XBench Benchmark and Performance Testing of XML DBMSs

Benjamin Bin Yao M. Tamer Ozsu
University of Waterloo
School of Computer Science
{bbyao, tozsu} @uwaterloo.ca

Abstract

XML support is being added to existing database man-
agement systems (DBMSs) and native XML systems are be-
ing developed both in industry and in academia. The in-
dividual performance characteristics of these approaches
as well as the relative performance of various systems is
an ongoing concern. In this paper we discuss the XBench
XML benchmark and report on the relative performance of
various DBMSs. XBench is a family of XML benchmarks
which recognizes that the XML data that DBMSs manage
are quite varied and no one database schema and workload
can properly capture this variety. Thus, the members of this
benchmark family have been defined for capturing diverse
application domains.

1. Introduction

XML (eXtensible Markup Language) [3] is beginning to
be extensively used in various application domains and sig-
nificant amounts of XML documents are being generated.
This has raised the demand for their efficient management.
There has been considerable research on efficiently storing,
manipulating, and retrieving XML documents. A number
of approaches have been proposed, including using flat file
systems (e.g., Kweelt [15]), extending mature DBMS tech-
nologies such as relational DBMSs (e.g., IBM DB2, Ora-
cle, and Microsoft SQL Server) or object-oriented DBMS
(e.g., Ozone [10]), and building native XML repositories
(e.g., Tamino [17], Natix [9], X-Hive', and Xyleme?). The
individual performance characteristics of these approaches
as well as the relative performance of various systems is
an ongoing concern. In this paper we describe the XBench
family of benchmarks for testing XML DBMSs and provide
a subset of the performance results that we have obtained by
exercising this benchmark on a set of commercial DBMSs
(DB2, SQL Server, and X-Hive).

*Work done while the author was visiting the University of Waterloo.
Uhttp://www.x-hive.com
Zhttp://www.xyleme.com

Nitin Khandelwal*
University of Pennsylvania

Department of Computer & Information Science

khandeln @seas.upenn.edu

There are several major domain-specific database bench-
marks from the Transaction Processing Performance Coun-
cil (TPC) - in particular TPC-W for Web e-commerce —
but these benchmarks do not directly address the require-
ments of XML databases (e.g., nested document structures
and path expression queries). There are a number of XML
benchmark proposals and these come in two groups: mi-
cro benchmarks and application benchmarks. Micro bench-
marks are designed to test individual system components to
isolate problems, measure, and, thus, improve a particular
component of an XML system. The Michigan Benchmark
[14] belongs in this category.

Application benchmarks, on the other hand, measure the
overall performance of a DBMS. XBench is an application
benchmark. The others in this category are XMach-1 [2],
XMark [16], and XOO7 [4].

XMach-1 is a multi-user benchmark that is based on a
Web application and considers text documents and catalog
data. It defines a small number of XML queries that cover
multiple functions and update operations for which system
performance is determined. It provides support for DTD
and does not consider XML Schema for optimization.

XMark is a single-user benchmark. The database model
is based on an Internet auction site, and, therefore, its
database contains one big XML document with text and
non-text data. Compared to XMach-1, it provides a more
comprehensive set of queries, but it has no support for XML
Schema.

X007 was derived from OO7 [5], which was de-
signed to test the efficiency of object-oriented DBMS. The
database model of XOO7 is mapped from that of OO7.
Besides mapping the original queries of OO7 into XML,
X007 adds some XML specific queries. It supports DTDs
but not XML Schema.

In summary, all of these benchmarks, except XBench
consider only one type of application running against one
database schema. Their workloads cover different func-
tionalities, but leave out a number of XQuery [7] features.
XBench covers all of XQuery functionality as captured by
XML Query Use Cases [6].

The range of XML applications and the XML data that
they manage are quite varied and no one database schema
and workload can properly capture this variety. We, there-
fore, propose a family of XML benchmarks, collectively
called XBench. XBench is a single machine benchmark
that covers a wide range of database designs that are defined
according to a classification of applications. It tests for scal-
ability (small (10 MB), normal (100 MB), large (1 GB) and
huge (10 GB) databases) and for full XQuery functionality
as captured in XML Query Use Cases. A functional com-
parison of key features on these four XML benchmarks as
well as a comparison of their workloads is given in [20].

We describe the XBench benchmark in Section 2. Sec-
tion 3 discusses the partial results of performance testing
that we have performed on three systems using XBench.
Finally, we conclude in Section 4 and indicate the current
directions that we are pursuing.

2. XBench Benchmark
2.1. Database Design

We conducted detailed statistical analysis of a num-
ber of XML data sets (some converted from SGML) [20].
This analysis demonstrated significant differences among
the data sets, leading to a classification of XML documents
and applications.

Database applications are characterized along two di-
mensions: application characteristics, and data character-
istics. Application characteristics indicate whether they are
data-centric or text-centric. Data-centric (DC) applications
deal with data that may not originally be in XML. Examples
include e-commerce catalog data or transactional data that
are captured as XML. Text-centric (TC) applications man-
age actual text data natively encoded as XML documents.
Examples include dictionaries, book collections in a digital
library, or news article archives.

