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Abstract

Emerging service-oriented technologies allow soft-
ware agents to automatically procure distributed
services to complete complex tasks. However, in
many application scenarios, service providers de-
mand financial remuneration, execution times are
uncertain and consumers have deadlines for their
tasks. In this paper, we address these issues by
developing a novel approach that dynamically pro-
cures multiple, redundant services over time, in or-
der to ensure success by the deadline. Specifically,
we first present an algorithm for finding optimal
procurement solutions, as well as a heuristic algo-
rithm that achieves over 99% of the optimal and is
capable of handling thousands of providers. Using
experiments, we show that these algorithms achieve
an improvement of up to 130% over current strate-
gies that procure only single services. Finally, we
consider settings where service costs are not known
to the consumer, and introduce several mechanisms
that incentivise providers to reveal their costs truth-
fully and that still achieve up to 95% efficiency.

1 Introduction
Increasingly, participants in large distributed systems are able
to discover and automatically procure the services of others.
This allows service consumers to complete complex compu-
tational tasks on demand, but without the need to invest in
and maintain expensive hardware. Already, such a service-
oriented approach is gaining popularity in a large range of ap-
plication areas, including Grids, peer-to-peer systems, cloud
and utility computing[Singh and Huhns, 2005].

Despite its benefits, flexible service procurement poses
new challenges that have not been addressed satisfactorily
by current research. In particular, services offered by exter-
nal providers are beyond the consumer’s direct control and
may therefore display uncertainty in their behaviour. Thus,
the execution time of services can be highly uncertain, due
to concurrent access by other consumers, hardware or net-
work problems and the provider’s scheduling policies. This
is particularly problematic when services take a long time to
complete, as is common for many computationally-intensive
tasks, and when consumers need to obtain their results by a

certain deadline. Furthermore, in large systems, many differ-
ent providers may offer functionally equivalent services that
are heterogeneous in their quality and costs. This requires
consumers to make appropriate decisions about which ser-
vices to procure, balancing the probability of success with
the overall cost. It also necessitates the design of appropriate
economic mechanisms that incentivise providers to truthfully
reveal their private information, such as their costs and the
estimated execution time, thus resulting in good procurement
decisions and removing the need for strategic behaviour.

Related to this work is the literature on task allocation un-
der execution uncertainty such as[Porteret al., 2008]. Here,
researchers have studied problems where providers have pri-
vate information about both their costs for executing tasks, as
well as the probability that they will successfully complete
their tasks. However, this and similar works do not consider
redundancy to increase the overall success probability of a
task. Now, there is some work that employs redundancy, com-
bining several unreliable services to achieve a higher proba-
bility of success. This includes deployed systems, such as
Google’s MapReduce[Dean and Ghemawat, 2008], but the
techniques used for determining how many services to pro-
cure are typically ad hoc, and they also do not consider costs.
A decision-theoretic approach for addressing the latter isde-
scribed in[Steinet al., 2008], but this work assumes that costs
are known and focusses on heuristic techniques for complex
workflow scenarios. A slightly different approach is taken by
work on restarting Web queries, which examines when such
queries should be timed out and re-issued (possibly to a dif-
ferent provider) to ensure timely completion[Chalasaniet al.,
1998]. However, such work typically assumes that only one
query is active at any time and the costs of multiple queries
are not explicitly balanced with the resulting benefit.

To address these shortcomings, we present an abstract
model of a procurement scenario for services with uncertain
durations. We begin by outlining a generic approach for find-
ing an optimal procurement strategy when service costs and
duration distributions are known. This approach is the first
to employ redundancy in a flexible and optimal manner as to
balance the probability of completing within its deadline and
the costs for doing so. More specifically, our approach allows
a consumer to invoke multiple services in parallel for exe-
cuting the same task, and it can dynamically procure further
services during execution as the deadline draws closer. To



find the optimal strategy, we combine analytical expressions
with computational search methods. As brute force is compu-
tationally intractable, we present a novel branch-and-bound
algorithm that reduces the search, on average, by over 99.9%.
We also discuss a heuristic algorithm capable of handling
problems with thousands of heterogeneous service providers,
and we show that its solutions are, on average, within 0.12%
of the optimal. For a range of settings we then experimentally
demonstrate that dynamic redundancy achieves an improve-
ment of up to 130% over current approaches.

