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Abstract

This article begins with a description of three notions of compositions that have
parts in a fixed set of positive integers: linear compositions, circular compositions,
and cyclic compositions. We describe some relations among these notions and review
generating functions to count each type of composition. The main result of the paper
generalizes these known results to count compositions in which the number of parts is
required to be congruent to q modulo m for some fixed 0 ≤ q ≤ m− 1. The particular
case m = 2, q = 1 yields the compositions with an odd number of parts. The latter
sections apply the main theorem to several special cases, including compositions in
which the parts are allowed to be drawn from a multiset.

1 Introduction

Compositions of natural numbers are fundamental objects in combinatorics, partly because
they are defined using the basic operation of addition, and partly because of their equivalence
with other types of combinatorial objects. For instance, the results in this paper were initially
motivated by a counting problem in graph theory (see Remark 5).
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The name of compositions was given by MacMahon [18] within the context of the theory
of partitions. In a partition of a natural number, the order of the parts (i.e., terms) is
irrelevant, whereas in a composition the order of the parts matters. The ordered nature of
a composition makes it convenient to represent in a variety of ways, which share a “linear”
character. A graph with n vertices and n − 1 edges arranged in a line can represent a
composition of n by removing edges so that the remaining components have numbers of
vertices equal to the sizes of the parts of the composition. A binary sequence of length n
that starts with 0 can also represent a composition by treating each appearance of 0 and
any following 1s as a single part of the composition. Both of these representations make it
clear that the number of compositions of n is 2n−1 for all n ≥ 1.

Between the fully ordered notion of a composition and the fully unordered notion of
a partition lies an intermediate type of object, that of a cyclic composition, which was
introduced by Sommerville [23]. In a cyclic composition, the order of the parts is counted
up to cyclic permutation. Cyclic compositions are often said to count “necklaces” composed
of white and black beads; a necklace can be rotated (but not flipped) without changing the
underlying object. We add the caveat that at least one black bead must be included, to
mark the “start” of a part of the composition. Cyclic compositions may also be represented
by binary sequences that loop around and have no fixed starting point; in this context, we
insist that 0 appears at least once in the sequence.

Linear compositions and cyclic compositions are related to a third type of composition,
for which I have not found a standard name, so I will call it a “circular composition.”
This is essentially a linear composition that has been placed in a circular arrangement of n
points, with a designated initial point, which may lie inside a part of the composition. When
the group of rotations acts on circular compositions, the orbits of this action may also be
identified with cyclic compositions.

Circular compositions are called “bracelets” by Benjamin and Quinn [4]; however, in the
OEIS [20] the term “bracelets” refers to necklaces for which reflections are allowed in addition
to rotations, so that terminology is not consistent across the literature. In addition, care is
needed in comparing the present work with other sources, because “circular” is sometimes
used synonymously with “cyclic,” e.g., by Hadjicostas [15], whereas I distinguish them.

These three types of compositions—linear, circular, and cyclic—are not often considered
collectively, despite their close relations to each other. A notable exception is in the article
by Zhang and Hadjicostas [24], where they are treated as binary sequences and called L-type,
C-type, and CR-type, for sequences on a line, on a circle, and on a circle with rotations,
respectively. No group action is explicitly used in this previous work, however.

It is often convenient, desirable, or necessary to impose restrictions on the parts that
form a composition. One commonly restricts the sizes of the parts: for example, one asserts
that they may not exceed a certain number. Counting linear compositions of n whose parts
must be 1 or 2 leads to the famous Fibonacci numbers, and counting circular compositions
with the same restriction leads to the almost-as-famous Lucas numbers (see §4.4). Cyclic
compositions whose parts must be 1 or 2 are counted by a certain weighted average of
Lucas numbers, which depends on the set of divisors of n (see equation (2)). Hadjicostas
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[15] considers linear compositions and cyclic compositions whose parts avoid an arithmetic
sequence; when the parts are required to be odd, the Fibonacci and Lucas numbers appear
again (cf. §4.5).

In this paper, we combine restrictions on sizes with restrictions on the number of parts
in the composition. Counting compositions with a fixed number of parts can be done using
multinomial coefficients. We will consider the related problem of counting compositions
whose numbers of parts satisfy a congruence condition—that is, given a fixed m ≥ 1 and
0 ≤ q < m, we will only allow compositions that have k parts, where k ≡ q (mod m).

Congruence generalizes the notion of parity—evenness and oddness. Here is a simple
example of how parity can matter in a composition. The braid group B2 on two strands is
generated by a single element γ, which exchanges the endpoints of the strands. An element
γn ∈ B2 exchanges the endpoints if and only if n is odd. (See Figure 1, top.) In other words,
the “pure” braid subgroup in B2 is generated by γ2. When the braid γn is arranged in a circle
by joining the endpoints, the result is a knot if n is odd and a link if n is even. (See Figure 1,
bottom.) Concatenating copies of γ to produce γn corresponds to forming a composition of
n in which all parts have size 1. One can easily consider other braid-like objects composed
of smaller patterns having defined sizes, each of which permutes the endpoints of the strands
in some manner; concatenation of the small patterns produces an object whose size is the
sum of the smaller sizes, and whose eventual permutation of the endpoints depends, at least
in part, on the number of small patterns used. Indeed, such a framework was part of the
initial motivation for the current project [8].

Similar situations arise throughout group theory and topology: for example, when con-
sidering orientability, cohomology with coefficients in Z/mZ, monodromy of fibrations, etc.

Parity and other congruence restrictions can also arise in the theory of probability and
games of chance. For example, a question addressed by Mairan [21] and taken up later by
Laplace [17] asks: if a random nonzero number of tokens is taken from a given pile, is it
more likely that the number is even or odd? This problem was later generalized to the case
of other congruences (see Remark 11), and its solution turns out to provide the answer to
one of the counting problems in this paper as well (see §4.3).

Here is an outline of the rest of the paper. Section 2 provides formal definitions of the
three types of compositions under consideration and recalls their counting formulas without
restrictions on the number of parts. Section 3 presents the main theorem. Section 4 applies
the main theorem to several examples that vary in their restrictions on the sizes of parts.
Finally, section 5 extends the scope of the main theorem to compositions whose parts are
drawn from a multiset, meaning that each size may appear with multiplicity greater than 1.

The initialism OEIS refers to The On-Line Encyclopedia of Integer Sequences [20], and
AC refers to the text Analytic Combinatorics [12]. Hereafter citations of the OEIS and
Analytic Combinatorics will not include a reference to the bibliography.
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Figure 1: Some topological consequences of parity. Top: A braid on two strands switches
the order of the endpoints if and only if the number of crossings is odd. Bottom: A pair of
strands winding around a circle forms two loops (a link) if the number of crossings is even,
one loop (a knot) if the number of crossings is odd.

2 Background

To begin, we review the three notions of compositions that are the focus of this paper,
establish several pieces of notation, and summarize some proof techniques that will be useful
later for the main theorem. None of the results in this section are new.

A comment on notation: with each set A whose elements are positive integers, we will
associate three sequences b(A;n), c(A;n), and d(A;n). The generating functions of these
sequences will be called fA(x), gA(x), and hA(x), respectively.

Let N denote the set of positive integers {1, 2, 3, . . . }, and let N0 = {0} ∪ N denote the
set of nonnegative integers. Given n ∈ N0, a composition of n is a sum of elements of N
whose total is n, for which the order of the terms in the sum matters. That is, s + t and
t+ s are considered different sums unless s = t, although their total is the same. These will
also be called ordinary or linear compositions. Each term in a composition is called a part.
The total of the empty sum, having zero parts, is 0 by definition.

Given a set A ⊆ N and a number n ∈ N0, a composition of n with parts in A (or, more
briefly, an A-composition of n) is a composition of n whose parts are elements of A. The
empty sum is considered an A-composition of 0 for all sets A.

Let (i(A;n))∞n=1 be the indicator sequence of A, defined by

i(A;n) =

{
1, if n ∈ A;
0, if n /∈ A,
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and let jA(x) be the (ordinary) generating function of (i(A;n))∞n=0, namely

jA(x) =
∞∑
n=1

i(A;n)xn.

Then the coefficient of xn in
(
jA(x)

)
k is equal to the number of A-compositions of n having

exactly k terms. To allow for the possibility of an empty sum, we use the convention that(
jA(x)

)
0 = 1.

Let b(A;n) be the total number of A-compositions of n, and let fA(x) be the generating
function of (b(A;n))∞n=0. Summing

(
jA(x)

)
k over k, we obtain the well-known formula

fA(x) =
∞∑
n=0

b(A;n)xn =
∞∑
k=0

(
jA(x)

)
k =

1

1− jA(x)
.

As Cameron [9] says, this formula “will look either obvious or artificial, depending on your
background.” In our convention, b(A; 0) = 1 for all sets A.

The OEIS, following Bernstein and Sloane [6], calls (b(A;n))∞n=1 the INVERT transform
of (i(A;n))∞n=1. In AC it corresponds to the “sequence” construction Seq.

The notion of a “cyclic composition” of n, originally introduced by Sommerville [23],
comes from considering cyclic permutations of the terms in a sum. That is, we define ∼
to be the equivalence relation on compositions that is generated by n1 + n2 + · · · + nk ∼
n2+ · · ·+nk+n1; then a cyclic A-composition of n is an equivalence class of A-compositions
of n under the relation ∼. Let d(A;n) be the number of cyclic A-compositions of n. The
generating function of (d(A;n))∞n=1, as it appears in the article of Flajolet and Soria [13], is

hA(x) =
∞∑
n=1

d(A;n)xn =
∞∑
k=1

ϕ(k)

k
log

1

1− jA(xk)
, (1)

where ϕ(k) is the Euler totient function. For reasons that will be made clear below, we
assume d(A; 0) = 0, not 1.

