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Abstract

Emerging service-oriented technologies allow soft-
ware agents to automatically procure distributed
services to complete complex tasks. However, in
many application scenarios, service providers de-
mand financial remuneration, execution times are
uncertain and consumers have deadlines for their
tasks. In this paper, we address these issues by
developing a novel approach that dynamically pro-
cures multiple, redundant services over time, in or-
der to ensure success by the deadline. Specifically,
we first present an algorithm for finding optimal
procurement solutions, as well as a heuristic algo-
rithm that achieves over 99% of the optimal and is
capable of handling thousands of providers. Using
experiments, we show that these algorithms achieve
an improvement of up to 130% over current strate-
gies that procure only single services. Finally, we
consider settings where service costs are not known
to the consumer, and introduce several mechanisms
that incentivise providers to reveal their costs truth-
fully and that still achieve up to 95% efficiency.

Introduction

Increasingly, participants in large distributed systenesadble

certain deadline. Furthermore, in large systems, mangreliff
ent providers may offer functionally equivalent servicestt

are heterogeneous in their quality and costs. This requires
consumers to make appropriate decisions about which ser-
vices to procure, balancing the probability of success with
the overall cost. It also necessitates the design of apiatepr
economic mechanisms that incentivise providers to triithfu
reveal their private information, such as their costs amd th
estimated execution time, thus resulting in good procurgme
decisions and removing the need for strategic behaviour.

Related to this work is the literature on task allocation un-
der execution uncertainty such [#orteret al,, 2004. Here,
researchers have studied problems where providers have pri
vate information about both their costs for executing taaks
well as the probability that they will successfully comglet
their tasks. However, this and similar works do not consider
redundancy to increase the overall success probability of a
task. Now, there is some work that employs redundancy, com-
bining several unreliable services to achieve a highergrob
bility of success. This includes deployed systems, such as
Google’s MapReducgDean and Ghemawat, 200%ut the
techniques used for determining how many services to pro-
cure are typically ad hoc, and they also do not consider costs
A decision-theoretic approach for addressing the lattdeis
scribed inSteinet al., 2004, but this work assumes that costs
are known and focusses on heuristic techniques for complex

to discover and automatically procure the services of sther Workflow scenarios. A slightly different approach is takgn b
This allows service consumers to complete complex compuork on restarting Web queries, which examines when such
tational tasks on demand, but without the need to invest ifiueries should be timed out and re-issued (possibly to a dif-
and maintain expensive hardware. Already, such a servicderent provider) to ensure timely completighalasanet al,
oriented approach is gaining popularity in a large ranggefa 1998. However, such work typically assumes that only one
plication areas, including Grids, peer-to-peer systeriogicc ~ query is active at any time and the costs of multiple queries
and utility computind Singh and Huhns, 2095 are not explicitly balanced with the resulting benefit.

Despite its benefits, flexible service procurement poses To address these shortcomings, we present an abstract
new challenges that have not been addressed satisfactorilyodel of a procurement scenario for services with uncertain
by current research. In particular, services offered bgrext durations. We begin by outlining a generic approach for find-
nal providers are beyond the consumer’s direct control anéhg an optimal procurement strategy when service costs and
may therefore display uncertainty in their behaviour. Thusduration distributions are known. This approach is the first
the execution time of services can be highly uncertain, du¢o employ redundancy in a flexible and optimal manner as to
to concurrent access by other consumers, hardware or ndtalance the probability of completing within its deadlimela
work problems and the provider’s scheduling policies. Thisthe costs for doing so. More specifically, our approach alow
is particularly problematic when services take a long time t a consumer to invoke multiple services in parallel for exe-
complete, as is common for many computationally-intensivecuting the same task, and it can dynamically procure further
tasks, and when consumers need to obtain their results byservices during execution as the deadline draws closer. To



find the optimal strategy, we combine analytical expressionstrategy that determines which providers should be invoked
with computational search methods. As brute force is compuand when, such that the consumer’s utility is maximised. We
tationally intractable, we present a novel branch-andadou compactly represent such a strategy as a vecter((s1, t1),
algorithm that reduces the search, on average, by over 99.9% ., (s,,t,)) with n < m, where each element represents
We also discuss a heuristic algorithm capable of handlinghe invocation time; € [0, D] of a providers; € M. A
problems with thousands of heterogeneous service prayiderprovideri is then only invoked at time; (and only receives
and we show that its solutions are, on average, within 0.12%;) if no provider has so far completed the task. Without
of the optimal. For a range of settings we then experimantall loss of generality, we assume that< ¢,.,, ands; # s;
demonstrate that dynamic redundancy achieves an imprové-: # j. For example, assume there are four providers and
ment of up to 130% over current approaches. p = ((2,0),(3,0),(1,2.5)), i.e., providers2 and 3 are in-