Next, we examine settings where service costs are pri-
vate and known only by the providers. For this scenario, we
propose a VCG-like mechanism that is incentive-compatible,
i.e., that incentivises rational, self-interested participants to
reveal their true costs. In this context, it is the first such mech-
anism that allows consumers to procure multiple, redundant
services to increase its probability of success. Moreover,we
show that this mechanism can achieve an average 95% effi-
ciency when some prior information about service cost distri-
butions is known to the consumer. To address settings where
this is not available, we propose two further novel mecha-
nisms, which have lower information requirements, but still
achieve an average 86% efficiency.

In the remainder of this paper, we first present the pro-
curement problem (Section 2) and discuss its optimal solution
(Section 3). This is followed by our mechanisms (Section 4)
and an empirical evaluation (Section 5). Section 6 concludes.

2 Problem Specification
We consider a single service consumerA, which needs to
complete a taskT . The consumer derives a utilityV ∈ R

+

if the task is successfully completed within a given deadline
D ∈ R

+, and0 otherwise. Furthermore, there arem ser-
vice providers, given by the setM = {1, . . . ,m}, which can
complete the task on the consumer’s behalf. A consumer can
invoke a provideri ∈ M at any time in the interval[0,D]. We
assume that, once invoked, the provider remains committed to
the task until it is completed (possibly beyond the deadline),
and incurs an (expected) costci, where this cost may rep-
resent both the running costs of its computational resources
and opportunity costs from not being able to use these re-
sources for other tasks. To compensate for these costs, the
consumer pays the provider a transferτi ∈ R

+ on invocation
of i, which is paid regardless of whether the task is completed
by the deadlineD. Although a provider will always suc-
cessfully complete the task, the execution time is uncertain,
and is given by a continuous cumulative distribution function
Fi(t). This denotes the probability that provideri completes
the task within timet, and we assume this includes any time
needed for pre-/post-processing, queueing and data transfers.
We also assume that the execution times of different service
providers are independently drawn.

Although we only consider a single task in this paper, cru-
cially we allow multiple providers to execute it concurrently
and independently. In this case, the task is considered suc-
cessful if at least one provider completes it by timeD. We
assume that all participants are expected utility maximisers.

Now, the key problem is to find an optimal procurement

strategy that determines which providers should be invoked
and when, such that the consumer’s utility is maximised. We
compactly represent such a strategy as a vectorρ = ((s1, t1),
. . . , (sn, tn)) with n ≤ m, where each element represents
the invocation timeti ∈ [0,D] of a providersi ∈ M . A
provideri is then only invoked at timeti (and only receives
τi) if no provider has so far completed the task. Without
loss of generality, we assume thatti ≤ ti+1, andsi 6= sj

if i 6= j. For example, assume there are four providers and
ρ = ((2, 0), (3, 0), (1, 2.5)), i.e., providers2 and 3 are in-
voked immediately. Then, if the task has not been completed
by t = 2.5, provider 1 is also invoked, causing the three
providers to run concurrently. Provider 4 is never invoked.

Given a strategyρ, the consumer’s expected utility is the
difference between the expected value of completing the task
and the expected total transfers to the invoked providers:

UA(ρ) = V ·

(

1 −
n
∏

i=1

(1 − Fsi
(D − ti))

)

−
n
∑

i=1



τsi
·

i−1
∏

j=1

(1 − Fsj
(ti − tj))



 (1)

Furthermore, the expected utility of each providersi is:

Usi
(ρ) = (τsi

− csi
) ·

i−1
∏

j=1

(1 − Fsj
(ti − tj)) (2)

if si is included inρ, and zero otherwise. Furthermore,
although our main concern is maximising the consumer’s
utility, as a measure of how well the available services are
utilised, we define the overallefficiency, also referred to as
the social welfare, of a procurement strategy as:

U(ρ) = UA(ρ) +

n
∑

i=1

Usi
(ρ)

= V ·

(

1 −
n
∏

i=1

(1 − Fsi
(D − ti))

)

−
n
∑

i=1



csi
·

i−1
∏

j=1

(1 − Fsj
(ti − tj))



 (3)

This measures the overall quality of a strategy for all par-
ticipants and therefore ignores any transfers, as these only
re-distribute utility between the agents.