In terms of data characteristics, two classes are identi-
fied: single document® (SD) and multiple document (MD).
The single document case covers databases, such as an
e-commerce catalog, that consist of a single document
with complex structures (deep nested elements), and dic-
tionaries, while the multiple document case covers those
databases that contain a set of XML documents, such as
an archive of news documents or transactional data. Thus,
a database generator is needed that can handle four cases:
DC/SD, DC/MD, TC/SD, and TC/MD (Table 1).

Many of the real XML documents in DC/SD and
DC/MD classes are currently relational data that have been
transformed into XML. This may change in the future.

For the purposes of these benchmarks, synthetic data are
generated with domain specific features. Real XML doc-
uments that best represent their particular classes were an-

3“Document”, in this context, refers to an XML document.

SD MD

TC Online dictionaries News corpus,
Digital libraries

Transactional data

DC | E-commerce catalogs

Table 1. Classification & Sample Applications

alyzed, where available, considering at least two types of
documents in each class.

2.1.1 Text-Centric Document Databases

There are sufficient amounts of real text-centric (TC) XML
documents. For the single document class, two dictionar-
ies were analyzed: GNU version of the Collaborative In-
ternational Dictionary of English (GCIDE)* and the Oxford
English Dictionary (OED)>. For multiple document class,
a collection of XML documents that make up the Reuters
news corpus was used along with a part of Springer-Verlag
digital library that was provided to us. The OED dictionary
and the Springer data are in SGML and were converted to
XML prior to analysis.

Sources | No. files File size Data size (MB)
GCIDE 1 56 MB 56

OED 1 548 MB 548
Reuters 807,000 [1,59] KB 2,484
Springer | 196,000 | [1,613] KB 1,343

Table 2. Analyzed TC Class Data

Statistical data are collected for these documents in
terms of a set of parameters: collection of element
types, database schema structure (parent/child relationships
among element types), probability distribution of instance
occurrences of immediate child elements to a parent ele-
ment, probability distribution of element values to types,
collection of attribute names, probability distribution of at-
tribute values to names, and probability distribution of at-
tributes to each element. For each distribution parameter,
the minimum and maximum values of that distribution are
defined in order to generate finite documents. Based on the
statistics, frequency distributions are computed and stan-
dard probability distributions are fit to the data.

Since two XML documents are analyzed in each of the
TC classes, it is necessary to generalize the common charac-
teristics of that class. We define an XML document struc-
ture for each class that is derived from the original XML
documents. The process of generalization also involves
combining statistical data of two or more semantically same

“http://www.ibiblio.org/webster
Shttp://www.oed.com

element types (from same or different XML documents),
producing a probability distribution or a combination of
several distributions. Due to space considerations, we omit
the details and refer the reader to [20].

The common features of XML documents in the TC/SD
class are a big text-dominated document with repeated sim-
ilar entries, deep nesting and possible references between
entries. The generated XML document is a single big
XML document (dictionary.xml) with numerous word en-
tries. The size of the database is controlled by a parameter
called entry_num. The default value of entry_num is 7333
and file size is about 100 MB.

Figure 1 gives a visual representation of the schema of
XML documents in this class®. The rectangles refer to ele-
ment types; solid rectangles mean element types are manda-
tory while dotted ones mean they may or may not exist in a
given document.

The features of XML documents in the TC/MD class
are numerous relatively small text-centric XML documents
with references between them, looseness of schema and
possibly recursive elements. The target XML documents
are a set of XML articles called articleXXX.xml (XXX rep-
resents the number of a particular document) with sizes
ranging from several kilobytes to several hundred kilobytes.
The size of this database is controlled by article_num with a
default value of 266, and the default data size is around 100
MB.

Figure 2 illustrates the schema information of XML doc-
uments in this class. The figure depicts the irregularity of
this class of documents.

2.1.2 Data-Centric Document Database

For data-centric classes, the availability of real XML data
for analysis is problematic. Although there are XML spec-
ifications of transactional data (e.g., Electronic Catalog
XML (eCX)’, Commerce XML (cXML)?, XMLPayg, and
XML Common Business Library (xCBL)'?), they are not
yet widely used and no substantial repository of XML doc-
uments can be found. The data that is available is too small
to extract meaningful statistics. Most of the XML docu-
ments in the data-centric classes are currently relational that
may be translated into XML for communication. There-
fore, the schema of the TPC-W benchmark [18] is used
and is mapped to XML. TPC-W considers a Web-based e-
commerce system and can represent DC classes of docu-
ments.

There are eight basic individual tables (relations) in the
TPC-W database: ORDERS (purchase order information),

The complete XML Schema and DTD files for all database classes are
given in [20].

7http://www.ecx-xml.org

Shitp://www.cxml.org

9http://www.verisign.com/developer/xml/xmlpay.html

Ohttp://www.xcbl.org

CC_XACTS (information on credit card transaction for
each order), ORDER_LINE (information on all detailed
items of each order), CUSTOMER (customer information),
ITEM (information about TPC-W item, which are books),
AUTHOR (author information), ADDRESS (address in-
formation for each customer), and COUNTRY.

XML documents belonging to the DC/SD class are simi-
lar to TC/SD in terms of structure but with less text content.
However, the schemas of these data tend to be more strict
in the sense that there is less irregularity in DC/SD than in
TC/SD, since most of the XML documents in DC/SD are
translated directly from relations.

