#### A Proofs

Proof for Theorem 1.

*Proof* (sketch) Removing u from  $A_{w_s}$  and  $D_{w_s}$  only affects the labeling of vertex u. Considering any vertex  $u_x$  ( $u \neq u_x$ ) in G, there are two cases:

- 1)  $\overline{uu_x}$  does not pass through  $w_s$ , meaning that  $\overline{uu_x}$  must be covered by another 2-hop center. Removing u from  $A_{w_s}$  and  $D_{w_s}$  does not affect this path.
- 2)  $\overline{uu_x}$  passes through  $w_s$ , which means that  $\overline{uu_x} = \overline{uw_s} + \overline{w_su_x}$ . Since  $\overline{uw_s}$  passes through  $w_b$ ,  $w_b$  also covers the path  $\overline{uu_x}$ . Therefore,  $\exists w_b, w_b \in L_{out}(u) \land w_b \in L_{in}(u_x) \land Dist_{sp}(u,u_x) = Dist_{sp}(u,w_b) + Dist_{sp}(w_b,u_x)$ . It also means that removing u from  $A_{w_s}$  and  $D_{w_s}$  does not affect this path.

To summary, removing u from  $A_{w_s}$  and  $D_{w_s}$  does not affect the completeness of 2-hop labeling.

# Proof for Theorem 3.

Proof (sketch) If  $\exists j, u_i \notin Area(R_j)$ , according to Definition 4, it means that there exists no vertex  $u_j$  having the same label of  $v_j$ , where  $L_{\infty}(u_i, u_j) \leq \delta$ . According to Theorem 2,  $L_{\infty}(u_i, u_j)$  is a lower bound for  $Dist_{sp}(u_i, u_j) \leq \delta$ . Thus, there exists no vertex  $u_j$  labeled the same as  $v_j$ , where  $Dist_{sp}(u_i, u_j) \leq \delta$ . It also means that  $u_i$  cannot match v (in Q), since there exist no vertex that can match  $v_j$ , where  $v_j$  is v's neighbor. Therefore,  $u_i$  can be pruned safely.



Fig. 29 Proof for Theorem 5

#### Proof for Theorem 5.

Proof (sketch) Given any two vertices  $u_1$  and  $u_2$  from  $C_1$  and  $C_2$ , respectively, we prove that  $L_{\infty}(u_1, u_2) > \delta$  (i.e., join result is empty) if  $L_{\infty}(c_1, c_2) > r(C_1) + r(C_2) + \delta$ . Figure 29 demonstrates the proof process.

Since  $L_{\infty}$  is a metric distance, it satisfies triangle inequality.  $L_{\infty}(u_1,u_2) > L_{\infty}(c_1,u_2) - L_{\infty}(c_1,u_1)$  and  $L_{\infty}(c_1,u_2) > L_{\infty}(c_1,c_2) - L_{\infty}(c_2,u_2)$ . Therefore, we know  $L_{\infty}(u_1,u_2) > r(C_1) + r(C_2) + \delta - L_{\infty}(c_1,u_1) - L_{\infty}(c_2,u_2)$ . Obviously,  $r(C_1) > L_{\infty}(c_1,u_1)$  and  $r(C_2) > L_{\infty}(c_2,u_2)$ . Consequently,  $L_{\infty}(u_1,u_2) > \delta$ .  $\square$ 

## Proof for Theorem 6.

*Proof* Since  $L_{\infty}$  is a metric distance, it satisfies the triangle inequality. Given a point q in  $C_1$ , if q can be joined

with p, then  $L_{\infty}(pq) \leq \delta$ .

- 1) According to the triangle inequality, we know  $\delta \geq L_{\infty}(p,q) > L_{\infty}(p,c_1) L_{\infty}(q,c_1)$ . Thus, we can conclude that  $L_{\infty}(p,c_1) \delta \leq L_{\infty}(q,c_1)$ .
- 2) Also, according to the triangle inequality, we know that  $L_{\infty}(q, c_1) < L_{\infty}(c_1, p) + L_{\infty}(p, q) \leq L_{\infty}(c_1, p) + \delta$ . Consequently, we know  $L_{\infty}(q, c_1) < L_{\infty}(c_1, p) + \delta$ .
- 3) Since q is a point in  $C_1$ ,  $0 \le L_{\infty}(q, c_1) \le r(C_1)$ .

According to 1), 2) and 3), we have  $Max(L_{\infty}(p, c_1) - \delta, 0) \le L_{\infty}(q, c_1) \le Min(L_{\infty}(p, c_1) + \delta, r(C_1)).\square$ 

# B Complexity Analysis of Offline Processing

### B.1 Time Complexity

According to the framework in Section 3, the whole offline processing includes two steps: computing 2-hop labels and graph embedding. The time complexity of offline processing is  $O(|E(G)| |V(G)| + |V(G)|^2 \log |V(G)|)$ , computed as follows:

Computing 2-hop labels. Algorithm 1 computes 2-hop labels. Line 1 is Dijkstra's algorithm whose time complexity is  $O(k|E(G)|+k|V(G)|\log|V(G)|)$ . We partition the graph into n blocks in O(E(G)) [19], where each block has  $|S_i|$  vertices (Lines 2-4). Thus, there are  $O(|S_i|^2)$  pairwise shortest paths in each block. We adopt the greedy method in [9] to compute local 2-hop labeling in  $O(|S_i|^2)$  time (Line 6). Since  $|S_i| < |V(G)|$  and n is a constant, the time complexity of Lines 5-6 is  $O(|V(G)|^2)$ . For each vertex  $u \in W_b \cup W_s$ , Dijkstra's algorithm is performed to compute skeleton 2-hop labeling. Therefore, Lines 7-14 need  $O(|V(G)||E(G)| + |V(G)|^2 \log|V(G)|)$  time. Consequently, the total time complexity of computing 2-hop labels is  $O(|V(G)||E(G)| + |V(G)|^2 \log|V(G)|)$ .

**Graph Embedding.** There are  $(\sum_{n=1,...,\beta;m=1,....,\kappa} |S_{n,m}|)$  selected vertices, where  $\sum_{n=1,...,\beta;m=1,....,\kappa} |S_{n,m}| = O(|V(G)|)$ . For each selected vertex, we employ Dijkstra's algorithm. Thus, the time complexity of graph embedding is  $O(|E(G)||V(G)| + |V(G)|^2 \log|V(G)|)$ .

# **B.2** Space Complexity

The space cost of 2-hop labeling is  $O(|V(G)||E(G)|^{\frac{1}{2}})$  [7]. According to graph embedding, each vertex is mapped into a point in  $\Re^k$  space, where  $k = O(\log^2|V(G)|)$ . Thus, the space cost of graph embedding is  $O(|V(G)|\log^2|V(G)|)$ . Therefore, the total space cost of offline processing is  $O(|V(G)||E(G)|^{\frac{1}{2}} + |V(G)|\log^2|V(G)|)$ .