
On Regularized Losses
for Weakly-supervised CNN Segmentation

Meng Tang1, Federico Perazzi2, Abdelaziz Djelouah3

Ismail Ben Ayed4, Christopher Schroers3, and Yuri Boykov1

1 Cheriton School of Computer Science, University of Waterloo, Canada
2 Adobe Research, United States

3 Disney Research, Zürich, Switzerland
4 ETS Montreal, Canada

Abstract. Minimization of regularized losses is a principled approach to
weak supervision well-established in deep learning, in general. However,
it is largely overlooked in semantic segmentation currently dominated
by methods mimicking full supervision via “fake” fully-labeled masks
(proposals) generated from available partial input. To obtain such full
masks the typical methods explicitly use standard regularization tech-
niques for “shallow” segmentation, e.g. graph cuts or dense CRFs. In
contrast, we integrate such standard regularizers directly into the loss
functions over partial input. This approach simplifies weakly-supervised
training by avoiding extra MRF/CRF inference steps or layers explicitly
generating full masks, while improving both the quality and efficiency
of training. This paper proposes and experimentally compares different
losses integrating MRF/CRF regularization terms. We juxtapose our reg-
ularized losses with earlier proposal-generation methods. Our approach
achieves state-of-the-art accuracy in semantic segmentation with near
full-supervision quality.
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1 Introduction

We advocate regularized losses for weakly-supervised training of semantic CNN
segmentation. The use of unsupervised loss terms acting as regularizers on the
output of deep-learning architectures is a principled approach to exploit struc-
ture similarity of partially labeled data [34, 15]. Surprisingly, this general idea
was largely overlooked in weakly-supervised CNN segmentation where current
methods often introduce computationally expensive MRF/CRF pre-processing
or layers generating “fake” full masks from partial input.

We propose to use (relaxations of) MRF/CRF terms directly inside the loss
avoiding explicit guessing of full training masks. This approach follows well-
established ideas for weak supervision in deep learning [34, 15] and continues
our recent work [30] that proposed the integration of standard objectives in
shallow5 segmentation directly into loss functions. While our prior work [30] is

5 In this paper “shallow” refers to segmentation methods unrelated to CNNs.
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entirely focused on the normalized cut loss motivated by a popular balanced
segmentation criterion [29], we now study a different class of regularized losses
including (relaxations of) standard MRF/CRF potentials. Though common as
shallow regularizers [6, 5, 27, 20] or jointly trained in CNN [35, 28, 2], CRF/MRF
were never used directly as losses in segmentation.

We propose and evaluate several new losses motivated by MRF/CRF poten-
tials and their combination with balanced partitioning criteria [31]. Such losses
can be adapted to many forms of weak (or semi-) supervision based on diverse
existing MRF/CRF formulations for segmentation. The scope of this paper is
focused on training with partial (user scribble) masks where regularized losses
combined with cross entropy over the partial masks achieve the state-of-the-art
close to full-supervision quality. We also show advantage of regularized loss for
semi-supervised segmentation training with both labeled and unlabeled images.

Instead of the basic Potts model [6], we choose popular fully connected pair-
wise CRF potentials of Krähenbühl and Koltun [20], often referred to as dense
CRF. In conjunction with CNNs, dense CRFs have become the de-facto choice
for semantic segmentation in the contexts of fully [10, 2, 35, 28] and weakly/semi
[19, 23, 26] supervised learning. For instance, DeepLab [10] popularized dense
CRF as a post-processing step. In fully supervised setting, integrating the unary
scores of a CNN classifier and the pairwise potentials of dense CRF achieve
competitive performances [35, 2]. This is facilitated by fast mean-field inference
techniques for dense CRF based on high-dimensional filtering [1].

Weakly supervised semantic segmentation is commonly addressed by mim-
icking full supervision via synthesizing fully-labeled training masks (proposals)
from the available partial inputs [26, 23, 22]. These schemes typically iterate be-
tween two steps: CNN training and proposal generation via regularization-based
shallow interactive segmentation, e.g. graph cut [22] for grid CRF or mean-field
inference [26, 23] for dense CRF. In contrast, our approach avoids explicit infer-
ence by integrating shallow regularizers directly into the loss functions. Section
3 makes some interesting connections between proposal-generation and our reg-
ularized losses from optimization perspective.