In order to create a catalog data structure from TPC-W
relational data model, table ITEM is picked as base, along
with the AUTHOR, ADDRESS and COUNTRY tables.
Two more tables are created that do not exist in TPC_W:
AUTHOR_2 to include additional author information such
as: mailing address, phone and email information, and
PUBLISHER to record publisher information consisting of
name, fax, phone and email address.

These six tables are joined together and mapped to an
XML document called catalog.xml. By joining all these
tables, more depth is added to catalog.xml. In this map-
ping, we follow an approach that takes into consideration
the domain-specific semantics. The mapping of a join of
several tables is done by picking one main table (in our case
ITEM) and mapping it first to XML using the above de-
scribed method. All matching tuples in the second table are
inserted as sub-elements of the corresponding tuples in the
first table based on foreign key references. The process is
repeated recursively for other tables. Accordingly, as the
number of joined tables increases, the mapped XML doc-
ument gets deeper!!. The visual representation of the tree
structure of all element types are shown in Figure 3.

Data-centric multiple documents are transactional and
are primarily used for data exchange. Thus, the tags are
more descriptive and contain less text content. Usually, the
structure is more restricted (in terms of irregularity) and flat
(less depth) since most of the data originates in relational
databases.

Due to the nature of these documents, we use the
flat translation (FT) [19, 11] approach that maps a rela-
tion into an element type. Each tuple in the relation is
mapped into an instance of the element type, and all the
columns are mapped into sub-elements (if it is attribute-
oriented, all columns are mapped into attributes of the el-
ement). The resulting XML documents of this method are
very flat. FT approach is used to map five of the TPC-
W tables (CUSTOMER, ITEM, AUTHOR, ADDRESS

" There are other mapping techniques that have been proposed such as
flat transaction [19, 11], nesting-based translation [11], and constraints-
based Translation [12]. Review of the problems in using these for our
purposes is given in [20].

id
et et

1.

Figure 1. Schema Diagram of TC/SD (Dictionary)

id, lang

‘-4 subsec :H: =} -i 0.11

________________ T ... heading

!
0.3 sk
}subsee EH(—p]

0.8 1.12

[ios (=5

1.

Figure 2. Schema Diagram of TC/MD (ArticleXXX)

- date_of_birth

—L authors E—E)H—Lauthor

|, street_information £}

street_address ﬂ

1.4

mailing_address [

contact_information [

, date_of_release

A

aStreet_information E]—E—jﬂ—r

reet_address "

i i of_stat

[esteg (== &

:desl:ripiinn

Figure 3. Schema Diagram of DC/SD (Catalog)

1.2

and COUNTRY) to separate XML documents, called Cus-
tomer, Item, Author, Address, and Country, respectively.
Tables ORDERS, ORDER_LINE and CC_XACTS (ta-
bles ORDERS and ORDER_LINE have one-to-many rela-
tionship and tables ORDERS and CC_XAVTS have one-
to-one relationship), are joined together into one big ta-
ble and mapped into multiple XML documents called or-
derXXX.xml. Each of these documents contains exactly one
order information that comes from the three tables. The
structure of this XML document (orderXXX.xml) is given in
Figure 4. The schemas of the other XML documents in this
calss are omitted due to space restrictions and can be found
in [20].

2.1.3 Database Generation

For actual data generation, we use ToXgene [1], which is a
template-based tool facilitating the generation of synthetic
XML documents. A ToXgene template is created for each
of the four classes discussed above.

2.2. Workload Design

In this first version of XBench, we only focus on queries
and bulk loading; workloads testing update performance
will be included in subsequent versions. XBench work-
load covers the full XQuery functionality as captured in
XML Query Use Cases. The queries are specified abstractly
to demonstrate the functionality that they capture; each of
these abstract queries are mapped to specific queries accord-
ing to the application class (see [20]), generating four work-
load classes. In the remainder, we discuss the functionality
covered by the queries in the workload and give examples
from the various document classes'?.

Altogether, there are 20 query types, but each workload
class does not contain all of them. XQuery specification
of each query is given in [20]. Readers should consult the
database schemas given in the previous section to better un-
derstand each of the queries.

e Exact match. These queries require string exact
match with specified and possibly long path expres-
sions, depending on the levels of predicates being
queried in XML documents. Consequently, they can
be shallow queries, that match only at the top level
of XML document trees (example query Q1), or deep
queries that match the nested structure of XML docu-
ment tree (query Q2).

Q1 (DC/SD): Return the item that has matching item
id attribute value X.

Q2 (TC/MD): Find the title of the article authored by
Y.

e Function application. These queries challenge the
system with aggregate functions such as count, avg,
max, min and sum.

12For each example query, its workload class is specified.

fship_type
B
[ero e womenton 5=
flmnsal:tinn_l;nuntry_id
—Lnrder_lines ’nrder_line

15

fspenial_instruntinns

Figure 4. Schema Diagram of DC/MD (Or-
derXXX)

Q3 (TC/SD): Group entries by quotation location and
calculate the total number of entries in each group.

e Ordered access. These queries test the performance of
the system when it preserves the document order dur-
ing retrieval. This could be relative order (Q4) based
on the current matching position, or absolute order
(Q5), which is the order in the document.