The OEIS calls (d(A;n))∞n=1 the CIK transform of (i(A;n))∞n=1, using nomenclature that
is explained by Bower [7]. In AC it corresponds to the “cycle” construction Cyc.

To understand the formula for hA(x), it is useful to introduce a third type of composition,
together with a group action whose orbits are the cyclic compositions of n. Let Cn be the
cycle graph on n vertices. To distinguish the vertices of Cn from elements of N, we will
say that the vertex set of Cn is {v1, . . . , vn}; then the edges of Cn are ei = {vi, vi+1} for
1 ≤ i < n as well as en = {vn, v1}. A circular composition of n is the collection of connected
components that remain when one or more edges are removed from Cn. Each connected
component can be either a path or a single vertex. By analogy with sums, each element in a
circular composition will be called a part, and the size of the part is the number of vertices
it contains. If the sizes of the parts belong to A, then it is a circular A-composition of n.
(See Figure 2 for examples.) Let c(A;n) be the number of circular A-compositions of n.
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Figure 2: Two circular compositions of 10 that are in the same orbit under the action of
Z/10Z by rotations. Both are equivalent as cyclic compositions to the sum 1 + 3 + 4 + 2.

The cases n = 0 and n = 1 in the preceding paragraph deserve clarification. Although
we allow for a sum to have zero terms, we do not permit a graph to have zero vertices, and
so c(A; 0) = 0 for all sets A. This convention will also simplify some later formulas. The
graph C1 has only one vertex v1, and its only edge is a loop from v1 to itself. Thus 1 has
exactly one circular composition, obtained by removing the single edge from C1. Therefore
c(A; 1) equals one if 1 ∈ A and zero otherwise.

The circular A-compositions of n can be enumerated in the following manner. Say that
the first part of a circular composition of n is the part in Cn containing v1. Let k ∈ A be the
size of the first part. Then v1 can appear in any of the k positions in this part. To complete
the circular composition of n, select an ordinary composition of n−k. By the multiplication
principle, the total number of circular A-compositions of n is

c(A;n) =
n∑

k=1

k i(A; k) b(A;n− k).

Therefore the generating function for (c(A;n))∞n=1 is

gA(x) =
∞∑
n=1

c(A;n)xn =
∞∑
n=1

n∑
k=1

k i(A; k) b(A;n− k)xn

=

(
∞∑
n=1

n i(A;n)xn

)(
∞∑
n=0

b(A;n)xn

)
=
x d
dx
jA(x)

1− jA(x)
,

where we have used the fact that
∞∑
n=1

n i(A;n)xn = x

∞∑
n=1

n i(A;n)xn−1 = x
d

dx

∞∑
n=1

i(A;n)xn = x
d

dx
jA(x).

In the OEIS, the sequence (c(A;n))∞n=1 does not have a particular designation as it relates
to (i(A;n))∞n=1, but in the language of AC, it corresponds to a direct product of the “pointing”
operation Θ and the “sequence” construction Seq, applied to the set A.
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Figure 3: The inverse image of a circular composition of 5 via the graph cover C15 → C5

that sends vi to vi mod 5. The resulting circular composition of 15 has threefold symmetry
because, under the action of Z/15Z, it is fixed by the subgroup ⟨5⟩, which has order 3.

Remark 1. Hadjicostas gives the same formula for gA(x) in [15, Lemma 2], but without
assigning it a clear combinatorial meaning. There is a difference in notation; the symbol
gA(n) in [15] becomes c(A;n) here, and the generating functions in [15] are not given names.

We are ready to derive the formula for hA(x) that was presented in equation (1). The
group Z/nZ acts on Cn by t · vi = vt+i for t ∈ Z/nZ (addition in the index is calculated
modulo n). This action induces an action of Z/nZ on the set of circular A-compositions of
n. (Again see Figure 2 for examples of two circular compositions that are in the same orbit
under this action.) Then d(A;n) equals the number of orbits of circular A-compositions
under the action of Z/nZ.

Let Fix(t) be the set of circular A-compositions of n fixed by t ∈ Z/nZ. Now, a circular
composition of n is fixed by t if and only if it is fixed by every element of the subgroup ⟨t⟩.
Recall that Z/nZ has one subgroup of order k for each divisor k of n. A circular composition
of n is fixed by the subgroup of order k if and only if it is the inverse image of a circular
composition of n/k by the canonical graph cover Cn → Cn/k, which is induced by i 7→
i mod n/k. (See Figure 3 for an example.) We know the number of circular A-compositions
of n/k to be c(A;n/k), and the subgroup of order k in Z/nZ has ϕ(k) generators. By the
orbit counting theorem for group actions (a.k.a. Burnside’s lemma), we have

d(A;n) =
1

n

n−1∑
t=0

#Fix(t) =
1

n

∑
k|n

ϕ(k)c(A;n/k). (2)
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Because k | n if and only if n = kℓ for some ℓ ≥ 1, we can write

hA(x) =
∞∑
n=1

∑
k|n

ϕ(k)

n
c(A;n/k)xn =

∞∑
k=1

∞∑
ℓ=1

ϕ(k)

kℓ
c(A; ℓ)xkℓ

=
∞∑
k=1

ϕ(k)

k

∞∑
ℓ=1

c(A; ℓ)

ℓ
xkℓ =

∞∑
k=1

ϕ(k)

k
log

1

1− jA(xk)
,

where we have used the fact that

∞∑
n=1

c(A;n)

n
xn =

∫ x

0

gA(u)

u
du =

∫ x

0

d
du
jA(u)

1− jA(u)
du = log

1

1− jA(x)
.

Remark 2. This proof of the formula in equation (1) is essentially the same as the one given
by Hadjicostas [15], and it resembles the earlier proof of Flajolet and Soria [13], which also
appears in AC, but I find the systematic use of a group action and covering spaces to be
clarifying.

3 Main theorem

Givenm ≥ 1 and q ∈ {0, . . . ,m−1}, let b(A,m, q;n) be the number of linear A-compositions
of n such that the number of parts is congruent to q modulom, let c(A,m, q;n) be the number
of circular A-compositions of n such that the number of parts is congruent to q modulo m,
and let d(A,m, q;n) be the number of cyclic A-compositions of n such that the number of
parts is congruent to q modulo m. Evidently,

b(A, 1, 0;n) = b(A;n) =
m−1∑
q=0

b(A,m, q;n),

c(A, 1, 0;n) = c(A;n) =
m−1∑
q=0

c(A,m, q;n), and

d(A, 1, 0;n) = d(A;n) =
m−1∑
q=0

d(A,m, q;n).

Moreover, for all n ≥ 1, we have

d(A,m, q;n) ≤ b(A,m, q;n) ≤ c(A,m, q;n).

Our main result is a collection of formulas for the generating functions of these sequences.
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Theorem 3. Let A ⊆ N be a set of natural numbers with indicator sequence i(A;n), and let
jA(x) be the generating function of (i(A;n))∞n=0. Given m ≥ 1 and 0 ≤ q ≤ m−1, the gener-
ating functions of the sequences (b(A,m, q;n))∞n=0, (c(A,m, q;n))

∞
n=0, and (d(A,m, q;n))∞n=0

are, respectively,

fA
m,q(x) =

∞∑
n=0

b(A,m, q;n)xn =
(jA(x))q

1− (jA(x))m
,

gAm,q(x) =
∞∑
n=0

c(A,m, q;n)xn =


x(jA(x))m−1

1− (jA(x))m
d

dx
jA(x), if q = 0;

x(jA(x))q−1

1− (jA(x))m
d

dx
jA(x), if q ̸= 0,

and

hAm,q(x) =
∞∑
n=0

d(A,m, q;n)xn =
∑

ks≡q (mod m)
0≤s≤m−1

ϕ(k)

k
Lm,s

(
jA(xk)

)
,

where

Lm,s(y) =


1

m
log

1

1− ym
, if s = 0;∫ y

0

us−1 du

1− um
, if s ̸= 0.

Remark 4. The functions Lm,s(y) can be expressed as the following power series:

Lm,0(y) =
∞∑
k=1

ykm

km
, and Lm,s(y) =

∞∑
k=0

ys+km

s+ km
for 1 ≤ s ≤ m− 1.

They satisfy Lm,0(y) + · · ·+ Lm,m−1(y) = − log(1− y) = L1,0(y).

Proof of Theorem 3. The number of A-compositions of n with mp+ q parts is given by the
coefficient of xn in

(
jA(x)

)
mp+q. Summing over p, we obtain

∞∑
n=0

b(A,m, q;n)xn =
∞∑
p=0

(
jA(x)

)
mp+q =

(
jA(x)

)
q

∞∑
p=0

(
jA(x)

)
mp =

(jA(x))q

1− (jA(x))m
.

Next, a circular A-composition of n with mp+ q terms begins with a first part whose size is
in A together with a position of v1 ∈ Cn within the first part, and it is completed by a linear
(i.e., ordinary) A-composition with mp + q − 1 parts. Recall that a circular composition
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cannot have zero parts, and so p and q cannot simultaneously be zero. If q = 0, we have

∞∑
n=0

c(A,m, 0;n)xn =
∞∑
p=1

(
x
d

dx
jA(x)

)(
jA(x)

)
mp−1

=
(
jA(x)

)m−1
(
x
d

dx
jA(x)

) ∞∑
p=1

(
jA(x)

)
m(p−1)

=
x(jA(x))m−1

1− (jA(x))m
d

dx
jA(x),

and if q ̸= 0 then

∞∑
n=0

c(A,m, q;n)xn =
∞∑
p=0

(
x
d

dx
jA(x)

)(
jA(x)

)
mp+q−1

=
(
jA(x)

)q−1
(
x
d

dx
jA(x)

) ∞∑
p=0

(
jA(x)

)
mp

=
x(jA(x))q−1

1− (jA(x))m
d

dx
jA(x).