For simplicity, this paper uses a very basic quadratic relaxation of discrete
MRF/CRF potentials, even though there are many alternatives, e.g. TV-based
[7] and convex formulations [8, 25], Lp relaxations [12], LP and other relaxations
[14, 32]. Evaluation of different relaxations in the context of regularized weak
supervision losses is left for future work. Our main contributions are:

– We propose and evaluate several regularized losses for weakly supervised
CNN segmentation based on dense CRF [20] and kernel cut [31] regular-
izers (Sec.2). Our approach avoids explicit inference as in proposal-based
methods. This continues the study of losses motivated by standard shallow
segmentation energies started in [30] with normalized cut loss.

– We show that iterative proposal-generation schemes, which alternate CNN
learning and mean-field inference for dense CRF, can be viewed as an ap-
proximate alternating direction optimization of regularized losses (Sec.3).
Alternating schemes (proposal generation) give higher dense CRF loss.
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– Comprehensive experiments (Sec.4) with our regularized weakly supervised
losses show (1) state-of-the-art performance for weakly supervised CNN seg-
mentation reaching near full-supervision accuracy and (2) better quality and
efficiency than proposal generating methods or normalized cut loss [30].

2 Our Regularized Semi-supervised Losses

This section introduces our regularized losses for weakly-supervised segmenta-
tion. In general, the use of regularized losses is a well-established approach in
semi-supervised deep learning [34, 15]. We advocate this principle for seman-
tic CNN segmentation, propose specific shallow regularizers for such losses, and
discuss their properties.

Assuming image I and its partial ground truth labeling or mask Y , let fθ(I)
be the output of a segmentation network parameterized by θ. In general, CNN
training with our joint regularized loss corresponds to optimization problem of
the following form

min
θ
`(fθ(I), Y ) + λ ·R(fθ(I)) (1)

where `(S, Y ) is a ground truth loss and R(S) is a regularization term or reg-
ularization loss. Both losses have argument S = fθ(I) ∈ [0, 1]|Ω|×K , which is
K-way softmax segmentation generated by a network. Using cross entropy over
partial labeling as the ground truth loss, we have the following joint regularized
semi-supervised loss ∑

p∈ΩL

H(Yp, Sp) + λ ·R(S) (2)

where ΩL ⊂ Ω is the set of labeled pixels and H(Yp, Sp) = −
∑
k Y

k
p logSkp is

the cross entropy between network predicted segmentation Sp ∈ [0, 1]K (a row
of matrix S corresponding to point p) and ground truth labeling Yp ∈ {0, 1}K .

In principle, any function R(S) can be used as a loss given its gradient or
sub-gradient. This paper studies (relaxations of) regularizers from shallow seg-
mentation as loss functions. Section 2.1 details our MRF/CRF loss and its im-
plementation. In Section 2.2, we propose kernel cut loss combining CRF with
normalized cut terms and justify this combination.

2.1 Potts/CRF Loss

Assuming that segmentation variables Sp are restricted to binary class indicators
Sp ∈ {0, 1}K , the standard Potts/CRF model [6] could be represented via Iverson
brackets [·], as on the left hand side below∑

p,q∈Ω
Wpq [Sp 6= Sq] =

∑
p,q∈Ω

Wpq ‖Sp − Sq‖2, (3)

where W = [Wpq] is a matrix of pairwise discontinuity costs or an affinity matrix.
The right hand side above is a particularly straightforward quadratic relaxation
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of the Potts model that works for relaxed Sp ∈ [0, 1]K corresponding to a typical
soft-max output of CNNs. In fact, this quadratic function is very common in the
general context of regularized weakly supervised losses in deep learning [34].

As discussed in the introduction, this relaxation is not unique [7, 8, 25, 12,
14]. We use slightly different quadratic relaxation of the Potts model

RCRF (S) =
∑
k

Sk
′
W (1− Sk) (4)

expressed in terms of support vectors for each label k, i.e. columns of the seg-
mentation matrix Sk ∈ [0, 1]|Ω|. For discrete segment indicators (4) gives the
cost of a cut between segments, same as the Potts model on the left hand side
of (3), but it differs from the relaxation of the right hand side of (3).

The affinity matrix W can be sparse or dense. Sparse W commonly appears
in the context of boundary regularization and edge alignment in shallow seg-
mentation [5]. With dense Gaussian kernel Wpq (4) is a relaxation of DenseCRF
[21]. The implementation details including fast computation of the gradient (11)
for CRF loss with dense Gaussian kernel is described in Sec. 4.