3 Optimal Service Procurement
We now consider the problem of finding the optimal procure-
ment strategy that maximises the consumer’s expected utility,
given that the consumer has full information about both the
providers’ costsci and the duration distributionsFi. This
corresponds to a service-oriented system where providers ad-
vertise their services at a fixed price, and thusci denotes
the advertised price. In this case, we set the transfers to the
providers so that they equal these prices, i.e.,τi = ci.



More formally, letρ∗ = argmaxρ UA(ρ). Finding the opti-
mum,ρ∗, is non-trivial since it involves selecting an appropri-
ate subset of providers, ordering them and then determining
invocation times. To solve this, we initially assume that the
optimal subset of providers and their ordering is given. That
is, we are given an ordered set of providersρ∗s = (s1, . . . , sn)
wheresi is invoked beforesi+1. To compute the optimal pro-
curement schedule, we must determineρ∗t = (t1, . . . , tn),
whereti is the invocation time ofsi. To this end, we com-
pute the gradient of the expected welfare,∇U(ρ∗t ), and find
its root, i.e.,∇U(ρ∗t ) = 0. This results in a system ofn
simultaneous equations, with one equation for eachti, with
constraints,∀i : 0 ≤ ti ≤ D, and∀i, j : i ≤ j ↔ ti ≤ tj .
Solving these equations (and checking the appropriate second
order conditions) depends on the family of duration distribu-
tions and can be done either analytically or numerically using
standard optimisation software. In what follows, we focus
on the exponential distribution as this is commonly used for
modelling uncertain service durations[Trivedi, 2001].

3.1 Exponentially Distributed Durations

We now derive analytical expressions for the invocation times
ρ∗t , given ρ∗s and given that the duration distributions of
providersi ∈ M are given byFi(t) = 1 − e−λit, where
λi > 0 is a rate parameter. Re-writing Equation 1 with these
distributions, and computing the gradient, allows us to com-
pute the optimal invocation timeti of providersi by solving:

0 = − V · λsi

n
∏

j=1

e−λsj
D

n
∏

j=i+1

eλsj
tj + ci

i−1
∑

j=1

λsj

i
∏

k=1

e−λsk
ti

− λsi

m
∑

j=i+1

(

csj

j−1
∏

k=1

e−λsk
tj

j−1
∏

k=i+1

eλsk
tk

)

(4)

Here, we note thatti is independent of anytj , j < i, i.e.,
the invocation time of a provider does not depend on the in-
vocation time of those already running. This is a result of the
exponential function being memoryless, i.e., the probability
of completing the task within the next time interval∆t is in-
dependent of when it was invoked. Hence, we can calculate
eachti by backward induction, starting with the last provider,
n. The invocation time of this can be obtained directly by
taking the derivative with respect totn (as in Equation 4):

tn =
ln (V · λsn

) − ln
(

csn
·
∑n−1

j=1 λsj

)

− D ·
∑n

j=1 λsj

∑n
j=1 λsj

(5)
Furthermore, we can obtain a simpler closed-form solution

for the remaining invocation times by combining and manip-
ulating the partial derivatives forti andti+1, resulting in:

csi

λsi

i−1
∑

j=1

λsj

i−1
∏

k=1

e
−λsk

(ti−tk)
−

m
∑

j=i+1



csj

j−1
∏

k=1

e
−λsk

(tj−tk)





=
csi+1

λsi+1

i
∑

j=1

λsj

i
∏

k=1

e
−λsk

(ti+1−tk)
−

m
∑

j=i+2



csj

j−1
∏

k=1

e
−λsk

(tj−tk)





Then, using algebraic manipulations, we isolateti, and de-
rive an expression that is based solely onti+1:

ti = ti+1 −
1

∑i
j=1 λsj

ln

(

csi+1
λsi

∑i+1
j=1 λsj

csi
λsi+1

∑i−1
j=1 λsj

)

(6)

Note that Equation 6 is not well defined fort1, and the op-
timal here is to sett1 = 0. This is because the cost will be
incurred in any case and any delays would only reduce its
probability of success by the deadline. Furthermore, we note
that the equations can yield negative values for someti, indi-
cating that the optimal values lie outside the constraints of the
problem (i.e., before the task can be started). In this case,as
ti does not influence the procurement times of later providers,
the optimal choice is to setti = 0, i.e., the provider is invoked
at the earliest possible time. Furthermore, the equations can
sometimes yield inconsistent values, i.e.,ti > D or ti > ti+1

for somei, but this only occurs when the ordering and/or the
set of providers was non-optimal in the first place. Finally,we
also note that the partial second derivatives are always nega-
tive, and since each variable is found uniquely one at a time
using backward induction, the final result is optimal.