Q4 (TC/MD) Find the heading of the section following
the section entitled “Introduction” in articles written
byY.

QS5 (DC/MD) Return the first order line item of a cer-
tain order with id attribute value X.

e Quantification. The two cases are the existentially

(Q6) and universally (Q7) quantified queries.
Q6 (TC/MD) Find titles of articles where two keywords
“K1” and “K2” are mentioned in the same paragraph.
Q7 (DC/SD) Return item information where all its au-
thors are from country Z.

o Path expressions. Two types of queries are defined in-
volving path expressions: (a) queries that contain path
expressions where one element name in the path is un-
known (Q8), and (b) queries where multiple consecu-
tive element names are unknown (Q9).

Q8 (TC/SD) Return quotation text of word “word_1"".
Q9 (DC/MD) Return the order status of an order with
id attribute value X.

Sorting. Even though the generic data type of element
content in XML documents is string, users may cast
the string type to other types. Therefore, these queries
test the system in sorting both the string types (Q10)
and non-string types (Q11).

Q10 (DC/MD) List the orders (order id, order date and
ship type), sorted by ship type, ordered within a certain
time period.

Q11 (TC/SD) List the quotation authors and quotation
dates, sorted by date, for word “word 2" .

Document construction. Structure is important in
many XML documents. However, some systems ex-
perience difficulties in even preserving the document’s
original structure. This class of queries test the perfor-
mance of the system in preserving the structure (Q12)
and in transforming the structure (Q13).

Q12 (DC/SD) Get the mailing address of the first au-
thor of item with id attribute value X.

Q13 (TC/MD) Extract information from the article
that has a matching id attribute value Y, including title,
the name of the first author, date, and abstract.

Irregular data. Irregularity of schema is a fact of life
in XML databases. These quries test missing elements
(Q14) and empty (null) values (Q15).

Q14 (DC/SD) Return the names of publishers who
publish books in a given time period but do not have a
fax number.

Q15 (TC/MD) List author names whose contact ele-
ments are empty in articles published within a certain
time period.

Retrieval of individual documents. This query tests
an essential function of an XML DBMS to retrieve in-
dividual XML documents efficiently while preserving
the contents of those documents.

Q16 (DC/MD) Retrieve one whole order document
with an id attribute value X.

Text search. These queries test the information re-
trieval capabilities of systems. Two cases are tested:
uni-gram search (Q17) where the query contains one
particular word, and bi-gram and n-gram search (Q18)
where multiple words are involved.

Q17 (TC/SD) Return the headwords of the entries that
contain the word “word x”.

Q18 (TC/MD) List the titles and abstracts of articles

« 2

that contain the phrase “...”.

References and joins. Data-centric documents usu-
ally have references to identify the relationship be-
tween related data, even among different XML docu-

ments. Sometimes users want to combine separate in-
formation together using join by values. These queries
test this feature.

Q19 (DC/MD) For a particular order with id attribute
value X, get its customer name and phone, and its or-
der status.

e Datatype casting. The element values in XML docu-
ments are String type, but sometimes they need to be
cast into other data types.

Q20 (DC/SD) Retrieve the item title whose size is
larger than a certain number.

3. Performance Experiments

We have used XBench to test a number of commercial
DBMS:s. In this section we summarize some of the findings
over three systems: IBM DB2 UDB version 8.1 (hereafter
referred to as DB2), Microsoft SQL Server 2000 SP3 (re-
ferred to as SQL Server) and X-Hive/DB 4.1.1 (referred to
as X-Hive). The full set of results are given in [13].

3.1. Experimental Setup

All experiments are conducted on a 2Ghz Pentium ma-
chine with 1GB main memory and 60GB disk running Win-
dows XP. We report the performance of systems for the
small, normal and large database sizes for each database
domain (TC/SD, TC/MD, DC/SD, and DC/MD). In our ex-
periments, we create separate database instances for all the
scenarios. For example, we create three database instances
for TC/SD, called TCSDS (for small), TCSDN (for normal)
and TCSDL (for large). The workload for the experiments
reported in this paper consists of queries Q5, Q8, Q12, Q14,
and Q17. For DB2 and SQL Server, the queries are con-
verted into SQL since they do not support an XQuery inter-
face.

Classes Indexes

TC/SD hw

TC/MD article/ @id
DC/SD | item/@id, date_of _release
DC/MD order/@id

Table 3. Indexes for Each Class

For fairness, we only create value indexes on the ele-
ments/attributes that are most frequently used by the queries
in each document class, and can be implemented for all sys-
tems. We also take vendor recommendations into consid-
eration in the case of X-Hive. Table 3 shows the indexes
that are relevant to the queries reported in this paper. All
arbitrary indexes are created separately after bulk loading,
except that for relational DBMSs, the indexes are created
automatically for primary/foreign keys of some tables.

The execution time of a query is the cold run time (from
the time when a user submits a request, to the time when
a user gets the full result) to prevent caching effects. We
measure two times for each query: with no indexes (i.e.,
sequential scan) to form a baseline, and with indexes. We
only report, in the following tables, times with indexes.