Next, we examine settings where service costs are privoked immediately. Then, if the task has not been completed
vate and known only by the providers. For this scenario, weby ¢ = 2.5, provider1 is also invoked, causing the three
propose a VCG-like mechanism that is incentive-compatibleproviders to run concurrently. Provider 4 is never invoked.
i.e., that incentivises rational, self-interested pgrtots to Given a strategy, the consumer’s expected utility is the
reveal their true costs. In this context, itis the first sugth  difference between the expected value of completing the tas
anism that allows consumers to procure multiple, redundarand the expected total transfers to the invoked providers:
services to increase its probability of success. Moreaver,

show that this mechanism can achieve an average 95% effi- d

ciency when some prior information about service costidistr Ualp) = V- (1 — 1A= F (D~ ti»)

butions is known to the consumer. To address settings where i=1

this is not available, we propose two further novel mecha- n i—1

nisms, which have lower information requirements, but stil - Z Ty H(l —Fg(ti—t;) | @
achieve an average 86% efficiency. i=1 j=1

In the remainder of this paper, we first present the pro- - o
curement problem (Section 2) and discuss its optimal soiuti Furthermore, the expected utility of each providgs:
(Section 3). This is followed by our mechanisms (Section 4)
and an empirical evaluation (Section 5). Section 6 condude

i—1
USz‘ (p) = (TSi - CSi) : H(l - FS]' (ti - tj)) (2)

2 Problem Specification _ o _ _

) ) ) ) if s; is included inp, and zero otherwise. Furthermore,
We consider a single service consumérwhich needs+to although our main concern is maximising the consumer’s
complete a tasi’. The consumer derives a utility € R utility, as a measure of how well the available services are

if the taik is successfully completed within a given dealin yjlised, we define the overadifficiency also referred to as
D e R7, and0 otherwise. Furthermore, there areser-  the social welfare, of a procurement strategy as:

vice providers, given by the séf = {1, ..., m}, which can

complete the task on the consumer’s behalf. A consumer can n

invoke a providei € M at any time in the intervdD, D]. We Ulp) = Ualp)+ Y _ Us(p)

assume that, once invoked, the provider remains commiited t i=1

the task until it is completed (possibly beyond the deadlline n

and incurs an (expected) cast where this cost may rep- = V- (1 - H (1—-Fs,(D— ti)))
resent both the running costs of its computational resaurce i=1

and opportunity costs from not being able to use these re- n ie1
sources for other tasks. To compensate for these costs, the _ Z Co. - H(1 — F, (t; — t;)) ©)
consumer pays the provider a transfee R* on invocation =\ ’

of 4, which is paid regardless of whether the task is completed

by the deadlineD. Although a provider will always suc-  This measures the overall quality of a strategy for all par-

cessfully complete the task, the execution time is unaertai ticipants and therefore ignores any transfers, as these onl
and is given by a continuous cumulative distribution funiti  re-distribute utility between the agents.

F;(t). This denotes the probability that providecompletes
the task within timet, and we assume this includes any time . .
needed for pre-/post-processing, queueing and data ¢ransf 3 Optimal Service Procurement
We also assume that the execution times of different servicgve now consider the problem of finding the optimal procure-
providers are independently drawn. ment strategy that maximises the consumer’s expectetyutili
Although we only consider a single task in this paper, cru-given that the consumer has full information about both the
cially we allow multiple providers to execute it concurdgnt providers’ costsc; and the duration distributions;. This
and independently. In this case, the task is considered sucerresponds to a service-oriented system where providers a
cessful if at least one provider completes it by tildle We  vertise their services at a fixed price, and thysdenotes
assume that all participants are expected utility maxirsise  the advertised price. In this case, we set the transferseto th
Now, the key problem is to find an optimal procurementproviders so that they equal these prices, t.e= ¢;.