2.2 Kernel Cut Loss

Besides the CRF loss (4), we also propose its combination with normalized cut
loss [30] where each term is a ratio of a segment’s cut cost (Potts model) over
the segment’s weighted size (normalization)

RNC(S) =
∑
k

Sk
′
Ŵ (1− Sk)

d′Sk
, (5)

where d = Ŵ1 are node degrees. Note that the affinity matrix Ŵ for normalized
cut can be different from W in CRF (4). The combined kernel cut loss is simply
a linear combination of (4) and (5)

RKC(S) =
∑
k

Sk
′
W (1− Sk) + γ

∑
k

Sk
′
Ŵ (1− Sk)

d′Sk
(6)

which is motivated by kernel cut shallow segmentation [31] with complementary
benefits of balanced normalized cut clustering and object boundary regulariza-
tion or edge alignment as in Potts model. While the kernel cut loss is a high-order
objective, its gradient (12) can be efficiently implemented, see Sec. 4.

This paper compares experimentally CRF, normalized cut and kernel cut
losses for weakly supervised segmentation. In our experiments, the best weakly
supervised segmentation is achieved with kernel cut loss.

Note that standard normalized cut and CRF objectives in shallow segmenta-
tion require fairly different optimization techniques (e.g. spectral relaxation or
graph cuts), but the standard gradient descent approach for optimizing losses
during CNN training allows significant flexibility in including different regular-
ization terms, as long as there is a reasonable relaxation.
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3 Connecting Proposals Generation & Loss Optimization

The majority of weakly-supervised methods generate segmentation proposals
and train with such ‘’fake” ground truth [22, 33, 18, 19, 23, 13]. In fact, many off-
line shallow interactive segmentation techniques can be used to propagate labels
and generate such masks, e.g. graph cuts [5, 27], random walker [16, 12], etc.
However, training is vulnerable to mistakes in the proposals. While alternating
proposal generation and network training [22] may improve the quality of the
proposals, errors reinforce themselves in such self-taught learning scheme [9].
Our regularized semi-supervised loss framework avoids training networks to fit
potential errors and is based on well-established principles [9, 34].

In this section, we show that some methods using dense CRF to generate pro-
posals [19] can be viewed as an approximation of alternating direction method
(ADM) [4] for optimizing our dense CRF loss. Our experiments suggest that
gradient descent in standard back-propagation for this loss is a better optimiza-
tion technique compared to ADM splitting involving mean-field inference [20],
both in the efficiency and quality of the solutions obtained, see the loss plot in
Fig. 3 and the training times in Table 3. However, there is room for exploring
our ADM optimization insights for regulared losses other than dense CRF and
more powerful inference than mean-field. This is left for future work.

We consider proposal-generation schemes iterating between two steps, net-
work training and proposal generation. Then alternation can happen either
when CNN training converges or online for each batch. At each iteration, the first
step learns the network parameters θ from a given (fixed) ground-truth proposal
X̃ computed at the previous iteration. This amounts to updating the K-way soft-
max segmentation S to S̃ ≡ fθ̃(I) by minimizing the following proposal-based
cross entropy with respect to parameters θ via standard back-propagation:

θ̃ = arg min
θ

∑
p∈ΩL

H(Yp, Sp) +
∑
p∈ΩU

H(X̃p, Sp) for S ≡ fθ(I) (7)

where X̃p ∈ [0, 1]K are the ground-truth proposals for unlabeled pixels p ∈ ΩU .

Mask X̃p is constrained to be equal to Yp for labeled pixels p ∈ ΩL. The second

step fixes the network output S̃ and finds the next ground-truth proposal by
minimizing regularization functionals that are standard in shallow segmentation:

min
X∈[0,1]|Ω|×K

∑
p∈ΩU

H(Xp, S̃p) + λR(X) (8)

where Xp ∈ [0, 1]k denotes latent pixel labels within the probability simplex.

Note that for fixed S̃ the cross entropy terms H(Xp, S̃p) in (8) are unary po-
tentials for X. When R corresponds to dense CRF, optimization of (8) is facil-
itated by fast mean-field inference techniques [20, 3] significantly reducing the
computational times via parallel updates of variables Xp and high-dimensional
filtering [1]. Supplementary material shows that mean-field algorithms can be
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equivalently interpreted as a convex-concave approach to optimizing the follow-
ing objective

min
X∈[0,1]|Ω|×K

∑
p∈ΩU

H(Xp, S̃p) + λR(X)−
∑
p∈ΩU

H(Xp) (9)

combining (8) and negative entropies H(Xp) = −
∑
kX

k
p logXk

p that act as a
simplex barrier for variables Xp. This yields closed-form independent (parallel)
updates of variables Xp, while ensuring convergence under some conditions6.