So far, Equations 5 and 6 allow us to efficiently calculate
the optimal procurement times for a given, optimal ordered
sequence of service providersρ∗s. However, it is not obvi-
ous how to find this order. Related work on economic search,
such as[Weitzman, 1979], does not apply to this case, due to
the overlap of concurrently invoked providers. Furthermore,
our problem includes a fixed time constraint, by which the
task has to be completed. Other greedy approaches that order
services by increasing costs, decreasing rate parameters,the
ratio of these, or approaches that first select providers whoin-
dividually yield a higher expected utility, also do not always
find optimal solutions. This is because it is often best to se-
lect cheaper, slower providers first and only invoke the more
expensive and faster ones later, to ensure that the task is com-
pleted successfully. However, when the deadline of the task
is particularly short, the consumer may be forced to immedi-
ately invoke the faster, expensive providers.

As a simple example of this, we consider a set of two provi-
ders,M = {1, 2}. The first is cheap and slow withc1 = 0.2
andλ1 = 0.1, while the second is expensive and fast with
c2 = 5 andλ2 = 10. If we then assume that a consumer
has a taskT with deadlineD = 1.5 and utility V = 100,
the optimal procurement strategy isρ∗ = ((1, 0), (2, 0.75)).
However, if we decrease the deadline slightly toD = 1, the
optimal strategy becomesρ∗ = ((2, 0), (1, 0.84)), thereby
reversing the order of invoked providers.

This observation suggests that a simple greedy search for
the optimal strategy is insufficient. Hence, in the following
sections, we present an optimal branch-and-bound algorithm.
As this becomes slow when there are dozens of providers, we
also discuss a fast heuristic algorithm.

3.2 The Branch-And-Bound Algorithm
Finding an optimal subset and ordering of providersρ∗s using
a brute-force search is clearly infeasible1 when the number of

1More generally, we believe that this problem is NP-hard due to
its similarity to the well-known Stochastic Integer Packing and the



Algorithm 1 Branch-And-Bound Algorithm.
1: ρ∗

s ← () ⊲ Best ordering found so far
2: ulower← 0 ⊲ Best current lower bound
3: Q← {ρ∗

s} ⊲ Unexpanded orderings
4: while Q 6= ∅ do ⊲ More unexpanded?
5: ρs ← argmaxρs∈Q LOWER(ρs) ⊲ Pick best
6: Q← Q \ {ρs} ⊲ Removeρs from Q
7: P ′

s ←EXPAND(ρs) ⊲ Expandρs

8: P ′

s ←FILTERDOMINATED(P ′

s) ⊲ Remove dominated
9: for all ρ′

s ∈ P ′

s do
10: ǔ←LOWER(ρ′

s) ⊲ Find lower bound
11: û←UPPER(ρ′

s) ⊲ Find upper bound
12: if û > ulower then ⊲ Sufficient upper bound?
13: if ǔ > ulower then ⊲ Better lower bound?
14: ρ∗

s ← ρ′

s ⊲ Keep as current best
15: ulower← ǔ

16: Q← Q ∪ {ρ′

s} ⊲ Keep for future expansion
17: Q← {x ∈ Q | UPPER(x) > ulower} ⊲ Filter orderings
18: return FINDTIMES(ρ∗

s) ⊲ Return best strategy

providers rises beyond a handful, as the number of possible
orderings form providers is

∑m
i=0

(

m
i

)

· i! =
∑m

i=0
m!

(m−i)! .
Now, it is possible to significantly reduce the number of

provider orderings that need to be searched by noting that we
can use information about some examined orderings to ex-
clude others. For example, assume we have three providers,
and we have just considered the orderingρs = (2, 1). This al-
ready promises a high utility, and, in fact, we note it is higher
than what could possibly be achieved by invoking provider
3 first (e.g., ifV − c3 is low). Hence, we can immediately
discard all five orderings starting with3.