To count the number of cyclic A-compositions of n whose number of parts equals mp+ q
for some p, we let Z/nZ act on the set of circular A-compositions as in section 2. Again
we need to count the number of fixed points for the subgroup of order k, where k divides
n. In order for a circular composition of n/k to correspond to a circular composition of n
with mp+ q parts, it must have s parts, where ks = mp+ q; that is, we need only consider
compositions of Cn/k with s terms, where ks ≡ q (mod m). Therefore, we can write

∞∑
n=0

d(A,m, q;n)xn =
∞∑
n=1

∑
ks≡q (mod m)
k|n, 0≤s≤m−1

ϕ(k)

n
c(A,m, s;n/k)xn

=
∑

ks≡q (mod m)
0≤s≤m−1

∞∑
ℓ=1

ϕ(k)

kℓ
c(A,m, s; ℓ)xkℓ

=
∑

ks≡q (mod m)
0≤s≤m−1

ϕ(k)

k

∞∑
ℓ=1

c(A,m, s; ℓ)

ℓ
xkℓ.

Using the formula for c(A,m, q;n) derived previously, we obtain

∞∑
ℓ=1

c(A,m, 0; ℓ)

ℓ
yℓ =

∫ y

0

gAm,0(u)

u
du =

∫ y

0

d
du
(jA(u))m−1

1− (jA(u))m
du =

1

m
log

1

1− (jA(u))m
,

10



and, when s > 0,

∞∑
ℓ=1

c(A,m, s; ℓ)

ℓ
yℓ =

∫ y

0

gAm,s(u)

u
du =

∫ y

0

d
du
(jA(u))s−1

1− (jA(u))m
du.

Setting xk = y in the previous equation establishes the desired formula.

Remark 5. The genesis of this paper was the need—which arose for a different counting
problem in graph theory—to calculate the number of circular A-compositions with an odd
number of parts, i.e., c(A, 2, 1;n), for a certain set A. Credit goes to John Palmer, who dis-
covered this application of circular compositions while working on an undergraduate research
project at Pepperdine [8]. I could not find a formula for c(A, 2, 1;n) in the literature, and
in proving it I realized that it was no harder to prove the general congruence case. Because
of the close connection between circular compositions and cyclic compositions, it seemed
worthwhile to include a formula for d(A,m, q;n) as well.

In light of the preceding remark, we shall single out the cases of compositions having an
odd or an even number of parts in a corollary.

Corollary 6. Given a set A ⊆ N, the sequences b(A, 2, q;n) and c(A, 2, q;n), with q ∈ {0, 1},
have the respective generating functions

fA
2,q(x) =

1

2
fA(x) +

1

2

(
(−1)q

1 + jA(x)

)
and gA2,q(x) =

1

2
gA(x) +

1

2

(
(−1)q+1x d

dx
jA(x)

1 + jA(x)

)
.

For d(A, 2, 0;n) and d(A, 2, 1;n), the generating functions are

hA2,0(x) =
1

2

∞∑
k=1

ϕ(k)

k
log

1

1− (jA(xk))2
+

1

2

∞∑
r=1

ϕ(2r)

2r
log

1 + jA(x2r)

1− jA(x2r)

and hA2,1(x) =
1

2

∞∑
r=0

ϕ(2r + 1)

2r + 1
log

1 + jA(x2r+1)

1− jA(x2r+1)
.

Proof of Corollary 6. The formulas for fA
2,q(x) and gA2,q(x) follow immediately from Theo-

rem 3 combined with the algebraic identities 1/(1 − u2) = 1/(2(1 − u)) + 1/(2(1 + u)) and
u/(1− u2) = 1/(2(1− u))− 1/(2(1 + u)).

For hA2,0(x), we need two additional observations: first, ks ≡ 0 (mod 2) if either s = 0 or
k ∈ 2N; and second,

L2,1(y) =

∫ y

0

du

1− u2
=

1

2
log

1 + y

1− y
.

For hA2,1(x), note that the only values of k and s with 0 ≤ s < 2 that satisfy ks ≡ 1 (mod 2)
are s = 1 and k ∈ N \ 2N.

11



The statement of Corollary 6 illustrates that each b(A,m, q;n) or c(A,m, q;n) can be
thought of as (1/m)b(A;n) or (1/m)c(A;n), respectively, plus some appropriate “correction
term” that depends on q and determines how the compositions are distributed among the
congruence classes modulo m. As we shall see in the examples of the following sections,
these correction terms may be bounded or unbounded as functions of n, and for certain sets
A they may even cancel out the primary term entirely for some values of n. The situation
for d(A,m, q;n) is more complicated, due to its dependence on divisibility properties of n.

4 Examples

The framework of A-compositions whose numbers of parts are congruent to q modm provides
a unifying perspective on a variety of integer sequences.

4.1 Trivial cases

It is often valuable to examine “trivial” cases to determine to what extent a set of formulas
applies. Let us therefore begin with the empty set A = ∅. The only possible ∅-composition
is the empty sum. The generating function of (i(∅;n))∞n=0 is j∅(x) = 0. The formulas of
Theorem 3 yield f ∅

m,q(x) = 1 if q = 0 (OEIS A000007), zero otherwise (OEIS A000004),

following the convention 00 = 1, and g∅m,q(x) = h∅m,q(x) = 0 for all m and q, which matches
the expectation that 0 is the only number with an ∅-composition, and no number has a
circular or cyclic ∅-composition.

The next simplest case is A = {1}. Then j{1}(x) = x, and from Theorem 3 we have

f {1}
m,q(x) =

xq

1− xm
, g{1}m,q(x) = h{1}m,q(x) =


xm

1− xm
, if q = 0;

xq

1− xm
, if q ̸= 0.

Thus b({1},m, q;n) equals one when n is congruent to q mod m, and zero otherwise. The
same is true for c({1},m, q;n) and d({1},m, q;n), except when q = n = 0. We get the equal-

ity h
{1}
m,q(x) = g

{1}
m,q(x) from the fact that when n ≥ 1, there is only one circular composition,

and consequently only one cyclic composition, of n with parts in {1}.

4.2 A useful lemma

Before going on, we exhibit a partial fraction decomposition for a type of rational expression
that has already appeared and will continue to arise in the current study.

Lemma 7. Given integers α and β such that 0 ≤ α < β, set ζ = e2πi/β. Then

uα

1− uβ
=

1

β

β−1∑
k=0

ζ−kα

1− ζku
.
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Proof. We begin with the ordinary partial fraction decomposition of uα/(uβ − 1). In other
words, we seek constants ck such that

uα

uβ − 1
=

β−1∑
k=0

ck
u− ζk

.

Because each root ζk of uβ − 1 is simple, these coefficients ck can be computed as residues
of uα/(uβ − 1). That is,

ck = lim
u→ζk

(u− ζk) uα

uβ − 1
= lim

u→ζk

uα

(uβ − 1)/(u− ζk)
=

ζkα

βζk(β−1)
=

1

β
ζkα+k.

Thus

uα

1− uβ
=

1

β

β−1∑
k=0

ζkα+k

ζk − u
=

1

β

β−1∑
k=0

ζkα

1− ζ−ku
=

1

β

β−1∑
k=0

ζ−kα

1− ζku
,

as claimed.

Remark 8. One immediate application of Lemma 7 is that the functions Lm,s(y) appearing
in Theorem 3 can be expressed using complex logarithms and mth roots of unity. Set
ζ = exp(2πi/m), then use α = s− 1 and β = m in Lemma 7 to get

Lm,s(y) =

∫ y

0

us−1 du

1− um
=

1

m

m−1∑
t=0

∫ y

0

ζ(1−s)t du

1− ζtu
=

1

m

m−1∑
t=0

ζ−st Log
1

1− ζty
,

where Log denotes the principal logarithm, with a branch cut along the negative real axis.

4.3 Compositions allowing parts of any size

Now we turn to N-compositions; that is, we will impose restrictions only on the number of
parts, not their sizes. The generating function of (i(N;n))∞n=1 is the geometric series

jN(x) =
∞∑
n=1

xn =
x

1− x
.

From this, we know

x
d

dx
jN(x) =

∞∑
n=1

nxn =
x

(1− x)2
.

By Theorem 3, the generating functions for (b(N,m, q;n))∞n=0 and (c(N,m, q;n))∞n=0 are

fN
m,q(x) =

xq/(1− x)q

1− xm/(1− x)m
and gNm,q(x) =


xm/(1− x)m+1

1− xm/(1− x)m
, if q = 0;

xq/(1− x)q+1

1− xm/(1− x)m
, if q ̸= 0.
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In Theorem 10, we will see explicit formulas for b(N,m, q;n) and c(N,m, q;n), but first we
examine two relationships between these sequences, which generalize some obvious relation-
ships between b(N;n) and c(N;n). For comparison, recall that

b(N;n) =

{
1, if n = 0;

2n−1, if n ≥ 1;
and c(N;n) = 2n − 1

(OEIS A011782 and A000225). These satisfy

b(N;n) = c(N;n)− c(N;n− 1) = c(N;n− 1) + 1

for n ≥ 1.

Lemma 9. For all 0 ≤ q < m and n ≥ 1 we have

b(N,m, q;n) = c(N,m, q;n)− c(N,m, q;n− 1), (3)

and when m > 1

b(N,m, q;n) =


c(N,m,m− 1;n− 1), if q = 0;

c(N,m, 0;n− 1) + 1, if q = 1;

c(N,m, q − 1;n− 1), otherwise.

(4)

Below are two proofs of each equality: one analytic, using generating functions, and one
bijective, using direct correspondences between sets.

Analytic proof of Lemma 9. From the formulas for fN
m,q(x) and g

N
m,q(x), we have

fN
m,0(x) = 1 + (1− x)gNm,0(x),

and if q ̸= 0 then
fN
m,q(x) = (1− x)gNm,q(x).