j=1



More formally, letp* = argmax, Ua(p). Finding the opti- Then, using algebraic manipulations, we isolateand de-
mum, p*, is non-trivial since it involves selecting an appropri- rive an expression that is based solelyton :

ate subset of providers, ordering them and then determining \ i+ )

invocation times. To solve this, we initially assume that th b=ty — — 1 Csit1Nss 27:1 55 ©6)
optimal subset of providers and their ordering is given.tTha R AW Cs: \s, DWW

. . . Z]:l Sj Si /Y841 Z]:l Sj

is, we are given an ordered set of providgfs= (s1, ..., Sn) i ; i '

wheres; is invoked before; ;. To compute the optimal pro- _Note that Equation 6 is not well defined far, and the op-
curement schedule, we must determpfe = (t; tn) timal here is to set; = 0. This is because the cost will be

wheret; is the invocation time of;. To this end, we com- incurred in any case and any delays would only reduce its
pute the gradient of the expected welfa¥&/ (), and find probability of success by the deadline. Furthermore, we not
its root, i.e., VU(pf) = 0. This results in a system of thap the equations can yield nggatlve_values forsqmedl-
simultaneous equations, with one equation for eackith  cating that the optimal values lie outside the constraifitse
constraintsyi : 0 < t; < D, andVi,j : i < j < t; < t,. problem (i.e., before the task can be started). In this case,
Solving these equations (and checking the appropriatengeco t; does_not mflugnc_e the procurement times pf Ia'_[e( providers,
order conditions) depends on the family of duration distrib the optimal choice is to set = 0, i.e., the provider is invoked
tions and can be done either analytically or numericallpgsi &t the earliest possible time. Furthermore, the equatians c
standard optimisation software. In what follows, we focusSCmetimes yield inconsistent values, itg.> D ort; > ;1.

on the exponential distribution as this is commonly used fofor Somei, but this only occurs when the ordering and/or the

modelling uncertain service duratiofiErivedi, 2001. set of providers was nc_m-optimal in th_e fi(st place. Finallg,
also note that the partial second derivatives are alwaya-neg
3.1 Exponentially Distributed Durations tive, and since each variable is found uniquely one at a time

using backward induction, the final result is optimal.
We now derive analytical expressions for the invocatioreBm So far, Equations 5 and 6 allow us to efficiently calculate
pi, given p and given that the duration distributions of the optimal procurement times for a given, optimal ordered
providersi € M are given byF;(t) = 1 — e~ "', where  sequence of service providess. However, it is not obvi-
A; > 0is arate parameter. Re-writing Equation 1 with thesepus how to find this order. Related work on economic search,
distributions, and computing the gradient, allows us to comsuch agWeitzman, 1978 does not apply to this case, due to
pute the optimal invocation time of providers; by solving:  the overlap of concurrently invoked providers. Furtherejor
. . i1 ; ;)urkphroblteng includelsta dfixg(tjhtime codnstraint, b);] Whtircmhtth%
A.D At ..+, taskhas tobe completed. Other greedy approaches that order
0=-V-A, H e H et Z)‘SJ H e~ Mt services by increasping costs, degreasi)rgg F;gﬂe paramgters,
i=1 =t k=l ratio of these, or approaches that first select providersiatho
m J-1 J—1 dividually yield a higher expected utility, also do not alga
<csj H e et H 6“*“) (4)  find optimal solutions. This is because it is often best to se-
k=1 k=i+1 lect cheaper, slower providers first and only invoke the more
o i expensive and faster ones later, to ensure that the tasknis co
Here, we note that; is independent of any;, j < 4, i..,  pleted successfully. However, when the deadline of the task
the invocation time of a provider does not depend on the injs particularly short, the consumer may be forced to immedi-
vocation time of those already running. This is a result ef th ately invoke the faster, expensive providers_
exponential function being memoryless, i.e., the profitgbil A5 a simple example of this, we consider a set of two provi-

of completing the task within the next time intenat is in- ders A/ = {1,2}. The first is cheap and slow with = 0.2
dependent of when it was invoked. Hence, we can calculatgng \; = 0.1, while the second is expensive and fast with