3.1.1 DB2

We use XML Extender, which is a component included in
DB2 to support storage and retrieval of XML documents,
to map XML schemas to DB2. There are two options:
XML column (referred as Xcolumn) and XML collection
(referred as Xcollection). We use both options in our exper-
iments.

In the case of Xcolumn, an entire XML document is kept
as a CLOB in an Xcolumn of a table. A couple of side ta-
bles are created for searchable elements/attributes. A col-
umn called dxx_seqgno is also added to each side table,
in the cases where elements have multiple occurrences, in
order to keep the ordering information. Data Access Def-
inition (DAD), which is an annotated XML file, is used to
define which elements/attributes are searchable. Xcolumn
is perfect for application domains where there are multiple
small XML documents. It cannot deal with the situation
where there is a single large XML document without the
help of Text Extender (a different IBM product), since the
upper limit of an XML CLOB is 2GB. Therefore, in our ex-
periments we use Xcolumn only for DC/MD and TC/MD
classes.

Xcollection shreds XML documents into one or multiple
tables according to DADs explicitly stated by users. The
mapping is very similar to the mapping described in Section
2.1.2, except that it is backwards. The DAD file, in this case,
is used to describe the mappings from elements/attributes to
columns in tables. Xcollection shreds a large XML docu-
ment into multiple tables, so that the system can deal with
queries efficiently. We use Xcollection for all classes.

XML Extender can check whether an XML document is
well-formed during the loading phase, and does not make
use of DTD or XML Schema meta-data to store and index
XML documents.

3.1.2 SQL Server

There are two approaches to loading XML data to SQL
Server. The first alternative uses stored procedures to load
an XML document into main memory and pre-process it.
The document is then shredded and stored in the database.
This approach requires the document to be loaded into
memory for pre-processing, thus restricting the file size.
Many of the documents that are in XBench are too big to
be loaded in this manner.

The second approach, which is the one we use in
these experiments, is to use the XML bulk loading tool of

SQLXML (Version 3.0 SP1) that allows storage of XML
documents by shredding them into one or multiple tables.
An annotated XML Schema Definition (XSD) can be de-
fined explicitly to describe mapping or the mapping can
be generated implicitly in the absence of schema informa-
tion. A VBScript is used to load XML documents into SQL
Server databases.

3.1.3 Problems with Relational Mappings

There are a number of problems in mapping the XML
schemas to relational systems. We discuss these problems
below and indicate, in each case, which system has the
problem.

1. It is difficult to distinguish between elements and at-
tributes (DB2 Xcollection and SQL Server).

2. It is difficult to deal with and maintain the ordering of
child elements (DB2 Xcollection and SQL Server)'3.

3. It is not possible to properly map mixed content ele-
ments. We have to ignore these elements with mixed
contents, such as the element gt in dictionary.xml
(SQL Server).

4. Tt is difficult to map chain relationships where the el-
ements on the chain do not have unique values (DB2
Xcollection and SQL Server'#). For example, consider
the following XML document fragment:

<article id="1">
<sec>
<p>...</p>
<p>...</p>
</sec>
<sec>
<p>...</p>
<p>...</p>
</sec>
</article>

Since element sec does not have any unique value,
it is difficult to keep track of its ordering information,
and even worse, it is impossible to tell which sec a
particular p belongs to after the document is shredded.
We solve this by adding a unique id attribute to those
elements that have this problem.

5. Another issue about DB2 Xcollection is that the maxi-
mum number of rows in a table is restricted to 1024 for
a decomposed XML document. This number is fairly
small when it comes to big XML documents. Even if

131t is possible to solve the first two problems by adding extra columns,
tables and triggers, but it is not very practical and imposes performance
penalties. Therefore, we do not fix these issues in our experiments. Fur-
thermore DB2 Xcolumn handles order via the dxx_segno column that is
added to each side table as discussed in Section 3.1.1.

4In the case of SQL Server the issues related to ordering and chain
relationships do not arise if stored procedure approach is used.

DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal | Large | Small | Normal | Large | Small | Normal | Large
Xcolumn - - - 30 417 | 11532 - - - 12 85 662
Xcollection 34 - - 87 1126 | 31860 46 - - 40 124 762
SQL Server 43 120 770 119 1438 | 39496 55 153 960 52 148 894
X-Hive 9 59 517 25 304 8568 12 72 647 7 57 512

Table 4. Bulk Loading Time (in Seconds)

the document itself is not very big, if there is a leaf ele-
ment with multiple instances, the limit will be reached
easily. One possible solution is to split the original
XML document into smaller documents before load-
ing them into the database. However, during our ex-
periments, we found that a 10 MB XML document al-
most exceeds this limit. For a 1GB document, we have
to split them into approximately 100 files, which is not
practical. Therefore, we only have experiments on the
databases of size 10 MB for the classes of TC/SD and
DC/SD.

6. DB2 Xcolumn solves these issues naturally but suffers
from large size XML documents. We only have exper-
iments on the classes of TC/MD and DC/MD.

The end result of these issues is that some of the queries
that deal with the issues raised above may not generate cor-
rect results, even though we report their performance.