Proposition 1. Proposal methods alternating steps (9) and (7) can be viewed
as approximate alternating direction method (ADM)7 [4] for optimizing our
regularized loss (2) using the following decomposition of the problem:

min
θ,X∈[0,1]|Ω|×K

∑
p∈ΩL

H(Yp, Sp) + λR(X) +
∑
p∈ΩU

KL(Xp|Sp) (10)

where KL denotes the Kullback-Leibler divergence.

Proof. The link between (10) and (9) comes directly from the following relation
between the KL divergence and the entropies: KL(Xp|Sp) = H(Xp, Sp)−H(Xp).

Instead of optimizing directly regularized loss (2) with respect to network pa-
rameters, proposal methods splits the optimization problem into two easier sub-
problems in (10). This is done by replacing the network softmax outputs Sp in
the regularization by latent distributions Xp (the proposals) and minimizing a
divergence between Sp and Xp, which is KL in this case. This is conceptually
similar to the general principles of ADM [4], except that the splitting is not done
directly with respect the variables of the problem (i.e., parameters θ) but rather
with respect to network outputs S. This can be viewed as an approximate ADM
scheme, which does not account directly for variables θ in the ADM splitting.

In this paper we focus on optimization of dense CRF loss via gradient descent
or ADM. The method in [19] generates proposals via dense CRF layer, but their
approach slightly deviates from the described ADM scheme since they also back-
propagate through this layer8. But, as we show in Table 3, such back-propagation
does not help in practice and can be dropped. Moreover, our gradient descent
optimization of dense CRF loss makes such proposal generation layers (or proce-
dures) redundant. Our approach gives simpler and more efficient training without
expensive iterative inference [19] and obtains better performance.

6 Parallel updates are guaranteed to converge for concave CRF models, e.g. Potts [21].
7 In its basic form, alternating direction method transforms problem minx f(x) + g(x)

into minx,y f(x)+g(y) s.t x = y and alternates optimization over x and y. This may
work if optimizing f and g seperately is easier than the original problem.

8 Cross-entropy loss H(X(S), S) in [19] uses CRF layer proposal X(S) generated from
network output S. Dependence of X on S motivates back-propagation for this layer.
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4 Experiments

Sec. 4.1 is the main experimental result of this paper. For weakly-supervised seg-
mentation with scribbles [22], we train using different regularized losses including
our proposed CRF loss, high-order normalized cut loss in [30] and kernel cut loss,
as discussed in Sec. 2. We show that combining CRF (4) with normalized cut
(5) a la KernelCut [31] yields the best performance.

In Sec. 4.2, training using regularized loss or using generated proposals are
compared in terms of segmentation quality and optimization. Besides for scrib-
bles, we also utilize our regularized loss framework for image-level labels based
supervision and compare to SEC [19], a recent method based on proposal gener-
ation. We compare schemes of CRF regularization e.g. as loss, post-processing or
trainable layers in Sec. 4.3 for weakly-supervised segmentation. In Sec. 4.4, we
train with shortened scribbles to see how much each method degrades.We also
investigate regularization loss for fully or semi-supervised segmentation (with
labeled and unlabeled images), see preliminary results in Sec. 4.5.

Dataset: Most experiments are on the PASCAL VOC12 segmentation dataset.
For all method, we train with the augmented dataset of 10,582 images. The scrib-
ble annotations are from [22]. Following standard protocol, mean intersection-
over-union (mIoU) is evaluated on the val set that contains 1,449 images. For
image-level label supervision, our experiment setup is the same as in [19].

Implementation details: Our implementation is based on DeepLab v2 [10].
We follow the learning rate strategy in DeepLab v2 9 for the baseline with full
supervision. For our method of regularized loss, we first train with partial cross
entropy loss only. Then we fine-tune with extra regularized losses of different
types. Our CRF and normalized cut regularization losses are defined at full
image resolution. If the network outputs shrinked labeling, which is typical, the
labeling is interpolated to original size before feeding into the loss layer.