eacht; by backward induction, starting with the last provider, ., — 5 and A, = 10. If we then assume that a consumer
n. The invocation time of this can be obtained directly by has a task” with deadlineD = 1.5 and utility V = 100,
taking the derivative with respect tq (as in Equation 4): the optimal procurement strategyds = ((1,0), (2,0.75)).
L However, if we decrease the deadline slightlyllo= 1, the
In(V-A,)—In (Csn D A.sj) = D300, optimal strategy becomes® = ((2,0), (1,0.84)), thereby
ln = ST\ reversing the order of invoked providers.
g=17% 5 This observation suggests that a simple greedy search for
. . (5) . _the optimal strategy is insufficient. Hence, in the follogin
Furthermore, we can obtain a simpler closed-form S°|Ut'°’§ections, we present an optimal branch-and-bound algarith

for the remaining invocation times by combining and manip- s this becomes slow when there are dozens of providers, we
ulating the partial derivatives fat and¢; 4, resulting in: also discuss a fast heuristic algorithm.

P i 3.2 The Branch-And-Bound Algorithm
Aoy [T e rowttimmo - 3 <csj II e—*%“r%)) Finding an optimal subset and ordering of providersising

j=i+1

— X,
j=i+1

c. @
i

t J=it k=1 a brute-force search is clearly infeasfoienen the number of
Cs, i i ) m j—1 ‘ - . . '
= % Sooxs, [T e tenCirr—to— 3= (csj 11 e“k(‘]‘k)> !More generally, we believe that this problem is NP-hard due to
fitl =1 k=1 J=it2 k=1 its similarity to the well-known Stochastic Integer Packing and the



Algorithm 1 Branch-And-Bound Algorithm. updating of the lower bound is performed in lines 12-16.

1: P: — () > Best ordering found so far We now describe DWER(pg) and UDPERp;) To find the
2: Uower — 0 > Best current lower bound lower bound, we simply restrict ourselves to the providars i
3:Q«— {p} > Unexpanded orderings  p, and find the optimal timeg; for this ordering and re-
4: while Q # 0 do > More unexpanded?  turn the associated utility, i.elj4(FINDTIMES(p’))), where
5. ps < argmax, ., LOWER(ps) > Pickbest  FINDTIMES returns the optimal procurement strategy using
60 Q—=Q\{ps} >Removep; from@  the Equations from Section 3.1. Calculating an upper bound
7 P. —EXPAND(ps) / >Expandps s |ess obvious, because we may be able to derive signifjcant|
8: P, —FILTERDOMINATED(P;) > Remove dominated  pigher ytility by invoking further services. To this end, vee
1%‘_ for ai" ps € B d? : M’ be the remaining service providers that are not/jn If
: i «—LOWER(p;) > Find lower bound , - .
11- i —UPPER(p.) > Find upper bound M’ = (, thenthe upper_bound is equal to_the Iower_bound d_ls—
12: if 4> wower then > Sufficient upper bound? ~ cussed above. Otherwise, we create a virtual service govid
13: if % > wower then > Better lower bound? ~ Sp With ¢;, = minjenr ¢; and A, = 32,00 Ao This is
14: Py — pl > Keep as current best based on the rationale that if any providers frai are in-
15: Ulower <— U voked in any order, their cost is bound to be at legstand
16: Q— QU{p.} > Keep for future expansion their combined probability of success within any given time
17: Q+« {r € Q| UPPERxZ) > uower} > Filter orderings  interval after invocation will never be higher than when im-
18: return FINDTIMES(p?) > Return best strategy ~Mediately invoking all in parallel. With this reasoning, we

obtain a new ordering’] by appendings, to p, and then cal-
culate the upper bound 85 FINDTIMES(p”)). If that is less

providers rises beyond a handful, as the number of possibi§1an the lower bound, this indicates that it is not possible t
orderings forn providers isy"" (m) =" ( T!A),- achieve a higher utility by invoking further providers, and
Now, it is possible to significantly reduce the number of &N set the upper bound equal to the lower bound.

provider orderings that need to be searched by noting that we At the end of each iteration, only unexpanded orderings

can use information about some examined orderings to eﬁe/ith an upper bound that is higher than the currently highest

clude others. For example, assume we have three provide (gwgr bound are retained (!ine 17): This limits the size&of
and we have just considered the ordeing= (2, 1). This al- Which we implemented using a priority queue), and also en-

ready promises a high utility, and, in fact, we note it is ligh sures that it is empty when all necessary orderings have been

than what could possibly be achieved by invoking providersearChed' When this happens, the best ordering and associ-

3 first (e.q., if V' — cs is low). Hence, we can immediately ated optimal times are returned (line 18). This final proeure

: : : : ; ment strategy is optimal, because the algorithm searches al
discard all five orderings starting with .