This intuition is generalised in our branch-and-bound tech-
nique given by Algorithm 1. In more detail, we begin with an
empty orderingρ∗s = () (line 1), and then repeatedly consider
any new ordering that can be created by appending a single
provider to the endof an existing ordering. This is imple-
mented by keeping a set of orderings,Q in line 3, that have
not yet been expanded in this manner. During each iteration
of the main loop of the algorithm (lines 4–17), we then re-
move one2 orderingρs from Q (lines 5 and 6) and expand it.
Here, EXPAND in line 7 takes an orderingρs and returns the
set of all orderings that can be obtained by appending a sin-
gle remaining service provider fromM toρs. From this set of
new orderings, we then remove any that include providers that
are dominated by others not currently in the ordering (line 8).3

For each new orderingρ′s, we now find both a lower bound
and an upper bound for the expected utility that is achievable
by any procurement strategy beginning with the providers in
ρ′s (lines 10 and 11). Finding these allows us to exclude any
orderings starting withρ′s if the associated upper bound is
less than the best lower bound found so far. This pruning and

Stochastic Knapsack problems, but we leave a formal proof of this
conjecture for future work.

2We remove the ordering that promises the highest lower bound
on the expected utility. This allows us to quickly increase the best
lower bound, thereby pruning the search space more effectively.

3A provideri dominatesj if and only if (ci ≤ cj ∧ λi > λj) ∨
(ci < cj ∧ λi ≥ λj). Clearly, it is suboptimal to invokej beforei.

updating of the lower bound is performed in lines 12–16.
We now describe LOWER(ρ′s) and UPPER(ρ′s). To find the

lower bound, we simply restrict ourselves to the providers in
ρ′s, and find the optimal timesρ′t for this ordering and re-
turn the associated utility, i.e.,UA(FINDTIMES(ρ′s))), where
FINDTIMES returns the optimal procurement strategy using
the Equations from Section 3.1. Calculating an upper bound
is less obvious, because we may be able to derive significantly
higher utility by invoking further services. To this end, welet
M ′ be the remaining service providers that are not inρ′s. If
M ′ = ∅, then the upper bound is equal to the lower bound dis-
cussed above. Otherwise, we create a virtual service provider
sρ with csρ

= mini∈M ′ ci andλsρ
=
∑

i∈M ′ λi. This is
based on the rationale that if any providers fromM ′ are in-
voked in any order, their cost is bound to be at leastcsρ

and
their combined probability of success within any given time
interval after invocation will never be higher than when im-
mediately invoking all in parallel. With this reasoning, we
obtain a new orderingρ′′s by appendingsρ to ρ′s and then cal-
culate the upper bound asU(FINDTIMES(ρ′′s )). If that is less
than the lower bound, this indicates that it is not possible to
achieve a higher utility by invoking further providers, andwe
can set the upper bound equal to the lower bound.

At the end of each iteration, only unexpanded orderings
with an upper bound that is higher than the currently highest
lower bound are retained (line 17). This limits the size ofQ
(which we implemented using a priority queue), and also en-
sures that it is empty when all necessary orderings have been
searched. When this happens, the best ordering and associ-
ated optimal times are returned (line 18). This final procure-
ment strategy is optimal, because the algorithm searches all
orderings, except for those that are known to have a lower
expected utility than those already considered. Hence, the
optimal ordering will never be discarded from the search.

However, while significantly reducing the search space in
most realistic settings, this algorithm still searches forthe op-
timal solution and may sometimes consider a large proportion
of the entire search space. This may be the case, for exam-
ple, when there are large numbers of highly similar providers
and when the value of the task is very large in relation to the
service costs. To address such scenarios, we introduce a fast
heuristic approach in the following section.

3.3 The Heuristic Algorithm
Although we argued in Section 3.1 that a greedy approach
does not generally result in an optimal strategy, it can still
achieve good results in practice and is more scalable than ex-
haustive approaches. Hence, we present such an algorithm
that starts with an empty ordering and then greedily adds, re-
moves or switches providers until a local optimum is reached.
Intuitively, this algorithm benefits from selecting providers
that offer a good trade-off between performance and cost.