3.1.4 X-Hive

X-Hive is a Java-based native XML DBMS supporting
XQuery. Since X-Hive is a native XML DBMS, there is
no need for any database mapping. For bulk loading XML
documents, it is possible to use XHAdmin utility. In our ex-
periments, the utility’s GUI interface became sluggish after
loading the 100M database. We, therefore, used the Java
API that X-Hive provides to load the databases.

3.2. Results

In this section we describe the results of the experi-
ments. In order to ensure that all implementations are equiv-
alent in the design of the databases and that the benchmark
is applied as it was intended, the implementation of the
databases, and the query translations from XQuery to their
own languages (when required) were done by us.

3.2.1 Experiment 1: Complexity of Mapping and Bulk
Loading Time
This experiment concerns the efficiency of loading XML
documents into each DBMS. For relational DBMSs, there
is the additional issue of mapping XML into relational ta-
bles and the effect that this would have on the bulk load-
ing time. We turn off the option of conforming/validating
XML documents (if a DBMS provides such functionality)

during bulk loading to reduce time costs. Our results that
are grouped by database type and then by database size are
reported in Table 4.

As expected, the bulk loading times of two relational
DBMSs are much longer than that of X-Hive because they
need extra time to shred documents and create indexes for
primary/foreign keys. Data-centric documents generally are
loaded faster than text-centric documents due to the relative
simplicity of data-centric document structures. For a given
database size, the bigger the individual files, the slower is
the loading time. However, the number of documents be-
comes very critical once the number becomes very high.
All DBMSs load data much slower in DC/MD than oth-
ers for the same database size, due to the fact that DC/MD
has many more XML documents than the others, requiring
extra I/O operations. When the database size increases 10
times, the loading time does not necessarily increase lin-
early except for DC/MD, in which case, the number of files
(e.g., over 200k for 1GB database size) dominates the load-
ing time.

3.2.2 Experiment 2: Document Structure and Its Phys-
ical Storage

XML enabled DBMSs store XML documents using one of
the following three approaches: storing an XML document
as a whole, shredding an XML document into fragments,
and combining the above two approaches. The first ap-
proach works efficiently on ordered access and retrieving
big fragments or whole documents, but performs poorly on
text search. The second approach works well on text search
but is problematic on ordered access and document recon-
struction. The last approach suffers high space cost and re-
dundancy. This experiment is designed to investigate this
issue and includes queries Q5, Q12 and Q17.

The ordering of elements is important in XML docu-
ments. Although XML documents are stored in relational
DBMSs, the orders should still be preserved. Query QS is
designed to return data based on its order in a document.
Table 5 shows the execution time in milliseconds of query
Q5 in each scenario.

One of the big problems experienced by relational
DBMSs in storing XML documents is their poor perfor-
mance on document reconstruction. Depending on the ap-
proach used in storing XML documents in DBMSs, some

DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal Large | Small | Normal | Large | Small | Normal | Large
Xcolumn - - - 90 1598 9567 - - - 10 10 15
Xcollection 10 - - 10 10 15 85 - - 20 40 65
SQL Server 15 20 25 10 10 20 90 594 3754 20 45 70
X-Hive 10 10 20 335 7460 | 213347 20 901 | 30886 30 60 80

Table 5. Query Q5 Execution Time (in Milliseconds)

DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal | Large | Small | Normal | Large | Small | Normal | Large
Xcolumn - - - 30 1487 7631 - - - 15 20 25
Xcollection 20 - - 10 10 15 85 - - 70 403 | 3101
SQL Server 20 25 30 10 10 20 90 587 3792 80 458 | 3318
X-Hive 30 50 50 105 911 | 76280 10 201 | 43294 60 165 195

Table 6. Query Q12 Execution Time (in Milliseconds)

systems cannot even preserve the document’s original struc-
ture. However, structure is very important to XML docu-
ments, especially to text documents. Query Q12 retrieves
fragments of original documents with original structures.
The execution time in milliseconds of query Q12 in each
scenario is described in Table 6.

Text search plays a very important part in XML docu-
ment systems. The integration of information retrieval (IR)
technologies with database querying is an emerging area of
study. Regardless of the storage mechanism that a DBMS
uses, the system should perform well on uni-gram, bi-gram
and n-gram search. Query Q17 returns XML documents
that contain a particular word. Table 7 depicts the execution
time in milliseconds of query Q17 in each scenario.

Two relational systems take advantage of the indexes on
primary/foreign keys to speed up execution of query QS.
DB2/Xcolumn can keep track of ordering information by
using dxx_seqgno. DB2/Xcollection and SQL Server hap-
pen to return correct results for this particular query but they
do not guarantee correctness since they do not maintain doc-
ument order nor do they store any ordering information.

X-Hive performs very well in XML document con-
struction (Q12); it produces the correct result in a short
time. Other systems’ responses are relatively slow. Since
XML documents are shredded and stored in tables, nu-
merous joins are required in order to re-construct the doc-
ument. Even worse, the structure of the resulting docu-
ment fragment is not necessarily the same as the original.
DB2/Xcolumn is an exception because it stores XML doc-
uments intact.

For Q5 and Q12, creating necessary indexes on some
commonly used elements speeds up the queries, specially
for X-Hive, since two relational DBMSs automatically cre-
ate some indexes on primary/foreign keys when bulk load-

ing, which may (most likely) cover those elements. The in-
dexing does not make a big difference for small databases,
but start to take positive effects when the databases get
larger.