This intuition is generalised in our branch-and-bound tech orderings, except for those that are known to have a lower

. ) ger . A expected utility than those already considered. Hence, the
nigue given by Algorithm 1. In more detail, we begin with an

empty ordering? = () (line 1), and then repeatedly consider optimal ordering will never be discarded from the search.

anv new orderina that can be created by appending a sin However, while significantly reducing the search space in
v 9 S Py appending gt‘ﬁost realistic settings, this algorithm still searcheslierop-
providerto the endof an existing ordering. This is imple-

mented by keeping a set of orderingajn line 3, that have timal solution and may sometimes consider a large proportio

not yet been expanded in this manner. During each iteratioOf the entire search space. This may be the case, for exam-
of the main loop of the algorithm (lines 4-17), we then re-Ble’ when there are large numbers of highly similar progder

move ond orderingp, from Q (lines 5 and 6) and expand it and when the value of the task is very large in relation to the
rngps ! P " service costs. To address such scenarios, we introducé a fas
Here, EXPAND in line 7 takes an ordering, and returns the

set of all orderings that can be obtained by appending a Sinheurlstlc approach in the following section.

gle remaining service provider fro to p,. Fromthissetof 3.3 The Heuristic Algorithm
new orderings, we then remove any that include providets th
are dominated by others not currently in the ordering (ling 8

aAlthough we argued in Section 3.1 that a greedy approach
does not generally result in an optimal strategy, it can stil

For each new ordering,, we now find both a lower bound achieve good results in practice and is more scalable than ex
and an upper bound for the expected utility that is achievabl haustive approaches. Hence, we present such an algorithm

by any procurement strategy beginning with the providers i : . .
py (Iin)(/ag 10 and 11). Findigé these allows Us to exclude an%at starts with an empty ordering and then greedily adds, re
oiderings starting withy! if the associated upper bound is oves or switches providers until a local optimum is reached

. . tuitively, this algorithm benefits from selecting progig
less than the best lower bound found so far. This pruning an at offer a good trade-off between performance and cost.

Stochastic Knapsack problems, but we leave a formal proof of this In_more d/etall, given a current or_derlr)g and a set of
conjecture for future work. providers M’ that are currently not irp,, the greedy ap-

2We remove the ordering that promises the highest lower boundfoach picks one of the following three actions, in order
on the expected utility. This allows us to quickly increase the best0 maximise the expected utility of its next ordering: (1)
lower bound, thereby pruning the search space more effectively. it selects a provider € M’ and adds it top, at position

3A provideri dominategj if and only if (¢; < ¢; A Xi > \j) V i €{1,2,...,n+ 1} (shifting other providers as necessary),
(c; < ¢j AXi > Aj). Clearly, it is suboptimal to invokg befores. (2) it selects a provides; in ps and removes it, or (3) it se-



lects two providers; ands; in p, and swaps their positions. Theorem 1. Let M be the set of service providefd/| = m.
This continues until the algorithm cannot find another ette For any k such thatl < k < m, the(k 4 1)!* mechanism is

ordering. In this case, the current best is returned. incentive compatible in dominant strategies (i.e., tratimg
is optimal, irrespective of what other agents do) and (egtpo
4 Mechanisms for Eliciting Costs individually rational (i.e., the providers always receizero

Whereas so far we have assumed that the consufnédras or positive utllity).

complete information about both the costs and the duratiofProof. Individual rationality holds whem; = ¢; sincer; =
distributions of the providers, here we consider a settingx+1 > ¢; fori € K, and thusr; — ¢; > 0, and further-
where the cost information is private and unknown to the conmorer; = 0 for i ¢ K. As a result, the provider’s expected
sumer. Instead, the consumer has to prouidentivesso as  utility (Equation 2) wherr; = ¢; is always positive, irrespec-
to induce the providers to reveal this information truthful tive of the reports of others. To show incentive compatibil-
Note that we still assume that the providers’ duration distr ity, we first note that the selection of providers in K as part
butions are known by the consumer, as this information magpf the procurement strategy and their invocation time (if se
be obtained from past and shared experiences, e.g usinglécted) are indendependent of their reported costs. Toveref
trust or reputation system, or simply given by the proviler. if i € K, the probability of being invoked and the payment,
and thus the expected utility, are independent of a progder
4.1 (k4 1)*" Price Mechanism report. A provider’s report thus only affects whether or ot