In more detail, given a current orderingρs and a set of
providersM ′ that are currently not inρs, the greedy ap-
proach picks one of the following three actions, in order
to maximise the expected utility of its next ordering: (1)
it selects a providerx ∈ M ′ and adds it toρs at position
i ∈ {1, 2, . . . , n + 1} (shifting other providers as necessary),
(2) it selects a providersi in ρs and removes it, or (3) it se-



lects two providerssi andsj in ρs and swaps their positions.
This continues until the algorithm cannot find another better
ordering. In this case, the current best is returned.

4 Mechanisms for Eliciting Costs
Whereas so far we have assumed that the consumer,A, has
complete information about both the costs and the duration
distributions of the providers, here we consider a setting
where the cost information is private and unknown to the con-
sumer. Instead, the consumer has to provideincentivesso as
to induce the providers to reveal this information truthfully.
Note that we still assume that the providers’ duration distri-
butions are known by the consumer, as this information may
be obtained from past and shared experiences, e.g using a
trust or reputation system, or simply given by the provider.4

4.1 (k + 1)th Price Mechanism
Typically, when mechanism design is applied to task al-
location problems, the well-known Vickrey-Clarke-Groves
(VCG) mechanism is used. Providers are asked to reveal
their private information (called theirtype) and in exchange
are paid a transfer equal to their marginal contribution to the
system. This payment structure provides the correct incen-
tives so that each provider willingly reveals their type truth-
fully [Mas-Colellet al., 1995]. Unfortunately, however, the
VCG mechanism is not applicable in our setting, since it is
only suited for situations where the types (i.e. the costs) of
the providers are independent. In our domain, this property
does not hold, since theexpectedcost incurred by a provider
depends significantly on which other providers are selected
in the procurement strategy. Thus, our problem falls into the
class ofinterdependent valuations, and it is well known from
the literature that providers no longer have an incentive to
reveal their private information truthfully if the VCG mecha-
nism is used[Mas-Colellet al., 1995]. Moreover, in such a
setting there exists no general mechanism which is both truth-
ful and efficient[Jehiel and Moldovanu, 2001].

Our first mechanism is the(k + 1)th mechanism which
works as follows. First, the consumer,A, announcesk,
1 ≤ k < m. Then, each of them providers reports a cost,
ĉi, which may differ from their true costci. We assume
that providers are ordered so thatĉi ≤ ĉi+1, and we define
K = {i | i ∈ M andĉi < ĉk+1}. That is,K is the set ofk
providers with the lowest reported costs. These form thecan-
didate providersfor the procurement strategy. After finding
the setK, the payment valueτi of each candidate provider is
set toτi = ĉk+1. Now, the procurement strategy used byA is
calculated by findingρ′ = argmaxρ|si∈K UA(ρ) where only
providers inK are (potentially) selected to be part of the strat-
egy. It is important to notice that the paymentτi for i ∈ K
is conditional. That is, a payment or transfer to agenti ∈ K
only occurs if the candidate provider is both selected as part
of the procurement strategyρ′, and is subsequently invoked.
Otherwise, it receives no payment (and incurs no cost).

4To verify these distributions in the latter case, a payment scheme
based onscoring rulescould be used in conjunction with our mech-
anism, see[Zohar and Rosenschein, 2008], but we leave a more de-
tailed investigation of this issue for future work.

Theorem 1. LetM be the set of service providers,|M | = m.
For anyk such that1 ≤ k < m, the(k + 1)th mechanism is
incentive compatible in dominant strategies (i.e., truthtelling
is optimal, irrespective of what other agents do) and (ex-post)
individually rational (i.e., the providers always receivezero
or positive utility).

Proof. Individual rationality holds whenci = ĉi sinceτi =
ĉk+1 ≥ ci for i ∈ K, and thusτi − ci ≥ 0, and further-
moreτi = 0 for i /∈ K. As a result, the provider’s expected
utility (Equation 2) whenci = ĉi is always positive, irrespec-
tive of the reports of others. To show incentive compatibil-
ity, we first note that the selection of providers in K as part
of the procurement strategy and their invocation time (if se-
lected) are indendependent of their reported costs. Therefore,
if i ∈ K, the probability of being invoked and the payment,
and thus the expected utility, are independent of a provider’s
report. A provider’s report thus only affects whether or notit
will be selected as one of the candidate providers inK. Now,
by overreporting, a provider can only reduce the likelihood
of being selected and thus potentially foregoes a positive ex-
pected utility. By underreporting, a provider can increasethis
likelihood, but this will only result in a change (compared to
reporting truthfully) when̂ci < ĉk+1 andci > ĉk+1. In this
case, however, if the provider is invoked its expected utility is
strictly negative sinceτi − ci < 0.

