geq 0}$, where the coefficients $a_{1}, a_{2}, \ldots, a_{m}$ are positive integers. Then the following hold:

- $\varphi(x)$ has only one positive root λ_{1}, called λ, and $\lambda>1$;
- The other $m-1$ roots of $\varphi(x)$ lie in the circle $|z|<\lambda$. Therefore λ is the dominant root of $\varphi(x)$.
Proof. By Lemma 2, the characteristic polynomial $\varphi(x)=x^{m}-a_{1} x^{m-1}-\cdots-a_{m-1} x-a_{m}$ has at most one positive root λ_{1}, called λ. In addition, $\lim _{x \rightarrow \infty} \varphi(x)=+\infty$, and, by $\varphi(1)<0$, we obtain that $\lambda>1$ and λ is the only positive root of $\varphi(x)$.

By using the relation

$$
\lambda^{m}=a_{1} \lambda^{m-1}+a_{2} \lambda^{m-2}+\cdots+a_{m-1} \lambda+a_{m}
$$

we obtain that $\varphi(x)=(x-\lambda) \psi(x)$, where

$$
\begin{aligned}
\psi(x) & =x^{m-1}+\left(\lambda-a_{1}\right) x^{m-2}+\left(\lambda^{2}-a_{1} \lambda-a_{2}\right) x^{m-3}+\cdots \\
& +\left(\lambda^{m-2}-a_{1} \lambda^{m-3}-\cdots-a_{m-2}\right) x+\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-1}
\end{aligned}
$$

Claim 1. If z is a root of $\psi(x)$, then $|z| \leq \lambda$.
In fact, we prove that all the roots of $\Psi(x):=\psi(\lambda x)$ are in the closed unit ball. The polynomial

$$
\begin{aligned}
\Psi(x) & =\lambda^{m-1} x^{m-1}+\left(\lambda-a_{1}\right) \lambda^{m-2} x^{m-2}+\left(\lambda^{2}-a_{1} \lambda-a_{2}\right) \lambda^{m-3} x^{m-3}+\cdots \\
& +\left(\lambda^{m-2}-a_{1} \lambda^{m-3}-\cdots-a_{m-2}\right) \lambda x+\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-1} \\
& =\lambda^{m-1} x^{m-1}+\left(\lambda^{m-1}-a_{1} \lambda^{m-2}\right) x^{m-2}+\left(\lambda^{m-1}-a_{1} \lambda^{m-2}-a_{2} \lambda^{m-3}\right) x^{m-3}+\cdots \\
& +\left(\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-2} \lambda\right) x+\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-1}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \lambda^{m-1}>\lambda^{m-1}-a_{1} \lambda^{m-2}>\lambda^{m-1}-a_{1} \lambda^{m-2}-a_{2} \lambda^{m-3}>\cdots \\
& >\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-2} \lambda>\lambda^{m-1}-a_{1} \lambda^{m-2}-\cdots-a_{m-1}=a_{m} / \lambda>0
\end{aligned}
$$

which λ is positive root of $\varphi(x)$. By Lemma 3, this completes the proof of Claim 2.

Claim 2. On the circle $|z|=\lambda$, the polynomial $\varphi(x)$ has the unique root λ.
If $\varphi(z)=0$, then

$$
z^{m}=a_{1} z^{m-1}+a_{2} z^{m-2}+\cdots+a_{m-1} z+a_{m} .
$$

The triangle inequality is satisfied:

$$
\begin{equation*}
|z|^{m} \leq a_{1}|z|^{m-1}+a_{2}|z|^{m-2}+\cdots+a_{m-1}|z|+a_{m} . \tag{5}
\end{equation*}
$$

If $z=\lambda$, then $\varphi(z)=0$. So (5) must be an equality. Therefore, $a_{1} z^{m-1}, a_{2} z^{m-2}$, $\ldots, a_{m-1} z, a_{m}$ all on the same ray leaving the origin. Since $a_{1}, a_{2}, \ldots, a_{m}$ are all the elements of $\mathbb{R}^{+}, z^{m-1}, z^{m-2}, \ldots, z$ must be elements of \mathbb{R}^{+}. Therefore we obtain $\varphi(z) \in \mathbb{R}^{+}$. On the circle $|z|=\lambda$, we obtain $z=\lambda$. This completes the proof of Claim 2.

We define $f(x)=\mathcal{O}(g(x))$ to mean that the quotient $f(x) / g(x)$ is bounded for $x \geq a$.
Lemma 5. Let $\left(w_{n}\right)_{n \geq 0}$ be mth-order linear recursive sequence defined by (1). Then the asymptotic formula of $\left(w_{n}\right)_{n \geq 0}$ is as follows:

$$
\begin{equation*}
w_{n}=c \lambda^{n}+\mathcal{O}\left((\lambda \mu)^{\frac{n}{2}}\right) \tag{6}
\end{equation*}
$$

where c is a constant. The λ defined by Lemma 4 is the dominant root of $\varphi(x)$, and μ is the largest absolute value of the remaining $m-1$ roots of $\varphi(x)$.