None of the systems does well on Q17 that involves text
search. X-Hive supports the creation of full text indexes on
particular elements. We do not use it in our experiments be-
cause we cannot build similar full text indexes for the rela-
tional systems. Use of full-text index will certainly improve
its performance. For relational DBMSs, when elements
are shredded into many tables, creating full-text indexes on
these elements means creating indexes on all columns in
the tables. Furthermore, DB2 and SQL Server have limits
for indexing on the size of columns and most likely those
columns are too big to create indexes on. IBM has a differ-
ent product, called Text Extender, which is targeted to this
issue, but this is not used in our experiments.

Overall, in this experiment, DB2/Xcollection and
SQL Server perform better than X-Hive in data-centric
and text-centric/single document domains, especially
in large database sizes (beyond 100MB). X-Hive and
DB2/Xcolumn do better in text-centric/multiple document
domain. DB2/Xcollection does slight better than SQL
server.

Based on this experiment, as expected, relational
DBMSs have a more optimized storage mechanism, par-
ticularly for large tables. Since we map multiple or-
derXXX.xml documents into two tables (order_tab and or-
der_line_tab) in DC/MD case, relational systems can take
advantage of the efficient storage mechanism. On the other
hand, X-Hive suffers from accessing huge amounts of XML
documents in DC/MD case. For TC/MD domain, there is a
limited number of small documents, and that is where X-
Hive shows its advantage.

DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal Large | Small | Normal Large | Small | Normal | Large
Xcolumn - - - 10 8649 54287 - - - 100 856 | 7859
Xcollection 25 - - 20 187 1754 90 - - 95 592 | 4418
SQL Server 40 304 3194 55 216 1918 95 675 4654 100 634 | 4593
X-Hive 351 4336 | 49962 140 8512 | 249809 711 9023 | 127974 20 120 | 1532
Table 7. Query Q17 Execution Time (in Milliseconds)
DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal Large | Small | Normal | Large | Small | Normal | Large
Xcolumn - - - 20 454 1870 - - - 25 187 422
Xcollection 15 - - 10 10 15 70 - - 10 10 15
SQL Server 15 20 25 10 10 20 75 436 2537 10 10 20
X-Hive 10 20 20 245 5207 | 168162 10 120 | 48459 10 20 50

Table 8. Query Q8 Execution Time (in Milliseconds)

X-Hive also outperforms the other two systems when
it comes to reconstruction of document fragments in text-
centric domains if original XML documents are not very big
(less than 1GB). It should be noted that since the mapping
does not maintain the document order or the mixed con-
tent elements, the results returned by those two relational
DBMSs for Q5 and Q12 are not necessarily accurate.

3.2.3 Experiment 3:
Schema

Path Expression and Loose

This experiment focuses on the access to XML documents
using path expressions and irregularity of XML documents.
It involves queries Q8 and Q14.

Even though some relational DBMSs do not directly sup-
port path expressions, they should be able to process them
after the expressions are translated into SQL [8] or system
specific languages. It is common that one or more elements
in a path expression are unknown, and query Q8 tests this
case. Table 8 reports the execution time of query Q8 for
each scenario.

Sometimes the elements in a path expression are not
fully known or elements in an XML document are miss-
ing. This is due to the fact that XML documents do not
have as strict schemas as their relational counterparts. XML
schemas are more flexible and may have a number of ir-
regularities such as missing elements and empty values. It
is a challenge for relational DBMSs to store such loose
schema data. Smart DBMSs should be able to exploit XML
schemas associated with XML documents in dealing with
irregularity. Query Q14 covers missing elements in XML
documents case. The execution time of query Q14 is repre-
sented in Table 9.

The results show that, in most cases, relational DBMSs
do well on Q8. Recall that in those cases, XQuery are

mapped into SQL, and hence, no real path expressions are
actually involved in executing the query. The results of
these two queries are very similar. X-Hive, on that hand,
needs to deal with path expressions and its execution times
are close to those of the relational systems.

All relational DBMSs suffer from table scanning for
Q14, due to the fact that we do not purposely create any in-
dex on that particular missing element, while X-Hive does
pretty well in some cases even though there is no index.

X-Hive outperforms DB2 and SQL Server in text-centric
categories but performs badly on large size databases of
data-centric domains which are the strong points of DB2
and SQL Server.

4. Conclusions

In this paper, we describe XBench, which is a com-
prehensive XML database benchmark that covers a large
number of XML database applications. These applications
are characterized by whether they are data-centric or text-
centric and whether they consist of a single document or
multiple documents. XBench workload covers the function-
ality of XQuery as captured in the Use Cases.

We also report on the performance of two relational
DBMSs (DB2 and SQL Server) and a native XML DBMS
(X-Hive) on a subset of the XBench workload and database
size. The workload subset that we use represent some of the
common queries over XML data.