We choose dense Gaussian kernel over RGBXY for RCRF (S), RNC(S) and
RKC(S). As hyper-parameter, the Gaussian bandwidth is optimized via valida-
tion for DenseCRF, normalized cut and kernel cut. As is also mentioned in [30],
naive forward and backward pass of such fully-connected pairwise or high-order
loss layer would be prohibitively slow (O(|Ω|2) for |Ω| pixels). For example, to
implement RCRF (S) (4) as a loss, we need to compute its gradient w.r.t. Sk,

∂RCRF (S)

∂Sk
= −2WSk. (11)

For DenseCRF where W is fully connected Gaussian, computing the gradient
(11) becomes a standard Bilateral filtering problem, for which many fast methods
were proposed [1, 24]. We implement our loss layers using fast Gaussian filtering
[1], which is also utilized in the inference of DenseCRF [20, 35, 28]. Using the
same fast filtering component, we can also computer the following gradient (12)
of our Kernel Cut loss (6) in linear time. Note that our CRF and KC loss layer
is much faster than CRF inference layer [19, 35] since no iterations is needed.

9 https://bitbucket.org/aquariusjay/deeplab-public-ver2



8 M. Tang, F. Perazzi, A. Djelouah, I. Ben Ayed, C. Schroers and Y. Boykov

Weak
Full

pCE only w/ NC [30] w/ CRF w/ KernelCut

DeepLab-MSc-largeFOV 56.0 (8.1) 60.5 (3.6) 63.1 (1.0) 63.5 (0.6) 64.1
DeepLab-MSc-largeFOV+CRF 62.0 (6.7) 65.1 (3.6) 65.9 (2.8) 66.7 (2.0) 68.7
DeepLab-VGG16 60.4 (8.4) 62.4 (6.4) 64.4 (4.4) 64.8 (4.0) 68.8
DeepLab-VGG16+CRF 64.3 (7.2) 65.2 (6.3) 66.4 (5.1) 66.7 (4.8) 71.5
DeepLab-ResNet101 69.5 (6.1) 72.8 (2.8) 72.9 (2.7) 73.0 (2.6) 75.6
DeepLab-ResNet101+CRF 72.8 (4.0) 74.5 (2.3) 75.0 (1.8) 75.0 (1.8) 76.8

Table 1: mIOU on PASCAL VOC2012 val set. Our flexible framework allows
various types of regularization losses, e.g. normalized cut, CRF or their com-
binations (KernelCut [31]) as joint loss. We achieved the state-of-the-art with
scribbles. In () shows the offset to the result with full masks.

∂RKC(S)

∂Sk
= −2WSk + γ

Sk
′
ŴSkd

(d′Sk)2
− γ 2ŴSk

d′Sk
. (12)

4.1 Comparison of Regularized Losses

Tab. 1 summaries the results with different regularized losses. Here we report
both result with or without standard CRF post-processing on various networks.
The baselines are with cross entropy losses of fully labeled masks or partial
cross entropy (pCE) on seeds. We choose the weight of the regularization term
to achieve the best validation accuracy. The state-of-the-art of scribble-based
segmentation is from prior work [30] with extra normalized cut loss. Consistently
over different networks, using the proposed CRF loss outperforms that with
normalized cut loss. Our best result is obtained when combining both normalized
cut loss and DenseCRF loss. Clearly, utilization of CRF loss and KernelCut
loss reduce the gap toward the full supervision baseline. With DeepLab-MSc-
largeFOV followed by CRF post processing, using KernelCut regularized loss
achieved mIOU of 66.7%, while previous best is 65.1% with normalized cut loss
[30]. Our result with scribbles approaches 97.6% (75.0%/76.8%) of the quality
of that with full supervision, yet only 3% of all pixels are scribbled. This paper
pushes the limit of weakly supervised segmentation.

To get some intuition about these losses and their regularization effect, we

visualize their gradient w.r.t. segmentation ∂R(S)
∂S in Fig. 1. Note that the sign

of gradients indicates whether to encourage or discourage certain labeling. The
color coded gradients clearly show evidence toward better color clustering and
edge alignment for normalized cut and CRF. The gradients of different losses are
slightly different and complement each other. Since kernel cut is the combination
of normalized cut with CRF, then its gradient is the sum of that of each.

Fig. 2 shows some qualitative examples with different losses. Results with reg-
ularized loss is better than that without. Besides, the segmentation with kernel
cut loss have better edge alignment compared to that with normalized cut loss.
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image network output NC grad. CRF grad. KC grad.

Fig. 1: Visualization of the gradient for different losses. The negative (positive)
gradients are coded in red (yellow). For example, negative gradients on the dog
drives the network to predict “dog” for these pixels. Also note how the dog pops
out in the gradient map.