Equality (3) is immediate.
For equality (4), we consider by cases:

fN
m,0(x) =

1

1− xm/(1− x)m
= 1 +

xm/(1− x)m

1− xm/(1− x)m
= 1 + xgNm,m−1(x),

fN
m,1(x) =

x/(1− x)
1− xm/(1− x)m

=
x

1− x
+
xm+1/(1− x)m+1

1− xm/(1− x)m
=

x

1− x
+ xgNm,0(x),

fN
m,q(x) =

xq/(1− x)q

1− xm/(1− x)m
= xgNm,q−1(x) when 2 ≤ q ≤ m− 1.

Equality (4) follows.
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Bijective proof of Lemma 9. Recall that a circular composition of n consists of the connected
components that remain when one or more edges are removed from the cycle graph Cn. Each
ordinary (linear) composition of n may be identified with a circular composition of n in which
the edge en = {vn, v1} has been removed. A circular composition of n in which the edge en
remains can be identified with a circular composition of n − 1 by collapsing the edge en to
a single vertex.

Since the circular compositions of n can be partitioned according to whether en is removed
or kept, we have c(N,m, q;n) = b(N,m, q;n) + c(N,m, q;n− 1), which is equivalent to (3).

For (4), note that collapsing en in Cn to a single vertex almost induces a bijection from
linear compositions of n to circular compositions of n− 1: the difference is that the compo-
sition of n having a single part, namely n itself, does not have any corresponding circular
composition of n − 1, because after en is collapsed, no edges in Cn−1 have been removed.
Now observe that collapsing en, when starting with a linear composition of n, reduces the
total number of parts by 1, because the parts that contain v1 and vn are merged.

Let ⌊ · ⌋ denote the floor function.

Theorem 10. Given 0 ≤ q < m and n ≥ 1, we have

b(N,m, q;n) =
2n−1

m
+

2

m

⌊(m−1)/2⌋∑
k=1

(
2 cos

πk

m

)n−1

cos
πk(n+ 1− 2q)

m
and

c(N,m, q;n) =


−1 + 2n

m
+

2

m

⌊(m−1)/2⌋∑
k=1

(
2 cos

πk

m

)n

cos
πkn

m
, if q = 0;

2n

m
+

2

m

⌊(m−1)/2⌋∑
k=1

(
2 cos

πk

m

)n

cos
πk(n− 2q)

m
, if q ̸= 0.

Proof. By Lemma 9, we can express b(N,m, q;n) in terms of c(N,m, q;n), and so we will
calculate c(N,m, q;n) first. Throughout the proof, let ζ = ei 2π/m.

In the case q ̸= 0, we set a = q, b = m, and u = x/(1− x) in Lemma 7 to obtain

gNm,q(x) =
xq/(1− x)q+1

1− xm/(1− x)m
=

1

1− x

(
xq/(1− x)q

1− xm/(1− x)m

)
=

1

1− x

(
1

m

m−1∑
k=0

ζ−kq

1− ζkx/(1− x)

)

=
1

m

m−1∑
k=0

ζ−kq

1− x− ζkx
=

1

m

m−1∑
k=0

ζ−kq

1− (1 + ζk)x

=
1

m

m−1∑
k=0

∞∑
n=0

ζ−kq(1 + ζk)nxn.
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When q = 0, set α = 0, β = m, and u = x/(1− x) in Lemma 7 to obtain

gNm,0(x) =
xm/(1− x)m+1

1− xm/(1− x)m
=

1

1− x

(
xm/(1− x)m

1− xm/(1− x)m

)
=

1

1− x

(
−1 + 1

1− xm/(1− x)m

)
= − 1

1− x
+

1

m

m−1∑
k=0

1

1− (1 + ζk)x

= −
∞∑
n=0

xn +
1

m

m−1∑
k=0

∞∑
n=0

(1 + ζk)nxn.

Now take note of three things. First, in both cases the constant terms, with n = 0, cancel
out, which is to be expected because gNm,q(0) = 0. Second, the k = 0 term in each case
becomes

1

m

∞∑
n=1

2nxn,

which will represent the dominant term (1/m)2n in the expression for c(N,m, q;n). Third,
if m is even, then ζm/2 = −1, and so the k = m/2 portion of the double summation reduces
to 1/m, which does not contribute to any terms of positive order in the power series.

These observations, along with the convention that 00 = 1, allow us to write both forms
(for q = 0 and q ̸= 0) together as

gNm,q(x) = −0q
∞∑
n=1

xn +
1

m

∞∑
n=1

2nxn +
1

m

∞∑
n=1

m−1∑
k=1

ζ−kq(1 + ζk)nxn. (5)

To reach the formulas for c(N,m, q;n) that appear in the statement of Theorem 10, we just
need to rearrange the coefficient of xn in the final term of (5):

m−1∑
k=1

ζ−kq(1 + ζk)n =

⌊(m−1)/2⌋∑
k=1

(
e−i 2πkq/m(1 + ei 2πk/m)n + ei 2πkq/m(1 + e−i 2πk/m)n

)
=

⌊(m−1)/2⌋∑
k=1

(
eiπk(n−2q)/m + e−iπk(n−2q)/m

) (
eiπk/m + e−iπk/m

)n
= 2

⌊(m−1)/2⌋∑
k=1

cos(πk(n− 2q)/m)
(
2 cos(πk/m)

)n
.

This completes the proof of the formula for c(N,m, q;n).
To obtain (b(N,m, q;n))∞n=1 from (c(N,m, q;n))∞n=1, we can use either equality (3) or (4)

from Lemma 9. Each approach has pros and cons. Using (3) means we can make a single
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argument for all values of q, but it requires the somewhat obscure identity

2 cos(πk/m) cos(πk(n− 2q)/m)− cos(πk(n− 1− 2q)/m) = cos(πk(n+ 1− 2q)/m),

which can be derived by rearranging the trigonometric formula

2 cos η cos θ = cos(η + θ) + cos(η − θ).

Using (4), on the other hand, just requires direct substitution, but three separate cases need
to be considered. The details are left to the reader.

Remark 11. In a circular composition of n, the number of parts equals the number of edges
that are removed from Cn to obtain the composition. With this in view, determining
c(N,m, q;n) goes back to an old problem, which may be expressed thusly: “Given a col-
lection of n tokens, how many ways can a random nonempty sample of tokens be selected in
such a manner that the number selected is congruent to q modulo m?” Cournot [11] posed
the problem and solved it for m ≤ 4; a complete solution was provided by Ramus [22], whose
method is more or less reproduced in the approach used here to calculate c(N,m, q;n).

The generating function of the sequence (d(N;n))∞n=0 is

hN(x) =
∞∑
k=1

ϕ(k)

k
log

1− xk

1− 2xk
,

and the number of cyclic compositions of n is

d(N;n) =
1

n

∑
k|n

ϕ(k)
(
2n/k − 1

)
= −1 + 1

n

∑
k|n

ϕ(k)2n/k

(OEIS A008965). An exact formula for d(N,m, q;n), using the expression that was derived
in the proof of Theorem 3, is available in terms of the values of c(N,m, q;n/k) where k | n,
but to write it out for general m and q would be cumbersome. We will restrict ourselves to
the case m = 2. It follows from Theorem 10 (but it is also easy to work out by hand) that
c(N, 2, 0;n) = 2n−1 − 1 and c(N, 2, 1;n) = 2n−1. Thus,

d(N, 2, 0;n) =
1

n

∑
k|n

ϕ(k)c(N, 2, 0;n/k) +
1

n

∑
k|n, k even

ϕ(k)c(N, 2, 1;n/k)

= −1 + 1

2n

∑
k|n

ϕ(k)2n/k +
1

2n

∑
k|n, k even

ϕ(k)2n/k

= −1 + 1

n

∑
k|n, k even

ϕ(k)2n/k +
1

2n

∑
k|n, k odd

ϕ(k)2n/k

(OEIS A056295), and

d(N, 2, 1;n) =
1

n

∑
k|n, k odd

ϕ(k)c(N, 2, 1;n/k) =
1

2n

∑
k|n, k odd

ϕ(k)2n/k

(OEIS A000016).
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4.4 Compositions with parts no greater than N

For N ∈ N, let [N ] = {1, 2, . . . , N}. Fix an N ≥ 2. Then

j[N ](x) =
N∑
k=1

xk =
x− xN+1

1− x
and

x
d

dx
j[N ](x) =

N∑
k=1

kxk =
x− (N + 1)xN+1 +NxN+2

(1− x)2
=

1

1− x

(
−NxN+1 +

N∑
k=1

xk

)
,

whence

f [N ](x) =
1

1−
∑N

k=1 x
k
=

1− x
1− 2x+ xN+1

and

g[N ](x) =

∑N
ℓ=1 ℓx

ℓ

1−
∑N

k=1 x
k
=

(x− xN+1)/(1− x)−NxN+1

1− 2x+ xN+1
.

It is convenient at this point to recall the N -step generalizations of the Fibonacci and
Lucas numbers, denoted by F

(N)
n and L

(N)
n : these are

F (N)
n =


0, if n ≤ 0;

1, if n = 1;

F
(N)
n−1 + · · ·+ F

(N)
n−N , if n ≥ 2,

and

L(N)
n =


−1, if n < 0;

N , if n = 0;

L
(N)
n−1 + · · ·+ L

(N)
n−N , if n ≥ 1.

Here we are following the conventions used by Noe and Post [19]. In particular, (F
(2)
n )∞n=0

is the standard Fibonacci sequence (OEIS A000045), and (L
(2)
n )∞n=0 is the standard Lucas

sequence (OEIS A000032). One may quickly deduce that F
(N)
n = 2n−2 for 2 ≤ n ≤ N + 1

and L
(N)
n = 2n − 1 for 1 ≤ n ≤ N .