Proof. By [11], there exist unique nonzero polynomials $\ell_{1}, \ldots, \ell_{l} \in \mathbb{Q}\left(\left\{\lambda_{i}\right\}_{i=1}^{l}\right)[x]$, with $\operatorname{deg} \ell_{i} \leq m_{i}-1$ (where m_{i} is the multiplicity of λ_{i} as a root of the characteristic polynomial $\varphi(x))$ for $1 \leq i \leq l$, such that

$$
w_{n}=\ell_{1}(n) \lambda_{1}^{n}+\cdots+\ell_{l}(n) \lambda_{l}^{n}, \quad \text { for all } n .
$$

By Lemma 4, we get

$$
w_{n}=c \lambda^{n}+\sum_{i=2}^{l} \ell_{i}(n) \lambda_{i}^{n}, \quad \ell_{i}(n) \in \mathbb{R}[n],
$$

where λ is the dominant root of $\varphi(x), c$ is a nonzero constant, and

$$
\operatorname{deg} \ell_{i}(n) \leq m_{i}-1, \quad \text { for } \quad i=2, \ldots, l, \quad m_{2}+\cdots+m_{l}=m-1
$$

Therefore, we obtain that

$$
w_{n}=c \lambda^{n}+\mathcal{O}\left(n^{m} \mu^{n}\right)=c \lambda^{n}+\mathcal{O}\left((\lambda \mu)^{\frac{n}{2}}\right),
$$

where $n^{m}<\left|\frac{\lambda}{\mu}\right|^{\frac{n}{2}}$ for all sufficiently large n.
Remark 6. For discussing the reciprocal product of m th-order linear recursive sequences, we assume that $\mu>1$. When $\mu<1$, as in [3], we write $w_{n}=c \lambda^{n}+\mathcal{O}\left(c^{-n}\right)$, for some $c>1$).

Lemma 7. Let $\lambda>|\mu|>1$. We get

$$
\begin{equation*}
\prod_{k=n}^{\infty}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)\right)=1-\sum_{k=n}^{\infty} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) \tag{7}
\end{equation*}
$$

where c is a constant.
Proof. First we prove the following equality:

$$
\begin{equation*}
\prod_{k=n}^{n+m}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)\right)=1-\sum_{k=n}^{n+m} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) \tag{8}
\end{equation*}
$$

We prove (8) by mathematical induction. When $m=1$, we have

$$
\begin{aligned}
& \prod_{k=n}^{n+1}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)\right) \\
& =\left(1-\frac{1}{c \lambda^{n}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)\right) \times\left(1-\frac{1}{c \lambda^{n+1}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n+1}{2}}\right)\right) \\
& =1-\frac{1}{c \lambda^{n}}-\frac{1}{c \lambda^{n+1}}+\frac{1}{c^{2} \lambda^{2 n+1}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) \\
& +\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n+1}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{5}}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{2 n+1}{2}}\right) \\
& =1-\frac{1}{c \lambda^{n}}-\frac{1}{c \lambda^{n+1}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) \\
& =1-\sum_{k=n}^{n+1} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) .
\end{aligned}
$$

That is, (8) holds when $m=1$. Now suppose that for every integer m, we have

$$
\prod_{k=n}^{n+m}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)\right)=1-\sum_{k=n}^{n+m} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)
$$

Then for $m+1$, we have

$$
\begin{align*}
& \prod_{k=n}^{n+m+1}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)\right) \\
&=\left(1-\sum_{k=n}^{n+m} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)\right) \times\left(1-\frac{1}{c \lambda^{n+m+1}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n+m+1}{2}}\right)\right) \\
&=1-\sum_{k=n}^{n+m} \frac{1}{c \lambda^{k}}-\frac{1}{c \lambda^{n+m+1}}+\frac{1}{c \lambda^{n+m+1}}\left(\sum_{k=n}^{n+m} \frac{1}{c \lambda^{k}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) \tag{9}\\
&+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n+m+1}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{5}}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{2 n+m+1}{2}}\right) \\
&= 1-\sum_{k=n}^{n+m+1} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right) .\right.
\end{align*}
$$

Now (9) follows from (9) and mathematical induction.
Taking $m \rightarrow \infty$, we have

$$
\prod_{k=n}^{\infty}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)=1-\sum_{k=n}^{\infty} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)
$$

which completes the proof.