This is because of the extra pairwise CRF loss. The effect of CRF loss and nor-
malized cut loss is different. Our Kernel Cut loss combines the benefit of regional
color clustering (normalized cut) and pairwise regularization (DenseCRF).

image CE loss only NC loss [30] CRF loss kernelcut loss ground truth

Fig. 2: Examples on PASCAL VOC val set. Kernel cut as regularization loss
gives qualitatively better result than that with normalized cut loss. Kernel cut
based results have better edge alignment. See suppl. material for more examples.
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DeepLab networks

Weak

Full
proposal generation regularized loss

GrabCut ScribbleSup DenseCRF-ADM
DenseCRF-GD

(one time) (iterative) (online)

MSc-largeFOV 55.5 n/a 61.3 63.1 64.1
MSc-largeFOV+CRF 59.7 63.1 65.4 65.9 68.7
VGG16 59.0 n/a 63.4 64.4 68.8
ResNet101 63.9 n/a 72.5 72.9 75.6

Table 2: Results using weak supervision (scribbles). The baseline is training
with GrabCut output. ScribbleSup [22] alternates between GrabCut and CNN
training, but the proposals are generated offline. It helps to have frequent online
proposal updates at each iteration of training as in DenseCRF-ADM. The best
(quality and speed) training is based on simple regularized loss with gradient
descent (DenseCRF-GD) avoiding proposal generations.

4.2 Regularized Loss vs Proposal Generation

Here we compare our regularized loss and proposal generation methods (Sec.
3) in weakly supervised setting mainly focusing on scribbles. Proposals can be
generated offline or online. One straightforward proposal method is to treat
GrabCut output as “fake” ground truth for training. ScribbleSup [22] refines
GrabCut output using network predicted segmentation as unary potentials. The
proposals are updated but are generated offline. By online proposal generation,
we let network output go through a CRF inference layer during training at each
iteration. The loss for proposal generation is the cross entropy between the input
and output of the CRF inference layer, see Sec.3. A recent work that generates
proposals online for tag-based weakly-supervised segmentation is SEC [19].

Table 2 compares regularized loss method to variants of proposal generation.
We used the public implementation of SEC’s constrain-to-boundary loss that
have mean-field inference layer and cross entropy loss layer between the proposal
and network output. We didn’t backpropagate through the inference layer and
refer to this version as DenseCRF-ADM in Table 2. It essentially minimizes
DenseCRF loss with ADM, rather than gradient descent in our method denoted
as DenseCRF-GD.Compared to our regularized loss method, proposal generation
gives inferior segmentation for different networks, see Table 2.

We further compare regularized loss (DenseCRF-GD) and proposal genera-
tion based approach (DenseCRF-ADM) from optimization perspective. Figure 3
compares the two methods in terms of obtained loss values besides segmentation
accuracies . For DenseCRF, ADM style optimization via proposals gives higher
loss than that with gradient descent. As discussed in Sec. 3, this may be due to
the limitation of first-order mean-field inference for DenseCRF. Exploring ADM
for other regularizer with stronger ”shallow” optimizers is left as future work.

As mentioned earlier, SEC [19] was originally focused on tag-based supervi-
sion. Table 3 reports some tests for that form of weak supervision. We compare
SEC with its simplification replacing their constrain-to-boundary loss by our
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Fig. 3: We compare gradient descent and ADM (via iterative proposal genera-
tion) for dense CRF. Gradient descent gives better losses than that of ADM at
convergence. Also, using gradient descent for dense CRF achieves higher mIOU
on training and val set.

regularized loss. We train using different combinations of losses for supervision
based on image-level labels/tags. Our CRF loss helps to improve training to
43.9% compared to 38.4% without it. There is only small improvement in seg-
mentation mIOU when replacing constrain-to-boundary loss by CRF loss.

However, our CRF loss layer is several times faster than constrain-to-boundary
layer integrating explicit iterative inferences. The segmentation accuracy and
overall training speed are also reported in Tab. 3. (The results are for the
DeepLab-largeFOV network.) We also tested a variant of SEC without back-
propagation of mean-field layer, which we show is not helping in practice. Fig. 4
shows testing examples for our method and SEC with image tags as supervision.

include this loss?