The generating functions of
(
F

(N)
n

)∞
n=0 and

(
L
(N)
n

)∞
n=0 are, respectively,

f (N)(x) =
x

1−
∑N

k=1 x
k

and g(N)(x) =
N −

∑N−1
ℓ=1 (N − ℓ)xℓ

1−
∑N

k=1 x
k

.

From the equalities

f (N)(x) = xf [N ](x) and g(N)(x) = g[N ](x) +N ,
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we see that the number of [N ]-compositions and the number of circular [N ]-compositions of
n are respectively given by

b([N ];n) = F
(N)
n+1 and c([N ];n) =

{
0, if n = 0;

L
(N)
n , otherwise.

In principle, we could follow the same process as we did for b(N,m, q;n) and c(N,m, q;n)
to calculate b([N ],m, q;n) and c([N ],m, q;n) for all m, q, n, but the expressions would not
be nearly as neat. In §4.3 we relied on the fact that jN(x) has degree 1 as a rational function,
whereas the degree of j[N ](x) is N ≥ 2; solving the equation j[N ](x) = ζ is generally a difficult
task. So we will instead give attention only to the cases where m = 2, for which we can
apply Corollary 6.

Theorem 12. For all N ≥ 2 and n ≥ 1, we have

b([N ], 2, 0;n) =
1

2
F

(N)
n+1 +


1/2, if n ≡ 0 (mod N + 1);

−1/2, if n ≡ 1 (mod N + 1);

0, otherwise,

b([N ], 2, 1;n) =
1

2
F

(N)
n+1 +


−1/2, if n ≡ 0 (mod N + 1);

1/2, if n ≡ 1 (mod N + 1);

0, otherwise,

c([N ], 2, 0;n) =
1

2
L(N)
n +

{
N/2, if n ≡ 0 (mod N + 1);

−1/2, otherwise,
and

c([N ], 2, 1;n) =
1

2
L(N)
n +

{
−N/2, if n ≡ 0 (mod N + 1);

1/2, otherwise.

When N = 2, the formulas of Theorem 12 produce the sequences OEIS A094686,
A093040, A100886, and A366043. See Figures 4–6 for illustrations of c([3], 2, 0;n) and
c([3], 2, 1;n) when 4 ≤ n ≤ 6; the relevant sequences are OEIS A366044 and A366045.

The appearance of congruence classes modulo N+1 in the statement of Theorem 12 may
initially come as a surprise; as we shall see, it is a consequence of the fact that 1+ j[N ](x) =
(1− xN+1)/(1− x).

Proof of Theorem 12. By Corollary 6, for q ∈ {0, 1}, we have

f
[N ]
2,q (x) =

1

2
f [N ](x) +

(−1)q

2

(
1

1 + j[N ](x)

)
and

g
[N ]
2,q (x) =

1

2
g[N ](x) +

(−1)q+1

2

(
x d
dx
j[N ](x)

1 + j[N ](x)

)
.
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Figure 4: Among the eleven circular compositions of 4 with parts in [3] = {1, 2, 3}, seven
have an even number of parts, and four have an odd number of parts.

Figure 5: Among the twenty-one circular [3]-compositions of 5, ten have an even number of
parts, and eleven have an odd number of parts.

Because we already know that

f [N ](x) =
1

x
f (N)(x) and g[N ](x) = g(N)(x)−N ,

we only need to show that the latter terms match the bracketed expressions in the theorem
statement. So we observe that

1

1 + j[N ](x)
=

1

1 + x+ · · ·+ xN
=

1− x
1− xN+1

=
∞∑
k=0

xk(N+1) −
∞∑
ℓ=0

xℓ(N+1)+1,

and

x d
dx
j[N ](x)

1 + j[N ](x)
=
x+ · · ·+ xN −NxN+1

1− xN+1
= −

∞∑
k=1

Nxk(N+1) +
N∑
p=1

∞∑
ℓ=0

xℓ(N+1)+p,

from which the claimed formulas follow.

For the remainder of the paper, we will use the standard notation Fn = F
(2)
n and Ln = L

(2)
n

to denote the usual 2-step Fibonacci and Lucas sequences.
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Figure 6: Among the thirty-nine circular [3]-compositions of 6, nineteen have an even number
of parts, and twenty have an odd number of parts.

4.5 Compositions with odd parts

Let O = N \ 2N be the set of odd natural numbers. From the expressions

jO(x) =
x

1− x2
and x

d

dx
jO(x) =

x+ x3

(1− x2)2
=

1 + x2

1− x2
· jO(x),

we obtain

fO(x) =
1− x2

1− x− x2
= 1 +

x

1− x− x2
= 1 + f (2)(x) and

gO(x) =
x+ x3

(1− x2)(1− x− x2)
=

2− x
1− x− x2

− 2

1− x2
= g(2)(x)− 2

1− x2
.

We conclude that

b(O;n) =

{
1, if n = 0;

Fn, if n ≥ 1,
and c(O;n) =

{
Ln, if n ∈ O;
Ln − 2, if n ∈ 2N

(OEIS A324969 and A001350).
The values of b(O;n) and c(O;n) have nice combinatorial explanations. For ordinary

compositions, we employ the fact, recorded in §4.4, that b({1, 2};n − 1) = Fn. Here is an
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explicit bijection from {1, 2}-compositions of n − 1 to O-compositions of n. Begin with a
composition of n − 1 into 1s and 2s. Append a 1 to the start of the sum; then add each
part equal to 1 together with any following 2s, until another 1 is reached, to produce an
odd number. For example, if we append a 1 to the beginning of the {1, 2}-composition
8 = 2 + 1 + 2 + 2 + 1, we get 1 + 2 + 1 + 2 + 2 + 1, which becomes the O-composition
9 = 3 + 5 + 1. This process can be reversed to produce a {1, 2}-composition of n − 1 from
an O-composition of n: split each part in the O-composition into a 1 followed by a suitable
number of 2s, then remove the initial 1. Thus b(O;n) = b({1, 2}, n− 1) = Fn.

For circular compositions, we can do nearly the same thing, except we do not need to
append an additional 1; we simply use the orientation of the cycle graph Cn to create a path
with an odd number of vertices from each part of size 1 and any subsequent parts of size 2,
until another part of size 1 is reached. If n is odd, then every circular {1, 2}-composition of
n must have at least one part of size 1. Thus c(O;n) = c({1, 2};n) = Ln when n is odd.
However, if n is even, it has two circular compositions all of whose parts have size 2, resulting
from the two possible positions of v1 within the first part, and these do not correspond to
any O-compositions. Thus c(O;n) = c({1, 2};n) − 2 = Ln − 2 when n is even. (The fact
that c(O; 0) = L0 − 2 = 2− 2 = 0 is fortuitous.)

Although we eschewed the case of generalm and q in §4.4 due to the high degree of j[N ](x),
the rational function jO(x) has only the manageable degree 2, and indeed the resulting
expressions for fO

m,q(x) and g
O
m,q(x) have a lovely relationship with the Fibonacci and Lucas

polynomials, whose definitions and basic properties we recall next.
Given z ∈ C, let ψz and ωz be the solutions to x2 − zx− 1 = 0, so that ψz + ωz = z and

ψzωz = −1. For n ∈ N0, the nth Fibonacci polynomial Fn : C→ C is defined by

Fn(z) =
ψn
z − ωn

z

ψz − ωz

,

and the nth Lucas polynomial Ln : C→ C is defined by

Ln(z) = ψn
z + ωn

z .

From these definitions, it follows that

zFn(z) = (ψz + ωz) ·
ψn
z − ωn

z

ψz − ωz

=
ψn+1
z − ωn+1

z

ψz − ωz

+ ψzωz ·
ψn−1
z − ωn−1

z

ψz − ωz

= Fn+1(z)−Fn−1(z),

and

Ln(z) = (ψn
z + ωn

z ) ·
ψz − ωz

ψz − ωz

=
ψn+1
z − ωn+1

z

ψz − ωz

+
ψn−1
z − ωn−1

z

ψz − ωz

= Fn+1(z) + Fn−1(z).

In particular, the Fn and Ln satisfy the same recurrence relation, namely

Fn+1(z) = zFn(z) + Fn−1(z) and Ln+1(z) = zLn(z) + Ln−1(z)
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for n ≥ 1. The initial values are

F0(z) = 0, F1(z) = 1, F2(z) = z,

L0(z) = 2, L1(z) = z, L2(z) = z2 + 2,

and so Fn(1) = Fn and Ln(1) = Ln for all n ∈ N0. Indeed, the definitions of Fn(1) and Ln(1)
simply become Binet’s formulas for Fn and Ln, because {ψ1, ω1} = {(1+

√
5)/2, (1−

√
5)/2}.

The coefficients of Fn and Ln can be given explicitly using binomial coefficients:

Fn(z) =

⌊(n−1)/2⌋∑
k=0

(
n− k − 1

k

)
zn−2k−1 and Ln(z) =

⌊n/2⌋∑
k=0

n

n− k

(
n− k
k

)
zn−2k,

as may be shown by induction.
Using the factorization 1− zx− x2 = (1− ψzx)(1− ωzx), we can obtain the generating

function f(x, z) for the sequence (Fn(z))
∞
n=0:

f(x, z) =
∞∑
n=0

Fn(z)x
n =

∞∑
n=0

(
ψn
z − ωn

z

ψz − ωz

)
xn =

1

ψz − ωz

(
∞∑
n=0

ψn
z x

n −
∞∑
n=0

ωn
z x

n

)

=
1

ψz − ωz

(
1

1− ψzx
− 1

1− ωzx

)
=

x

1− zx− x2
.

From the relation Ln(z) = Fn+1(z) + Fn−1(z) it follows that generating function g(x, z) for
the sequence (Ln(z))

∞
n=0 is

g(x, z) =
∞∑
n=0

Ln(z)x
n = 1 +

(
1

x
+ x

)
f(x, z) = 1 +

1 + x2

1− zx− x2
=

2− zx
1− zx− x2

.