While this mechanism has desirable properties, it also suf-
fers from some key limitations. First, it selects providers
based solely on their cost information, ignoring the dura-
tion distributions, leading to the possibility that expensive
providers with fast completion times are excluded. Second,
the parameterk must be announced before providers reveal
their costs. To setk optimally requiresa priori information
about the distribution of the costs, and expensive calculations
and/or simulations (as done in Section 5). To address this last
problem, we now introduce two variations of our mechanism.

4.2 Grouping Mechanisms
We introduce two new mechanisms:Pairing and Halving.
These mechanisms differ from the(k + 1)th mechanism in
both the provider-selection process and the calculation ofthe
(conditional) payment,τ .

In thePairing mechanism, every provideri ∈ M reports a
cost,ĉi. Then, all providers arerandomlypaired with another
provider (if |M | = m is odd, then a single triplet is formed).
For each pair, the provider with the lower announced cost is
placed in the setK and the conditional payment is set equal
to the announced cost of the other provider (in the case of a
triplet, the provider with the lowest announced cost is placed
in K and the conditional payment is equal to the second low-
est announced cost in the triplet). All providers not inK are
not selected and therefore receive no payment. This resultsin
|K| = ⌊m/2⌋ andρ′ = argmaxρ|si∈K UA(ρ) as before.

In the Halving mechanismall providers inM announce
costs as is done in the Pairing mechanism. Then,⌊m/2⌋
providers are randomly selected and placed into a setG. All
other providers are randomly paired and are then treated iden-
tically to those in the Pairing mechanism. For members ofG,
the provider with the lowest announced cost is placed inK



and its conditional payment is equal to the cost of the second
lowest announced cost fromG, while all other providers are
discarded. The procurement strategy is computed as before.

Theorem 2. The Pairing and Halving mechanisms are incen-
tive compatible and (ex post) individually rational.

Proof. Since the pairs andG are formed independently of the
providers’ reports, the proof follows from Theorem 1.

We note that there are many possible variations of these
mechanisms, but all would share some key features. First, the
size ofK is solely determined by thenumber of providers,
and thus does not rely on the consumer choosing an appropri-
ate value. Second, the mechanisms require noa priori infor-
mation about the cost distributions. Finally, they implement
discriminatory pricing(i.e., different providers receive dif-
ferent payments), information which is then used to form the
optimal procurement strategy (givenK). On the other hand,
the payments are always based on the higher costs (except in
the Halving mechanism), and it is therefore not clear whether
these variations offer any real benefits in practice. To thisend,
we experimentally evaluate them in the next section.

5 Evaluation
We now evaluate our proposed approaches in a variety of
simulated environments, to determine if they provide bene-
fits over existing techniques, and to investigate the cost of
incentivising providers to reveal their private information.
Throughout this section, we randomly generate each provider
i by drawing its costci and duration rateλi independently
and uniformly at random from[0, 1]. To consider a range of
settings, tasks have either a low (Vlow = 2) or a high value
(Vhigh = 8) and their deadline is either normal (Dnormal = 2)
or urgent (Durgent = 0.5). Furthermore, we repeat experi-
ments1000 times and use ANOVA and t-tests to ensure sta-
tistical significance at thep < 0.05 level. As the associated
confidence intervals are small, we omit these here for clarity.

5.1 Optimal Service Procurement
First, we consider environments where providers charge their
true costs, i.e.,τk = ck, and compare the average utility
obtained by the optimal procurement strategy5 described in
Section 3 (Optimal) to a strategy that always selects the sin-
gle provider that individually maximises the consumer’s ex-
pected utility (Single). This latter strategy represents current
task allocation approaches that do not include redundancy.