Losses

Seeding loss [19] X X X X
Expansion loss [19] X X X X
Constrain-to-boundary loss [19] X ?
Our CRF loss X

mIOU (%) 38.4 43.7 43.8 43.9

Overall training time in s/batch 0.86 1.19 (0.33) 1.19 (0.33) 0.98 (0.12)

Table 3: Tag-based weak supervision. We train with different combinations of the
losses in SEC [19] and our CRF loss. Replacing the constrain-to-boundary loss
in SEC [19] by CRF loss gives minor improvement in accuracy, but training with
regularized loss with gradient descent is faster since no iterative CRF inference
is needed. We also compare to a variant (?) of SEC without back-propagation of
the CRF inference layer. Parenthesis (·) show the computational times for the
constrain-to-boundary loss layer or our direct loss layer.

4.3 CRF as Loss, Post-processing or Trainable Layer

We are the fist to propose CRF loss though it’s popular to have CRF as post-
processing [10] or jointly trained with the network [35, 28]. For example, CRF-
as-RNN [35] is proposed for fully supervised segmentation. Here for weakly-
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image SEC [19] w/ CRF loss ground truth

Fig. 4: Examples for supervision with image-level labels (tags). We train using the
seeding loss, expansion loss in SEC [19] and our CRF loss. Similar segmentation
is obtained yet we avoid any iterative mean-field inference for dense CRF.

supervised segmentation with scribbles, we train CRF-as-RNN but only mini-
mizing partial cross entropy loss on scribbles. Table 4 compares the effects of
CRF as loss, post-processing or trainable layers. End-to-end training of CRF
helps a little bit (64.8% vs 64.3%), but the best is achieved with our CRF loss,
which is also much more efficient without any recurrent inference. Note that
the plain network trained with extra CRF loss is even better than a network
trained without such loss but followed by CRF post-processing, see the fourth
and second row in Table 4 (64.4% vs 64.3%). This shows the effectiveness of our
CRF loss for training CNN segmentation.

training testing mIOU (%)

partial cross entropy loss plain network 60.4

partial cross entropy loss disjoint network and CRF 64.3

partial cross entropy loss
jointly trained network and CRF 64.8

end-to-end CRF

partial cross entropy loss
plain network 64.4

and our CRF loss

partial cross entropy loss
disjoint network and CRF 66.4

and our CRF loss

Table 4: Ablation study of CRF as loss, post-processing [10] or trainable layers
[35] for weakly supervised segmentation with scribbles for DeepLab-VGG16.
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Fig. 5: Similar to [22], we shorten the scribbles. With length zero (clicks) is the
most challenging case. Right plot shows mIOUs when train with shorter scribbles.

4.4 Train with Shorter Scribbles

To see the limit of our algorithm with scribble supervision, we train with short-
ened scribbles visualized in Fig. 5. Note that with length zero, there is only one
click for each object. For different length ratios from zero to 100%, our regular-
ized loss method achieved much better segmentation than ScribbleSup [22]. The
improvement over ScribbleSup [22] is more significant for shorter scribbles.

4.5 Fully and semi supervised segmentation

We’ve demonstrated the usefulness of regularized loss for weakly supervised seg-
mentation. Here we test if it also helps full supervision or semi-supervision.

Full supervision: We add NC loss on fully labeled images besides the cross
entropy loss. This experiment is on a simple saliency dataset [11] where color
clustering is obvious and likely to help. As shown in Tab. 5, when we increase the
weight of RNC(S), we indeed obtained segmentation that is more regularized.
However, with extra regularization loss during training, the cross entropy loss
got worse and mIOU decreased. The conclusion is that imposing regularized loss
naively on labeled images doesn’t help. Empirical risk minimization is in some
sense optimal for fully labeled data. Extra regularization loss steers the network
in the wrong direction if the regularization doesn’t totally agree with the ground
truth.

NC loss weight mIOU cross entropy loss NC loss

0 89.85% 0.106 0.536

0.1 89.38% 0.110 0.517

0.2 89.39% 0.112 0.509

0.5 88.75% 0.125 0.485

Table 5: Negative effect of regularization loss for full supervision.
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Semi supervision: For training with both labeled images and unlabeled

3K 5K 7K 11K
# of labeled images

57

58

59

60

61

62

63

64

m
IO

U
 (

%
)

w/ CRF loss
pCE loss

images, our joint losses include cross entropy on la-
beled images and regularization on unlabeled ones.
We drop the labeling for some of the the 11K images
in PASCAL VOC 2012. We train DeepLab-LargeFOV
with different amount of labeled & unlabeled images,
see right plot. For the baseline that can only utilize
labeled images, the performance degrades with less
masks, as expected. For our framework, the labeled
and unlabeled images are mixed and randomly sam-
pled in each batch. We observed 0.7% 1.5% improve-
ment with our regularized loss. Note that this result
is highly preliminary. We also train with the 11K la-
beled images in VOC 2012 and the 10K unlabeled in VOC 2017 and achieved
boosted performance from 63.5% to 64.3%. In the future, we plan to look into
generalization in semi-supervised segmentation and compare to recent work [17].