The additional term of 1 is needed to match the condition L0(z) = 2, and it agrees with the
convention that F−1(z) = 1, which is consistent with the definition we are using. It will also
be beneficial for us to have the generating function for (Ln(z)− 1− (−1)n)∞n=0, which is

∞∑
n=0

(
Ln(z)− 1− (−1)n

)
xn =

2− zx
1− zx− x2

− 2

1− x2
=

1 + x2

1− x2
· zx

1− zx− x2
.

Now we are ready to compute the values of b(O,m, q;n) and c(O,m, q;n).

Theorem 13. Given m ≥ 1, set ζ = e2πi/m. For all 0 ≤ q < m and n ≥ 1, we have

b(O,m, q;n) =
1

m

m−1∑
k=0

ζk(1−q)Fn(ζ
k) =

∑
k∈S(m,n,q)

(
n− k − 1

k

)
and

c(O,m, q;n) = −
(
1 + (−1)n

)
· 0q + 1

m

m−1∑
k=0

ζ−kqLn(ζ
k) =

∑
k∈S(m,n,q)

n

n− k

(
n− k
k

)
where S(m,n, q) is the set of solutions to 2k ≡ n−q (mod m) such that 0 ≤ k ≤ ⌊(n−1)/2⌋.
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Proof. We will repeatedly use, without further notice, the fact that
∑m−1

k=0 ζ
kα = 0 unless α

is a multiple of m, in which case the sum equals m.
Using Lemma 7 with u = x/(1− x2), α = q, and β = m, we have

fO
m,q(x) =

xq/(1− x2)q

1− xm/(1− x2)m
=

1

m

m−1∑
k=0

ζ−kq

1− ζkx/(1− x2)
=

1

m

m−1∑
k=0

ζ−kq(1− x2)
1− ζkx− x2

=
1

m

m−1∑
k=0

ζ−kq(1− ζkx− x2) + ζk(1−q)x

1− ζkx− x2
=

1

m

m−1∑
k=0

(
ζ−kq +

ζk(1−q)x

1− ζkx− x2

)

= 1 · 0q + 1

m

m−1∑
k=0

ζk(1−q)

∞∑
n=0

(
Fn(ζ

k)
)
xn

= 1 · 0q + 1

m

∞∑
n=0

m−1∑
k=0

ζk(1−q)

⌊(n−1)/2⌋∑
ℓ=0

(
n− ℓ− 1

ℓ

)
ζk(n−2ℓ−1)xn

= 1 · 0q + 1

m

∞∑
n=0

⌊(n−1)/2⌋∑
ℓ=0

(
n− ℓ− 1

ℓ

)m−1∑
k=0

ζk(n−2ℓ−q)xn.

All terms in the final sum cancel except those for which n − 2ℓ − q ≡ 0 (mod m), which is
precisely the condition that ℓ ∈ S(m,n, q).

For circular compositions, we observe that

gOm,q(x) =
xq(1 + x2)/(1− x2)q+1

1− xm/(1− x2)m
=

1 + x2

1− x2
·
(
fO
m,q(x)− 1 · 0q

)
=

1

m

m−1∑
k=0

1 + x2

1− x2
· ζk(1−q)x

1− ζkx− x2
=

1

m

m−1∑
k=0

ζ−kq · 1 + x2

1− x2
· ζkx

1− ζkx− x2

=
1

m

m−1∑
k=0

ζ−kq

∞∑
n=0

(
Ln(ζ

k)− 1− (−1)n
)
xn

= −
(
1 + (−1)n

)
xn · 0q + 1

m

m−1∑
k=0

ζ−kq

∞∑
n=0

(
Ln(ζ

k)
)
xn

= −
(
1 + (−1)n

)
xn · 0q + 1

m

∞∑
n=0

m−1∑
k=0

ζ−kq

⌊n/2⌋∑
ℓ=0

n

n− ℓ

(
n− ℓ
ℓ

)
ζk(n−2ℓ)xn

= −
(
1 + (−1)n

)
xn · 0q + 1

m

∞∑
n=0

⌊n/2⌋∑
ℓ=0

n

n− ℓ

(
n− ℓ
ℓ

)m−1∑
k=0

ζk(n−2ℓ−q)xn.

Again, all terms cancel except those for which n− 2ℓ− q ≡ 0 (mod m).

Having reached the result of Theorem 13 via generating functions, we can also give a
combinatorial explanation of the formulas in its statement that employ binomial coefficients,
using the previously-described connection between O-compositions and {1, 2}-compositions.
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Suppose n = 2p + q, with p, q ≥ 0. The number of ways to arrange p parts equal to 2
and q parts equal to 1 into a {1, 2}-composition of n is

(
n−p
p

)
. When a {1, 2}-composition of

n that starts with 1 is converted into an O-composition of n as previously described (group
each part equal to 1 with all succeeding parts equal to 2), the number of parts in the resulting
O-composition is equal to the number of 1s in the initial composition of n. If this number of
parts is required to be congruent to q modulo m, then p must satisfy n− 2p ≡ q (mod m).
No more than ⌊(n− 1)/2⌋ parts of the {1, 2}-composition of n can equal 2, because the first
part must be 1, so in fact p must belong to the set S(m,n, q) appearing in the statement of
Theorem 13. Thus, we have reaffirmed that

b(O,m, q;n) =
∑

p∈S(m,n,q)

(
n− 1− p

p

)
.

To determine a circular {1, 2}-composition of n, we can first choose an ordinary composi-
tion, then a position in Cn at which to begin this composition. Consider circular compositions
with q parts equal to 1 and p parts equal to 2. Then there are

(
n−p
p

)
ways to arrange these

parts into an ordinary composition, and n possible initial positions. However, following this
process produces each circular composition n− p times, by choosing the first vertex of each
part as the initial position. So the total number of such circular compositions is n

n−p

(
n−p
p

)
.

Because we only want to consider circular {1, 2}-compositions that correspond to circular
O-compositions, we restrict to p ≤ ⌊(n − 1)/2⌋, and again, if q is treated as a residue class
modulo m, then the values of p are restricted to S(m,n, q). Thus, we have reaffirmed that

c(O,m, q;n) =
∑

p∈S(m,n,q)

n

n− p

(
n− p
p

)
.

Note that S(m,n, q) is empty when m is even and n and q have opposite parity, and
therefore b(O,m, q;n) = c(O,m, q;n) = 0 in this circumstance (and also d(O,m, q;n) = 0).
This result may be seen as an elementary consequence of the fact that a sum of an even
number of odd parts must be even, and a sum of an odd number of odd parts must be odd.
It follows immediately that, for n ≥ 1,

b(O, 2, 0; 2n) = b(O; 2n) = F2n, b(O, 2, 1; 2n− 1) = b(O; 2n− 1) = F2n−1,

c(O, 2, 0; 2n) = c(O; 2n) = L2n − 2, c(O, 2, 1; 2n− 1) = c(O; 2n− 1) = L2n−1

(OIES A088305, A001519, A004146, A002878), and consequently, by (2),

d(O, 2, 0; 2n) = d(O; 2n) =
1

2n

∑
k|2n

ϕ(k)
(
L2n/k − 1− (−1)2n/k

)
and

d(O, 2, 1; 2n− 1) = d(O; 2n− 1) =
1

2n− 1

∑
k|(2n−1)

ϕ(k)L(2n−1)/k

(OEIS A365857 and A365858), keeping in mind that every divisor of 2n− 1 must be odd.
That is, restricting O-compositions to either an even number of parts or an odd number

of parts results in a bisection of each counting sequence, alternating with terms equal to 0.
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5 Compositions with parts in a multiset

The entire discussion in sections 2 and 3 applies mutatis mutandis to compositions with
parts in a multiset, in which elements are allowed to appear with multiplicity greater than
one. These are also known as compositions with color. Subscripts are used to distinguish
the copies of an element; for instance, a multiset that contains 2 appearing with multiplicity
three would have three elements of size 2, labeled 21, 22, 23, and collectively represented
as 2[3]. More generally, n[µ] represents a collection of µ copies of n, and a multiset M with
underlying set A and multiplicity function µ will be represented by

M = {a[µ(a)] : a ∈ A} = A[µ].

Each of the possible subscripts for an element of M is called a color. An N[µ]-composition
will also be called a µ-color composition.

If we require the multiplicity of each element to be finite, then a multiset M of positive
integers is encoded by its indicator sequence i(M ;n) : N→ N0, where i(M ;n) = µ(n). This
indicator sequence has the generating function

jM(x) =
∞∑
n=1

i(M ;n)xn

in the same way as before, and the generating functions fM
m,q(x), g

M
m,q(x), and hMm,q(x) for

the sequences b(M,m, q;n), c(M,m, q;n), and d(M,m, q;n) can be constructed just as in
Theorem 3, with M in place of A.

5.1 κ-color compositions with constant κ

Fix a natural number κ ≥ 2. The multiset

N[κ] = {n[κ] : n ∈ N} = {11, . . . , 1κ, 21, . . . , 2κ, 31, . . . , 3κ, 41, . . . , 4κ, . . . }

contains each natural number with multiplicity κ, and a N[κ]-composition is also called a
κ-color composition. The function jN[κ](x) is

jN[κ](x) = κjN(x) =
κx

1− x
.

Thus

fN[κ](x) =
1

1− κx/(1− x)
=

1− x
1− (1 + κ)x

= 1 +
κx

1− (1 + κ)x
= 1 +

∞∑
n=1

κ(1 + κ)n−1xn,

and so the number of κ-color compositions of n is given by

b(N[κ];n) =

{
1, if n = 0;

κ(1 + κ)n−1, if n ≥ 1.
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The case n ≥ 1 corresponds to the equality
n∑

k=1

(
n− 1

k − 1

)
κk = κ(1 + κ)n−1,

where the kth term in the sum counts the number of κ-color compositions having k parts.

