
26

A Proofs

Proof for Theorem 1.

Proof (sketch) Removing u from Aws
and Dws

only af-
fects the labeling of vertex u. Considering any vertex
ux (u 6= ux) in G, there are two cases:

1) uux does not pass through ws, meaning that uux

must be covered by another 2-hop center. Removing u
from Aws

and Dws
does not affect this path.

2) uux passes through ws, which means that uux =
uws + wsux. Since uws passes through wb, wb also cov-
ers the path uux. Therefore, ∃wb, wb ∈ Lout(u) ∧ wb ∈
Lin(ux)∧Distsp(u, ux) = Distsp(u, wb)+Distsp(wb, ux).
It also means that removing u from Aws

and Dws
does

not affect this path.
To summary, removing u from Aws and Dws does

not affect the completeness of 2-hop labeling.

Proof for Theorem 3.

Proof (sketch) If ∃j, ui /∈ Area(Rj), according to Def-
inition 4, it means that there exists no vertex uj hav-
ing the same label of vj , where L∞(ui, uj) ≤ δ. Ac-
cording to Theorem 2, L∞(ui, uj) is a lower bound for
Distsp(ui, uj) ≤ δ. Thus, there exists no vertex uj la-
beled the same as vj , where Distsp(ui, uj) ≤ δ. It also
means that ui cannot match v (in Q), since there exist
no vertex that can match vj , where vj is v’s neighbor.
Therefore, ui can be pruned safely.

1 2(,)L c c∞

1C 2C

1c 1c1()r C 2()r Cδ>

Fig. 29 Proof for Theorem 5

Proof for Theorem 5.

Proof (sketch) Given any two vertices u1 and u2 from
C1 and C2, respectively, we prove that L∞(u1, u2) >

δ (i.e., join result is empty) if L∞(c1, c2) > r(C1) +
r(C2) + δ. Figure 29 demonstrates the proof process.

Since L∞ is a metric distance, it satisfies triangle
inequality. L∞(u1, u2) > L∞(c1, u2) − L∞(c1, u1) and
L∞(c1, u2) > L∞(c1, c2) − L∞(c2, u2). Therefore, we
know L∞(u1, u2) > r(C1) + r(C2) + δ − L∞(c1, u1) −
L∞(c2, u2). Obviously, r(C1) > L∞(c1, u1) and r(C2) >
L∞(c2, u2). Consequently, L∞(u1, u2) > δ. �

Proof for Theorem 6.

Proof Since L∞ is a metric distance, it satisfies the tri-
angle inequality. Given a point q in C1, if q can be joined

with p, then L∞(pq) ≤ δ.
1) According to the triangle inequality, we know δ ≥
L∞(p, q) > L∞(p, c1) − L∞(q, c1). Thus, we can con-
clude that L∞(p, c1)− δ ≤ L∞(q, c1).
2) Also, according to the triangle inequality, we know
that L∞(q, c1) < L∞(c1, p)+L∞(p, q) ≤ L∞(c1, p)+ δ.
Consequently, we know L∞(q, c1) < L∞(c1, p) + δ.
3) Since q is a point in C1, 0 ≤ L∞(q, c1) ≤ r(C1).

According to 1), 2) and 3), we have Max(L∞ (p, c1)−
δ, 0) ≤ L∞(q, c1) ≤ Min(L∞(p, c1) + δ, r(C1)).�

B Complexity Analysis of Offline Processing

B.1 Time Complexity

According to the framework in Section 3, the whole
offline processing includes two steps: computing 2-hop
labels and graph embedding. The time complexity of of-
fline processing is O(|E(G)| |V (G)|+|V (G)|2 log|V (G)|),
computed as follows:

Computing 2-hop labels. Algorithm 1 computes
2-hop labels. Line 1 is Dijkstra’s algorithm whose time
complexity is O(k|E(G)|+k|V (G)| log|V (G)|). We par-
tition the graph into n blocks in O(E(G)) [19], where
each block has |Si| vertices (Lines 2-4). Thus, there
are O(|Si|2) pairwise shortest paths in each block. We
adopt the greedy method in [9] to compute local 2-hop
labeling in O(|Si|2) time (Line 6). Since |Si| < |V (G)|
and n is a constant, the time complexity of Lines 5-6
is O(|V (G)|2). For each vertex u ∈ Wb ∪Ws, Dijkstra′s
algorithm is performed to compute skeleton 2-hop la-
beling. Therefore, Lines 7-14 need O(|V (G)||E(G)| +
|V (G)|2 log|V (G)|) time. Consequently, the total time
complexity of computing 2-hop labels is O(|V (G)||E(G)|+
|V (G)|2 log|V (G)|).

Graph Embedding. There are (
∑

n=1,...,β;m=1,....,κ

|Sn,m|) selected vertices, where
∑

n=1,...,β;m=1,....,κ |Sn,m|
= O(|V (G)|). For each selected vertex, we employ Dij-
kstra′s algorithm. Thus, the time complexity of graph
embedding is O(|E(G)||V (G)|+ |V (G)|2 log|V (G)|).

B.2 Space Complexity

The space cost of 2-hop labeling is O(|V (G)||E(G)| 12)
[7]. According to graph embedding, each vertex is mapped
into a point in <k space, where k = O(log2|V (G)|).
Thus, the space cost of graph embedding is O(|V (G)|
log2|V (G)|). Therefore, the total space cost of offline
processing is O(|V (G)||E(G)| 12 + |V (G)| log2|V (G)|).