5 Conclusion and Future Work

Regularized semi-supervised loss is a principled approach to semi-supervised deep
learning [34, 15], in general. We utilize such principle for weakly supervised CNN
segmentation. In particular, this paper is continuation of the study of losses moti-
vated by standard shallow segmentation [30]. While [30] is entirely on normalized
cut loss, here we propose and evaluate several other regularized loss based on
Potts/CRF [6, 20], normalized cut [29] and KernelCut [31] regularizer. Dense-
CRF [20] is very popular as post-processing [10] or trainable layer [2]. We are
the first to use a relaxed version of DenseCRF as loss.

In contrast to our regularized loss approach, the main stream in weakly su-
pervised segmentation rely on generating ”fake” full masks from partial input
and train a network to match the proposals [22, 33, 18, 19, 23, 13]. We show that
proposal methods can be viewed as approximate alternating direction method
(ADM) for optimization of regularized loss. Gradient descent for DenseCRF loss
gives better optimization while being more efficient than proposal generation
scheme since no mean-field inference is needed.

This paper pushes the limit of weakly-supervised segmentation. Comprehen-
sive experiments (Sec.4) with our regularized losses show (1) state-of-the-art per-
formance for weakly supervised CNN segmentation reaching near full-supervision
accuracy and (2) better quality and efficiency than proposal generating meth-
ods or normalized cut loss [30]. Besides for weak supervision, we also report
preliminary results for full and semi-supervision.

In principle, our regularized loss framework allows any differentiable loss
function. In the future, we plan to explore other relaxations of CRF [7, 8, 25,
12, 14, 32] as losses and corresponding efficient gradient computation. Also it
would be interesting to apply our CRF regularized loss framework for weakly-
supervised computer vision problems other than segmentation.
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1 Mean-field inference for DenseCRF

Here we show that the iterative parallel mean-field inference [20] indeed min-
imizes (9) with pairwise DenseCRF regularizer and unary potentials S̃p (e.g.
given by network).

E(X) = −
∑
p

H(Xp) +
∑
p

H(Xp, S̃p) + λRCRF (X).

For positive semidefinite affinity matrixW , e.g. with Gaussian Kernel,RCRF (X) =∑
kX

k′
W (1−Xk)

c
= 5 −

∑
kX

k′
WXk is concave. Note that the cross entropy

H(Xp, S̃p) is linear and the negative entropy −H(Xp) is convex w.r.t. Xp, so the
concave-convex procedure (CCCP) allows us to iteratively solve an approxima-
tion of E(X) by linearizing the concave part at S̃.

A(X) = −
∑
p

H(Xp) +
∑
p

H(Xp, S̃p) + λ〈X,ORCRF (X)|S̃〉.

= −
∑
p

H(Xp) +
∑
p

H(Xp, S̃p)− 2λ
∑
p

∑
k

Xk
p · [WS̃k]p.

= −
∑
p

H(Xp)−
∑
k

Xk
p · log S̃k

p − 2λ
∑
k

Xk
p · [WS̃k]p.

KKT approach for minimizing A(X) subject to probability simplex constraints∑
kX

k
p = 1 yields the following optima,

arg min
X

A(X) =
1

zp
exp{− log S̃k

p − 2λ[WS̃k]p}, (1)

where zp is a normalization constant for softmax. (1) is exactly the mean-field
update for DenseCRF [20]. Note that the updates (1) is also justified in a sim-
ilar way in [21] for convergent optimization of KL distance between factorial

5 c
= means up to an additive constant.
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marginal distribution and Gibbs distribution induced by CRF. Our justification
of (1) is different. We show alternative interpretation of mean-field updates (1)
as minimizing CRF potential RCRF (X) plus negative entropy −H(X).

2 More example segmentations

image CE loss only NC loss CRF loss kernelcut loss ground truth

Fig. 1: More examples segmentations for PASCAL VOC val set. Here are seg-
mentations from networks trained with various losses.