3 Proof of the theorem

Proof of Theorem 1. Using the geometric series, we get

$$
\begin{equation*}
\frac{1}{1 \pm \epsilon}=1+\mathcal{O}(\epsilon) \tag{10}
\end{equation*}
$$

where $\epsilon \rightarrow 0$. Using Lemma 5, we obtain

$$
\begin{align*}
\frac{1}{w_{k}} & =\frac{1}{c \lambda^{k}+\mathcal{O}\left((\lambda \mu)^{\frac{k}{2}}\right)}=\frac{1}{c \lambda^{k}\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{k}{2}}\right)\right)} \tag{11}\\
& =\frac{1}{c \lambda^{k}}\left(1+\mathcal{O}\left(\frac{\mu}{\lambda}\right)^{\frac{k}{2}}\right)=\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}} .
\end{align*}
$$

Thus

$$
\sum_{k=n}^{\infty} \frac{1}{w_{k}}=\frac{1}{c} \sum_{k=n}^{\infty} \frac{1}{\lambda^{k}}+\mathcal{O}\left(\sum_{k=n}^{\infty}\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right)=\frac{\lambda}{c(\lambda-1) \lambda^{n}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)
$$

Taking the reciprocal, we get

$$
\begin{aligned}
\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1} & =\frac{1}{\frac{\lambda}{c(\lambda-1) \lambda^{n}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)}=\frac{1}{\frac{\lambda}{c(\lambda-1) \lambda^{n}}\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)} \\
& =\frac{c(\lambda-1) \lambda^{n}}{\lambda}\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)=\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)
\end{aligned}
$$

which yields that

$$
\begin{align*}
\frac{\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}}{w_{n}-w_{n-1}} & =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)}{\left(c \lambda^{n}+\mathcal{O}\left((\lambda \mu)^{\frac{n}{2}}\right)\right)-\left(c \lambda^{n-1}+\mathcal{O}\left((\lambda \mu)^{\frac{n-1}{2}}\right)\right)} \\
& =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)}{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\frac{(\lambda \mu)^{\frac{n}{2}}}{\lambda^{n}-\lambda^{n-1}}\right)+\mathcal{O}\left(\frac{(\lambda \mu)^{\frac{n-1}{2}}}{\lambda^{n}-\lambda^{n-1}}\right)\right)} \tag{12}\\
& =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)}{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)\right)\right.} .
\end{align*}
$$

We obtain that

$$
\frac{\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}}{w_{n}-w_{n-1}} \quad \text { tends to } 1 \text {, as } n \rightarrow \infty
$$

In addition, by Lemma 7 and identity (11), we obtain

$$
\begin{aligned}
& \prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)=\prod_{k=n}^{\infty}\left(1-\frac{1}{c \lambda^{k}}+\mathcal{O}\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{k}{2}}\right) \\
& =1-\sum_{k=n}^{\infty} \frac{1}{c \lambda^{k}}+\mathcal{O}\left(\frac{\mu}{\lambda^{3}}\right)^{n}=1-\frac{\lambda}{c(\lambda-1) \lambda^{n}}+\mathcal{O}\left(\frac{\mu}{\lambda^{3}}\right)^{n}
\end{aligned}
$$

Taking the reciprocal, we get

$$
\begin{aligned}
& \left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}=\frac{1}{\frac{\lambda}{c(\lambda-1) \lambda^{n}}+\mathcal{O}\left(\left(\frac{\mu}{\lambda^{3}}\right)^{\frac{n}{2}}\right)}=\frac{1}{\frac{\lambda}{c(\lambda-1) \lambda^{n}}\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)} \\
& =\frac{c(\lambda-1) \lambda^{n}}{\lambda}\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)=\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right),
\end{aligned}
$$

which yields that

$$
\begin{align*}
\frac{\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}}{w_{n}-w_{n-1}} & =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)}{\left(c \lambda^{n}+\mathcal{O}\left((\lambda \mu)^{\frac{n}{2}}\right)\right)-\left(c \lambda^{n-1}+\mathcal{O}\left((\lambda \mu)^{\frac{n-1}{2}}\right)\right)} \\
& =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)\right)}{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\frac{(\lambda \mu)^{\frac{n}{2}}}{\lambda^{n}-\lambda^{n-1}}\right)+\mathcal{O}\left(\frac{(\lambda \mu)^{\frac{n-1}{2}}}{\lambda^{n-\lambda^{n-1}}}\right)\right)} \tag{13}\\
& =\frac{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda} \frac{n}{2}\right)\right)\right.}{\left(c \lambda^{n}-c \lambda^{n-1}\right)\left(1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)\right)}
\end{align*}
$$