Typically, when mechanism design is applied to task al-will be selectgd as one of the candidate prowdeer_Novy,
location problems, the well-known Vickrey-Clarke-Groves by overreporting, a provider can only reduce the likelihood
(VCG) mechanism is used. Providers are asked to revedf being selected and thus potentially foregoes a positive e
their private information (called thetype and in exchange Pected utility. By underreporting, a provider can increte
are paid a transfer equal to their marginal contributiorhte t  likelihood, but this will only result in a change (compared t
system. This payment structure provides the correct incerfePorting truthfully) whereg; < éx11 ande; > éx41. In this
tives so that each provider willingly reveals their typetru ~ €aS€, however, if the provider is invoked its expectedtytid
fully [Mas-Colellet al, 1995. Unfortunately, however, the Strictly negative since; — ¢; < 0. O

VCG mechanism is not applicable in our setting, since itis \yhjle this mechanism has desirable properties, it also suf-
only suited for situations where the types (i.e. the costs) Ofers from some key limitations. First, it selects providers
the providers are independent. In our domain, this propertyased solely on their cost information, ignoring the dura-
does not hold, since thexpectedtost incurred by a provider  tion distributions, leading to the possibility that expess
depends significantly on which other providers are selectegroviders with fast completion times are excluded. Second,
in the procurement strategy. Thus, our problem falls ineo th the parametet: must be announced before providers reveal
class ofinterdependent valuationand it is well known from  their costs. To set optimally requiresa priori information

the literature that providers no longer have an incentive topout the distribution of the costs, and expensive calicmiat
reveal their private information truthfully if the VCG me&h  znd/0r simulations (as done in Section 5). To address tfis la

nism is usedMas-Colellet al, 1999. Moreover, in such a proplem, we now introduce two variations of our mechanism.
setting there exists no general mechanism which is both-trut

ful and efficien{Jehiel and Moldovanu, 2001 4.2 Grouping Mechanisms
Our first mechanism is thék + 1)!* mechanism which
works as follows. First, the consumed, announcesk,
1 < k < m. Then, each of then providers reports a cost,
¢;, which may differ from their true cost;. We assume
that providers are ordered so that< ¢;,1, and we define
K ={i|i€e Mandé < é1}. Thatis,K is the set ofc
providers with the lowest reported costs. These fornctre
didate providerdor the procurement strategy. After finding
the setK, the payment value; of each candidate provider is
set tor; = éx41. Now, the procurement strategy usedAys
calculated by finding’ = argmax ,,, c x Ua(p) Where only
providers inK are (potentially) selected to be part of the strat-
egy. Itis important to notice that the paymentfor i € K
is conditional That is, a payment or transfer to agert K
only occurs if the candidate provider is both selected as pal
of the procurement strategy, and is subsequently invoked.
Otherwise, it receives no payment (and incurs no cost).

We introduce two new mechanism®airing and Halving.
These mechanisms differ from tiig¢ + 1)** mechanism in
both the provider-selection process and the calculatidheof
(conditional) payments.

In the Pairing mechanismevery provider € M reports a
cost,¢;. Then, all providers arandomlypaired with another
provider (if |[M| = m is odd, then a single triplet is formed).
For each pair, the provider with the lower announced cost is
placed in the sek( and the conditional payment is set equal
to the announced cost of the other provider (in the case of a
triplet, the provider with the lowest announced cost is gthc
in K and the conditional payment is equal to the second low-
est announced cost in the triplet). All providers notidnare
not selected and therefore receive no payment. This rasults
K| = [m/2] andp’ = argmax |, x Ua(p) as before.