Remark 14. Andrews [3] calls κ-color compositions “multicompositions” or “κ-compositions”;
however, he adds the restriction that the final part of every composition must be the initial
color (i.e., the subscript of the final part must be 1), which removes a factor of κ from the
formula for b(N[κ];n) when n ≥ 1.

For circular compositions, we have

gN[κ](x) =
κx/(1− x)2

1− κx/(1− x)
=

κx/(1− x)
1− (1 + κ)x

=
1

1− (1 + κ)x
− 1

1− x
=

∞∑
n=0

(
(1 + κ)n − 1

)
xn,

and so the number of circular κ-color compositions of n is given by

c(N[κ];n) = (1 + κ)n − 1.

The case n ≥ 1 corresponds to the equality
n∑

k=1

(
n

k

)
κk = (1 + κ)n − 1,

where the kth term in the sum counts the number of circular κ-color compositions having k
parts.

Using methods similar to those of §4.3, one obtains

b(N[κ],m, q;n) =
κ(1 + κ)n−1

m
+
κ

m

m−1∑
k=1

ei 2πk(1−q)/m
(
1 + κei 2πk/m

)n−1
,

c(N[κ],m, q;n) =


−1 + (1 + κ)n

m
+

1

m

m−1∑
k=1

(
1 + κei 2πk/m

)n
, if q = 0;

(1 + κ)n

m
+

1

m

m−1∑
k=1

e−i 2πkq/m
(
1 + κei 2πk/m

)n
, if q ̸= 0.

For m = 2, q ∈ {0, 1}, we get

b(N[κ], 2, q;n) =
κ

2

(
(1 + κ)n−1 − (−1)q(1− κ)n−1

)
,

c(N[κ], 2, q;n) =
1

2

(
(1 + κ)n + (−1)q(1− κ)n

)
− 1 · 0q.

Remark 15. Each quantity ei 2πk(1−q)/m(1 + κei 2πk/m)n−1 and e−i 2πkq/m(1 + κei 2πk/m)n in the
expressions for b(N[κ],m, q;n) and c(N[κ],m, q;n) appears in a sum along with its complex
conjugate. The expressions can therefore be written exclusively in terms of trigonometric
and inverse trigonometric functions, to eliminate the use of complex numbers, but for general
κ the resulting formulas become somewhat unwieldy.

27



5.2 Linear and circular ν-color compositions

Let ν : N→ N be the identity function ν(n) = n. The multiset

N[ν] = {n[n] : n ∈ N} = {11, 21, 22, 31, 32, 33, 41, 42, 43, 44, . . . }

has indicator sequence i(N[ν];n) = ν(n) = n. Linear compositions with parts in N[ν] are
precisely the “n-color compositions” defined by Agarwal [1]. We will use the term ν-color
composition instead, as it matches our previously established vocabulary, and moreover our
habit has been to let n represent the total of a composition. The function jN[ν](x) becomes

jN[ν](x) =
∞∑
n=1

nxn =
x

(1− x)2
.

This is the same as the function x d
dx
jN(x), which we saw in §4.3. Consequently,

x
d

dx
jN[ν](x) =

∞∑
n=1

n2xn =
x(1 + x)

(1− x)3
.

Thus, we have

fN[ν](x) =
1

1− x/(1− x)2
=

1− 2x+ x2

1− 3x+ x2
= 1 +

x

1− 3x+ x2
and

gN[ν](x) =
x(1 + x)/(1− x)3

1− x/(1− x)2
=

x+ x2

(1− x)(1− 3x+ x2)
=

2− 3x

1− 3x+ x2
− 2

1− x
.

Remark 16. Agarwal [1] does not treat the empty sum as a composition, and so he omits
the constant term 1 from the generating function that corresponds to our fN[ν](x).

These ν-color compositions are closely connected to compositions whose parts are odd.
Indeed, if we set O = N \ 2N as in §4.5, we have the following result.

Theorem 17. Given m ≥ 1, 0 ≤ q < m, and n ∈ N, we have

b(N[ν],m, q;n) = b(O, 2m, 2q; 2n) =
∑

k∈T (m,n,q)

(
2n− k − 1

k

)
and

c(N[ν],m, q;n) = c(O, 2m, 2q; 2n) =
∑

k∈T (m,n,q)

2n

2n− k

(
2n− k
k

)
,

where T (m,n, q) is the set of solutions to k ≡ n− q (mod m) such that 0 ≤ k ≤ n− 1.

In particular, Theorem 17 implies that

b(N[ν];n) =

{
1, if n = 0;

F2n, if n ≥ 1,
and c(N[ν];n) = L2n − 2
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(OEIS A088305 and A004146).
The key observation for the proof of Theorem 17 is that

jN[ν](x2) =
(
jO(x)

)2
(6)

because both sides equal x2/(1 − x2)2. Following a first, analytic proof of Theorem 17, we
will see a combinatorial interpretation of equation (6) and an accompanying bijective proof
of Theorem 17. The next lemma applies to both proofs.

Lemma 18. Let S(m,n, q) and T (m,n, q) be defined as in the statements of Theorem 13
and Theorem 17, respectively. Then S(2m, 2n, 2q) = T (m,n, q).

Proof. We have the following chain of equivalences:

2k ≡ 2n− 2q (mod 2m) ⇐⇒ (∃ℓ)(2k = 2n− 2q + 2mℓ)

⇐⇒ (∃ℓ)(k = n− q +mℓ)

⇐⇒ k ≡ n− q (mod m).

In addition, 0 ≤ k ≤ ⌊(2n− 1)/2⌋ is equivalent to 0 ≤ k ≤ n− 1.

Analytic proof of Theorem 17. For ordinary compositions, applying equation (6) to the for-
mula from Theorem 3 yields directly

f
N[ν]
m,q (x

2) =
(jN[ν](x2))q

1− (jN[ν](x2))m
=

(jO(x))2q

1− (jO(x))2m
= fO

2m,2q(x).

For circular compositions, we need an additional relation. Differentiating both sides of
(6) and dividing by 2 yields

x
d

du
jN[ν](u)

∣∣∣∣
u=x2

= jO(x)
d

dx
jO(x). (7)

Now (6) and (7) can be applied to the formula from Theorem 3 to obtain

g
N[ν]
m,q (x

2) =
x2(jN[ν](x2))q−1

1− (jN[ν](x2))m
d

du
jN[ν](u)

∣∣∣∣
u=x2

=
x(jO(x))2q−2

1− (jO(x))2m
jO(x)

d

dx
jO(x)

=
x(jO(x))2q−1

1− (jO(x))2m
d

dx
jO(x)

= gO2m,2q(x)

when 0 < q < m, and similarly for q = 0.
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We observed at the start of the section that jN[ν](x) = x d
dx
jN(x). This equality is not

merely convenient; it is suggestive. The operator x d
dx

on functions corresponds to a “point-
ing” or “marking” operation on elements of a set (see, e.g., [12, §I.6.2]). In the case of
circular N-compositions, the location of the initial vertex v1 is marked within the first part.
Similarly, a ν-color composition can be interpreted as a N-composition in which every part
has a marking. Therefore, we can represent a ν-color composition—whether linear, circular,
or cyclic—graphically as the associated uncolored composition, with one vertex in each part
marked to indicate its color. This identification between colors and marked vertices is possi-
ble because all three kinds of composition we are considering have a notion of “orientation,”
which allows us to enforce a consistent order on the vertices within each part.

Remark 19. We now also have a natural interpretation for the n2 coefficients that appear in
the power series expression for x d

dx
jN[ν](x): the first part in a circular ν-color composition is

“doubly marked”: once by color, and once by the location of the vertex v1.

The graphical representation of ν-color compositions is closely related to their connection
with O-compositions. First, notice that equation (6) can be written out in power series as

∞∑
n=1

nx2n =

(
∞∑
p=1

x2p−1

)2

.

Expressed combinatorially, this equation says that there are n ways to write 2n as a compo-
sition of two positive odd numbers. This fact may also be seen directly using the bijections
χ : N[ν] → O ×O and χ−1 : O ×O → N[ν] defined by

χ : nk 7→ (2k − 1, 2(n− k) + 1) and χ−1 : (2k − 1, 2ℓ− 1) 7→ (k + ℓ− 1)k.

These are additive homomorphisms (when O×O is considered as a subset of N×N), and so
they may be used to convert compositions between the two forms. For example, the elements
41, 42, 43, and 44 correspond to the sums

1 + 7, 3 + 5, 5 + 3, 7 + 1,

respectively, and the ν-color composition 22+31+43 of 9 corresponds to the O-composition
3+1+1+5+5+3 of 18. Graphically, this correspondence appears as follows. Start with a
ν-color composition, replace each vertex with a pair of vertices joined by an edge, and remove
the edge between each pair of vertices that came from a marked vertex. (See Figure 7.)

Bijective proof of Theorem 17. For ordinary compositions, the function χ : N[ν] → O ×
O provides a direct bijection between N[ν]-compositions and O-compositions with an even
number of parts:

p∑
ℓ=1

(aℓ)kℓ ←→
p∑

ℓ=1

(
(2kℓ − 1) + (2(aℓ − kℓ) + 1)

)
.
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Figure 7: A ν-color composition of 9 and the corresponding O-composition of 18. Marked
vertices in the ν-color composition are shown as empty circles.

For circular compositions, the situation is a little more subtle, because we must take
into account where the vertex v1 is located within the first part. Here is one way to create
a canonical correspondence. Identify C2n with the incidence graph of Cn. That is, label
the vertices of C2n as v1, e1, . . . , vn, en, with an edge between vi and ej if and only if vi
and ej are incident in Cn. Given a circular O-composition σ of 2n, i.e., a partition of C2n

into connected subgraphs each having an odd number of vertices, create a circular ν-color
composition in the following way: consider the final vertex in each part of σ; if it is labeled
as an edge of Cn, then remove it from Cn, and if it is labeled as a vertex of Cn, then mark it
(cf. Figure 7, which illustrates the same process for linear compositions). Because the parts
of σ have odd sizes, their final vertices will alternate between edges and vertices of Cn. This
is a bijection.