The results are shown in Figure 1. Here, we vary the num-
ber of providers in the system and plot the average expected
consumer’s utility, which is equal to the overall efficiencyin
this setting, as a proportion ofV . Observing these trends, it is
obvious that using redundancy can significantly improve the
consumer’s utility and does so in almost all settings consid-
ered. In fact, when averaging over all cases considered, the
Optimal approach achieves more than a35% improvement
over the Single approach. In particular, when the deadline

5This is found using our branch-and-bound algorithm when there
are up to ten providers. We then use the heuristic algorithm to obtain
a lower bound for the optimal when there are more providers. How-
ever, as we show later, the heuristic obtains near-optimal results.
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Figure 1: Performance in full information setting.

is small (Durgent) and the task value high (Vhigh), the Optimal
strategy is able to employ high redundancy to ensure the task
is completed within the deadline, while the higher task utility
justifies the additional investment. For example, when there
are50 providers, the Single approach achieves35.87% of V ,
while the Optimal achieves82.65% — a130% improvement.

Next, we note that when solving the above problems, our
branch-and-bound approach significantly reduces the compu-
tational time required when compared to a brute-force algo-
rithm. For example, when there are12 providers and we
considerVhigh and Durgent, a brute force approach searches
over 1.3 billion provider orderings, which takes an average
3.3 hours (using a Java implementation on a Windows-based
Intel 2.2 GHz laptop with 4 GB RAM). By contrast, the
branch-and-bound algorithm searches an average 42000 or-
derings (0.003% of the total search space), finding the opti-
mal in half a second. While the latter still finds solutions for
18–23 providers in minutes (where the brute-force would take
over2 ·1010 years — longer than the age of the universe), our
heuristic approach is better suited for larger settings with hun-
dreds or thousands of providers. To investigate how its per-
formance compares to the optimal, we have applied both to
all settings described above with ten or less providers. Here,
the heuristic achieved99.88% of the optimal on average.

5.2 Incentive Compatible Mechanisms

Now we consider the mechanisms described in Section 4 and
investigate how close the resulting procurement decisionsare
to the optimal (both in terms of the consumer’s utility and the
overall efficiency). To this end, Figure 2 compares the perfor-
mance of a range of(k+1)th price mechanisms with varying
k, and our Halving and Pairing mechanisms to the optimal
(for brevity, we consider only two representative scenarios
here, but similar results are obtained in other settings).

It is immediately obvious here that all mechanisms suf-
fer from a loss in utility for the consumer — a cost that re-
sults from incentivising providers to report truthfully. More
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Figure 2: Performance of incentive-compatible mechanisms.

specifically, the best(k + 1)th price mechanism in each case
achieves an average85% of the optimal, while Pairing and
Halving both achieve over70%. We also note that the perfor-
mance of the(k + 1)th depends heavily on the choice ofk
and can be as low as25% of the optimal if the wrong param-
eter is chosen. Furthermore, the best parameter depends on
the scenario. For example, for the task withVlow, k = 3 is the
best choice, achieving over83% of the optimal. However, for
Vhigh, it is one of the worst, achieving only58%. Hence, these
results indicate that a consumer can achieve a good utility by
using appropriatek parameters. However, when insufficient
information is available to setk, it can obtain good results by
using a Pairing or Halving mechanism.

Next, we consider the overall efficiency, or social welfare.
This ignores utility transfers between the consumer and the
providers, and therefore gives a better indication of how ef-
fectively the available services are used to complete the task
at hand. Here, we note that the mechanisms consistently
achieve a good overall efficiency. The best(k + 1)th mech-
anism now reaches, on average, over95% of the optimal ef-
ficiency while the Pairing and Halving mechanisms achieve
86% and84%, respectively.

6 Conclusions
In this paper, we considered a setting where multiple pro-
viders can be redundantly procured to perform a single task
which has to be completed within a given deadline. The
providers have uncertain execution times, which are given by
probability distributions, and incur different costs for execut-
ing the task. We first considered the setting with known costs
and introduced an algorithm for calculating the optimal pro-
curement strategy, as well as a near-optimal heuristic algo-
rithm for settings with a large number of providers. We then
introduced several incentive-compatible mechanisms for elic-
iting the costs when these are unknown, and we evaluated our
approaches empirically. The results showed that redundancy
significantly outperforms the standard approach where onlya
single provider is selected for each task, and it continues to
perform well in the incomplete information setting.

In future work, we are interested in investigating a setting
where the execution duration distributions are also privately

known, and need to be elicited by a consumer. Furthermore,
we intend to apply this approach to larger settings with mul-
tiple, interdependent tasks.
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