This first version of XBench has a number of limitations
that will be addressed in subsequent releases. The planned
extensions are the following: (1) support for distributed en-
vironments, (2) update workloads, and (3) more realistic
data-centric database design based on real data rather than
TPC-W benchmark. We also need to scale up to higher

DC/SD DC/MD TC/SD TC/MD
Small | Normal | Large | Small | Normal Large | Small | Normal | Large | Small | Normal | Large
Xcolumn - - - 10 143 398 - - - 25 477 1950
Xcollection 30 - - 50 1343 12432 55 - - 30 165 1685
SQL Server 30 223 2386 193 1520 14318 55 353 2256 40 172 1793
X-Hive 90 2693 | 40398 210 9764 | 248067 171 1372 | 15032 20 20 231

Table 9. Query Q14 Execution Time (in Milliseconds)

database sizes, but this will require re-writing the data gen-
eration engine.

Acknowledgements

The Reuters Corpus is provided by Reuters Limited
(UK). The Springer Digital Library data is provided by
Springer-Verlag GmbH (Germany).

This research was funded in part by a grant from the Nat-
ural Sciences and Engineering Research Council (NSERC)
of Canada, and by a scholarship to the first author by IBM
Canada.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

D. Barbosa, A. Mendelzon, J. Keenleyside, and K. Lyons.
ToXgene: A Template-Based Data Generator for XML.
In Proc. 5th Int. Workshop on the World Wide Web and

Databases (WebDB), pages 49-54, June 2002.

T. Bohme and E. Rahm. XMach-1: A Benchmark for XML
Data Management. In Proc. German Database Conference
(BTW), pages 264—273, March 2001.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition).
http://www.w3.0org/TR/2000/REC-xml-20001006, October
2000. World Wide Web Consortium (W3C).

S. Bressan, M. Lee, Y. G. Li, Z. Lacroix, and U. Nambiar.
The XOO7 XML Management System Benchmark. Techni-
cal Report TR21/00, National University of Singapore, CS
Department, November 2001.

M. Carey, D. DeWitt, and J. Naughton. The 007 Benchmark.
In Proc. ACM SIGMOD Int. Conf. on Management of Data,

pages 12-21, June 1993.

D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie.
XML Query Use Cases. http://www.w3.org/TR/xmlquery-
use-cases. World Wide Web Consortium (W3C).

D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery: A Query Language for XML.
http://www.w3.org/TR/xquery. World Wide Web Consor-
tium (W3C). B

D. DeHaan, D. Toman, M. P. Consens, and M. T. Ozsu. A
Comprehensive XQuery to SQL Translation using Dynamic
Interval Encoding. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 623—634, June 2003.

T. Fiebig, S. Helmer, C.-C. Kanne, J. Mildenberger, G. Mo-
erkotte, R. Schiele, and T. Westmann. Anatomy of a Native
XML Base Management System. Technical Report TR-02-
001, Universitdt Mannheim, January 2002.

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(7]

(18]

(19]

[20]

T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrat-
ing Structured and Semistructured Data. In Proc. 7th Int.
Conf. on Database Programming Languages, pages 297—
323, September 1999.

D. Lee, M. Mani, F. Chiu, and W. Chu. Nesting-Based
Relational-to-XML Schema Translation. In Proc. 4th Int.
Workshop on the World Wide Web and Databases (WebDB),
pages 61-66, May 2001.

D. Lee, M. Mani, FE. Chiu, and W. Chu. Effective Schema
Conversions between XML and Relational Models. In Proc.
European Conf. on Artificial Intelligence (ECAI), Knowl-
edge Transformation Workshop, July 2002.

M. T. Ozsu and B. B. Yao. Evaluation of DBMSs Us-
ing XBench Benchmark. Technical Report CS-TR-2003-
24, School of Computer Science, University of Water-
loo, Waterloo, Canada, August 2003. Available from
http://db.uwaterloo.ca/~ddbms/projects/xbench.

K. Runapongsa, J. M. Patel, H. V. Jagadish, and S. Al-
Khalifa. The Michigan Benchmark. Technical re-
port, University of Michigan, 2002. Available from
http://www.eecs.umich.edu/db/mbench/.

A. Sahuguet. KWEELT, the Making-of: Mistakes Made and
Lessons Learned. Technical report, Department of Com-
puter and Information Science, University of Pennsylvania,
November 2000.

A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML Bench-
mark Project. Technical Report INS-R0103, CWI, Amster-
dam, The Netherlands, April 2001.

H. Schoning and J. Wésch. Tamino - An Internet Database
System. In C. Zaniolo, P. C. Lockemann, M. H. Scholl, and
T. Grust, editors, Advances in Database Technology - EDBT
2000, Proc. 6th Int. Conf. on Extending Database Technol-
ogy, volume 1777 of Lecture Notes in Computer Science,
pages 383-387. Springer, 2000.

Transaction Processing Performance Council (TPC). TPC
Benchmark W (Web Commerce) Specification, Version
1.8. Technical report, February 2002. Available From
http://www.tpc.org/tpcw.

V. Turau. Making Legacy Data Accessible for XML
Applications. Available from http://www.informatik.th-
wiesbaden.de/~turau/veroeff.html, 1999.

B. B. Yao, M. T. Ozsu, and J. Keenleyside. XBench - A
Family of Benchmarks for XML DBMSs. Technical Report
CS-TR-2002-39, School of Computer Science, University
of Waterloo, Waterloo, Canada, December 2002. Available
from http://db.uwaterloo.ca/~ddbms/projects/xbench.