Remark 20. Agarwal [1, 2] first stated the equalities b(N[ν];n) = F2n = b(O; 2n) and proved
them using generating functions. Hopkins [16] gave a bijective proof of the same equalities
using “spotted tilings” that are similar to the graphical representations with marked vertices
described here. Gibson et al. [14] provided an explanation of the equality c(N[ν];n) = L2n−2
via spanning trees of wheel graphs instead of using circular O-compositions.

5.3 Duality in cyclic ν-color compositions

When we pass from circular compositions to cyclic compositions, we lose the notion of a
“first part.” As a consequence, the correspondence between cyclic ν-color compositions of
n and cyclic O-compositions of 2n is no longer one-to-one, as it was in the case of ordinary
and circular compositions. The group Z/2nZ that acts on circular O-compositions of 2n
to produce cyclic O-compositions is twice as large as the group Z/nZ that acts on circular
N[ν]-compositions of n to produce cyclic N[ν]-compositions, and so one might guess there
would be twice as many of the latter as the former. However, that is not the whole story. A
comparison between

d(N[ν];n) = −2 +
1

n

∑
k|n

ϕ(k)L2n/k

(OEIS A032198) and twice the value of d(O; 2n) (see the end of §4.5) reveals a discrepancy.
The rest of the section will be devoted to studying this discrepancy.

Remark 21. Cyclic ν-color compositions were studied and enumerated by Gibson et al. [14].
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Using (1) and (6) we find

hN[ν](x2) =
∞∑
k=1

ϕ(k)

k
log

1

1− jN[ν](x2)
=

∞∑
k=1

ϕ(k)

k
log

1

1− (jO(x))2
.

Now recall from §4.5 that the even part of hO(x) is simply hO2,0(x), because an odd integer
cannot have any O-compositions with an even number of parts. By Corollary 6

hO2,0(x) =
1

2

∞∑
k=1

ϕ(k)

k
log

1

1− (jO(xk))2
+

1

2

∞∑
r=1

ϕ(2r)

2r
log

1 + jO(x2r)

1− jO(x2r)
,

which means that

2hO2,0(x)− hN[ν](x2) =
∞∑
k=1

ϕ(2k)

2k
log

1 + jO(x2k)

1− jO(x2k)
=

∞∑
k=1

ϕ(2k)

2k
log

1 + x2k − x4k

1− x2k − x4k
.

Set

h∗(x) =
∞∑
k=1

ϕ(2k)

2k
log

1 + xk − x2k

1− xk − x2k
(8)

so that 2hO2,0(x) = hN[ν](x2) + h∗(x2), and define the sequence (d∗(n))∞n=1 by

h∗(x) =
∞∑
n=1

d∗(n)xn.

By construction, d∗(n) measures the difference between the number of cyclic ν-color com-
positions of n and twice the number of cyclic O-compositions of 2n. In symbols, d∗(n) =
2d(O; 2n)− d(N[ν];n).

The next theorem provides a direct combinatorial interpretation of d∗(n). Following its
proof, we will define a notion of “duality” for cyclic ν-color compositions—i.e., a canonical
involution on the set of cyclic ν-color compositions—and observe how the sequence d∗(n)
arises naturally in this context. It will turn out that cyclic O-compositions with an odd
number of parts also play a crucial role.

Given n ∈ N, let
nO = max{a ∈ O : a | n}

be the greatest odd factor of n. Then we have the following result.

Theorem 22. For all n ∈ N, we have d∗(n) = d(O;nO) =
1

nO

∑
k|nO

ϕ(k)LnO/k.

In words, Theorem 22 says that d∗(n) equals the number of cyclic O-compositions of nO.
Thus, the values of d∗(n) for 1 ≤ n ≤ 20 are

1, 1, 2, 1, 3, 2, 5, 1, 10, 3, 19, 2, 41, 5, 94, 1, 211, 10, 493, 3
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Figure 8: A pair of dual cyclic ν-color compositions of 10. The orientations of the images have
been arranged to illustrate the correspondence between marked vertices in one composition
and removed edges in the other. Left: 11 + 32 + 42 + 21. Right: 22 + 21 + 32 + 33.

(OEIS A365859). Note that Theorem 22 implies d∗(2n) = d∗(n) for all n ∈ N, a fact which
will become evident in the course of the proof, and is also visible in the first few terms above.

The proof of Theorem 22 will use the following property of the totient function ϕ:

ϕ(2k) =

{
ϕ(k), if k ∈ O;
2ϕ(k), if k ∈ 2N.

Proof. First we separate the terms in the definition of h∗(x) according to the parity of their
indices. The even-indexed terms from (8) produce

∞∑
r=1

ϕ
(
2(2r)

)
2(2r)

log
1 + x2r − x2(2r)

1− x2r − x2(2r)
=

∞∑
r=1

ϕ(2r)

2r
log

1 + x2r − x2(2r)

1− x2r − x2(2r)
= h∗(x2),

while the odd-indexed terms yield∑
k∈O

ϕ(2k)

2k
log

1 + xk − x2k

1− xk − x2k
=

1

2

∑
k∈O

ϕ(k)

k
log

1 + xk − x2k

1− xk − x2k
= hO2,1(x),

where the final equality follows from Corollary 6. Thus we we can write

h∗(x) = hO2,1(x) + h∗(x2) = hO2,1(x) + hO2,1(x
2) + h∗(x4) = · · · =

∞∑
p=0

hO2,1
(
x2

p)
,

which, together with the equation d(O;nO) = d(O, 2, 1;nO) from §4.5, implies the theorem,
because each natural number is uniquely expressible as a power of 2 times an odd number,
and hO2,1(x) contains only odd powers (as shown in §4.5).

Now for the promised notion of duality.
The cycle graph Cn is “self-dual” in the sense that if the roles of edges and vertices are

exchanged, the resulting object is isomorphic to Cn. From this perspective, the roles of
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Figure 9: Among the twenty-five cyclic ν-color compositions of 5, three are self-dual; they
are the classes of the sums 11+11+11+11+11, 11+22+21, and 53. The rest fall into eleven
dual pairs. These fourteen dual classes correspond to the fourteen cyclic O-compositions of
10.

removed edges and marked vertices in ν-color compositions are also dual to each other. In
particular, each marked vertex must lie between two removed edges, and each removed edge
must lie between two marked vertices. This process is also compatible with the action of
the rotation group Z/nZ. So when we pass to the dual of Cn, converting marked vertices to
removed edges and vice versa, each cyclic ν-color composition becomes a new one, the dual
of the first. This process is clearly an involution. Figure 8 shows an example of a dual pair
for n = 10. Figure 9 shows all classes of dual compositions for the case n = 5.

This duality of cyclic ν-color compositions is directly connected to their relation with
cyclic O-compositions. The function χ of §5.2 induces a map from the set of cyclic ν-color
compositions of n to the set of cyclic O-compositions of 2n. Two cyclic ν-color compositions
are dual precisely when they map to the same cyclic O-composition. The duality corresponds
to regrouping the parts of the cyclic O-composition, of which there are necessarily an even
number, into new adjacent pairs. If a cyclic O-composition corresponds to only one cyclic
ν-color composition, then that ν-color composition is self-dual.

A key question, then, is how many cyclic ν-color compositions of n are self-dual? It is
convenient to think of C2n as the incidence graph of Cn, so that the vertices of C2n alternately
correspond to vertices and edges of Cn, as in the second proof of Theorem 17 above. Given
an O-composition of C2n, the final vertex of each part of the composition then corresponds to
either a removed edge or a marked vertex in Cn. The index-2 subgroup of Z/2nZ acting on
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Figure 10: The ten self-dual cyclic ν-color compositions of 9.

C2n preserves the bipartite structure and thus corresponds to rotations of Cn. Any rotation
of odd index in Z/2nZ, however, switches the edges and vertices of Cn and thus corresponds
to an exchange of duals.

We are therefore looking to count the number of O-compositions of 2n that are invariant
under a rotation of odd index in Z/2nZ. Any such composition is the pullback of an O-
composition of (2n)O, which, to be clear, is the largest odd number that divides 2n. Of
course (2n)O = nO, and so we are counting the number of O-compositions of nO, up to
rotation, which is precisely what d(O;nO) = d∗(n) measures.

Remark 23. Now the reason for the “star” notation in d∗(n), and by extension, h∗(x), should
be clear: it refers to the presence of duality in defining the quantity.

For example, the number of self-dual cyclic ν-color compositions of 9 is

d∗(9) = d(O; 9) =
1

9

(
ϕ(1)L9 + ϕ(3)L3 + ϕ(9)L1

)
=

1

9
(1 · 76 + 2 · 4 + 6 · 1) = 10.

They are shown in Figure 10. In Figure 9 we see that d∗(5) = 3, so we may also conclude
that d∗(10) = d∗(5) = 3. On the other hand, d∗(8) = d∗(4) = d∗(2) = d∗(1) = 1, and thus
there is only one self-dual cyclic ν-color composition of 8, in which all parts have size 1. The
same is true for every power of 2.

The following theorem summarizes the results of the last few paragraphs.

Theorem 24. The number of dual classes of cyclic ν-color compositions of n equals d(O; 2n),
i.e., the number of cyclic O-compositions of 2n. The number of self-dual cyclic ν-color
compositions of n equals d∗(n), i.e., the number of cyclic O-compositions of nO.

It would be interesting to know if this duality present within the set of cyclic ν-color
compositions has additional applications.
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