We obtain that

$$
\frac{\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}}{w_{n}-w_{n-1}} \text { tends to } 1, \text { as } n \rightarrow \infty
$$

which completes the proof.
Remark 8. We now discuss the relative error of the asymptotic behavior of the result in Theorem 1. By identities (12) and (13), we obtain

$$
\begin{align*}
\left|\frac{\left(\sum_{k=n}^{\infty} \frac{1}{w_{k}}\right)^{-1}}{w_{n}-w_{n-1}}-1\right| & =\left|\frac{1+\mathcal{O}\left(\left(\frac{\mu}{\lambda} \frac{n}{2}\right)\right.}{1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)}-1\right| \tag{14}\\
& =\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{2 n-1}{2}}\right)=\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)
\end{align*}
$$

and

$$
\begin{align*}
\left|\frac{\left(1-\prod_{k=n}^{\infty}\left(1-\frac{1}{w_{k}}\right)\right)^{-1}}{w_{n}-w_{n-1}}-1\right| & =\left|\frac{1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)}{1+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)}-1\right| \tag{15}\\
& =\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)+\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{2 n-1}{2}}\right)=\mathcal{O}\left(\left(\frac{\mu}{\lambda}\right)^{\frac{n-1}{2}}\right)
\end{align*}
$$

When $n=101$, by the identities (14) and (15), we can determine the magnitude of the relative error of the asymptotic behavior for the following two sequences $\left(w_{n}\right)_{n_{1} \geq 0}$ and $\left(w_{n}\right)_{n_{2} \geq 0}$:

$$
\begin{aligned}
& w_{n_{1}}=2 w_{n-1}+3 w_{n-2}+7 w_{n-3}+w_{n-4}+w_{n-5} \\
& w_{n_{2}}=3 w_{n-1}+5 w_{n-2}+w_{n-3}+6 w_{n-4}+w_{n-5} .
\end{aligned}
$$

w_{n}	λ	μ	$\left\|\frac{\mu}{\lambda}\right\|^{\frac{n-1}{2}}$
$w_{n_{1}}$	≈ 3.2421	≈-1.1509	$\approx 3.2401 \times 10^{-23}$
$w_{n_{2}}$	≈ 4.2965	≈-1.4946	$\approx 1.1762 \times 10^{-23}$

Table 1: The higher-order linear recurrences.

The computations are given in Table 1. We used the software Mathematica.

4 Acknowledgments

The authors would like to thank the referees for their very helpful and detailed comments. This work is supported by the N. S. F. (12126357) of China.

References

[1] G. Choi and Y. Choo, On the reciprocal sums of square of generalized bi-periodic Fibonacci numbers, Miskolc Math. Notes. 19 (2018), 201-209.
[2] Y. Choo, On the reciprocal sums of products of two generalized bi-periodic Fibonacci numbers, Mathematics 9 (2021), 178.
[3] T. T. Du and Z. G. Wu, On the reciprocal products of generalized Fibonacci sequences, J. Inequal. Appl. 2022 (2022), 154.
[4] T. T. Du and Z. G. Wu, On the reciprocal sums of products of m th-order linear recurrence sequences, Electron Res. Arch. 31 (2023), 5766-5779.
[5] G. Eneström, Remarque sur un théorème relatif aux racines de l'équation $a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$ où tous les coefficientes a sont réels et positifs, Tohoku Math. J. 18 (1920), 34-36.
[6] S. Holliday and T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers 11 (2011), 441-455.
[7] S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients, Tohoku Math. J. 2 (1912), 140-142.
[8] E. Kilic and T. Arikan, More on the infinite sum of reciprocal Fibonacci, Pell and higher order recurrences, Appl. Math. Comput. 219 (2013), 7783-7788.
[9] T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones Mat., Investig. 20 (2011), 171-184.
[10] H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart. 46 (2008), 153-159.
[11] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Mathematics, Vol. 87, Cambridge University Press, 1986.
[12] P. Trojovský, On the sum of reciprocal of polynomial applied to higher order recurrences, Mathematics 7 (2019), 638.
[13] Z. G. Wu and H. Zhang, On the reciprocal sums of higher-order sequences, Adv. Diff. Equ. 2013 (2013), 189.
[14] Z. G. Wu and J. Zhang, On the higher power sums of reciprocal higher-order sequences, Sci. World J. 2014 (2014), Article ID 521358.
[15] W. P. Zhang and T. T. Wang, The infinite sum of reciprocal Pell numbers, Appl. Math. Comput. 218 (2012), 6164-6167.
[16] H. Zhang and Z. G. Wu, On the reciprocal sums of the generalized Fibonacci sequences, Adv. Diff. Equ. 2013 (2013), Article ID 377.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11B37.
Keywords: m th-order linear recursive sequence, reciprocal sum, reciprocal product, characteristic polynomial.

Received October 25 2023; revised versions received October 27 2023; January 11 2024; January 17 2024. Published in Journal of Integer Sequences, January 172024.

Return to Journal of Integer Sequences home page.