In the Halving mechanisnall providers inM announce
costs as is done in the Pairing mechanism. Then/2]

“To verify these distributions in the latter case, a payment schem@roviders are randomly selected and placed into &seill
based orscoring rulescould be used in conjunction with our mech- Other providers are randomly paired and are then treated ide
anism, se¢Zohar and Rosenschein, 240But we leave a more de- tically to those in the Pairing mechanism. For member§ of
tailed investigation of this issue for future work. the provider with the lowest announced cost is place&’in



and its conditional payment is equal to the cost of the second 100 — e
lowest announced cost frotd, while all other providers are Optimal
discarded. The procurement strategy is computed as before.

Theorem 2. The Pairing and Halving mechanisms are incen-
tive compatible and (ex post) individually rational.

Proof. Since the pairs an@ are formed independently of the
providers’ reports, the proof follows from Theorem 1. O
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We note that there are many possible variations of these
mechanisms, but all would share some key features. Fiest, th
size of K is solely determined by theumber of providers
and thus does not rely on the consumer choosing an appropri
ate value. Second, the mechanisms requira pdori infor-
mation about the cost distributions. Finally, they implene o5 | 11 ]
discriminatory pricing(i.e., different providers receive dif- Drormat Viow Drnormat Vhigh
ferent payments), information which is then used to form the 0 . . . . . . . .
optimal procurement strategy (givén). On the other hand, 1 10 20 3 4 50 1 10 20 30 40 S0
the payments are always based on the higher costs (except in Number of Available Providers (m)
the Halving mechanism), and it is therefore not clear wirethe ] ] ) ) )
these variations offer any real benefits in practice. Toghis; Figure 1: Performance in full information setting.
we experimentally evaluate them in the next section.
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. is small (Dyrgenp and the task value high4ign), the Optimal

5 Evaluation strategy is able to employ high redundangy to ensure the task
We now evaluate our proposed approaches in a variety db completed within the deadline, while the higher taskiytil
simulated environments, to determine if they provide benejustifies the additional investment. For example, wheneher
fits over existing techniques, and to investigate the cost ofire50 providers, the Single approach achie8és37% of V/,
incentivising providers to reveal their private infornwati ~ While the Optimal achieves2.65% — a130% improvement.
Throughout this section, we randomly generate each provide Next, we note that when solving the above problems, our
¢+ by drawing its cost; and duration rate\; independently branch-and-bound approach significantly reduces the compu
and uniformly at random fronf, 1]. To consider a range of tational time required when compared to a brute-force algo-
settings, tasks have either a loW, = 2) or a high value rithm. For example, when there at@ providers and we
(Vhigh = 8) and their deadline is either normal{ormal = 2) considerVigh and Dygens @ brute force approach searches
or urgent Ougent = 0.5). Furthermore, we repeat experi- over 1.3 billion provider orderings, which takes an average
ments1000 times and use ANOVA and t-tests to ensure sta-3.3 hours (using a Java implementation on a Windows-based
tistical significance at the < 0.05 level. As the associated Intel 2.2 GHz laptop with 4 GB RAM). By contrast, the
confidence intervals are small, we omit these here for glarit branch-and-bound algorithm searches an average 42000 or-

) ) derings (0.003% of the total search space), finding the opti-
5.1 Optimal Service Procurement mal in half a second. While the latter still finds solutions for
First, we consider environments where providers charge the18-23 providers in minutes (where the brute-force would tak
true costs, i.e.;x, = c, and compare the average utility over2-10'% years — longer than the age of the universe), our
obtained by the optimal procurement strateggscribed in  heuristic approach is better suited for larger settingh twin-
Section 3 Optimal) to a strategy that always selects the sin-dreds or thousands of providers. To investigate how its per-
gle provider that individually maximises the consumer’s ex formance compares to the optimal, we have applied both to
pected utility Gingld. This latter strategy represents currentall settings described above with ten or less providerseHer
task allocation approaches that do not include redundancy. the heuristic achieve@.88% of the optimal on average.

The results are shown in Figure 1. Here, we vary the num-

ber of providers in the system and plot the average expected.2 Incentive Compatible Mechanisms

consumer's utility, which is equal to the overall efficienny  nq we consider the mechanisms described in Section 4 and
this setting, as a proportion df. Observing these trends, itis i estigate how close the resulting procurement decisioas
obvious that using redundancy can significantly improve thgq, yq ontimal (both in terms of the consumer’s utility and th
consumer’s utility and does so in almost all settings consid oo o] efficiency). To this end, Figure 2 compares the perfo
ereq. In fact, when avgraging over all cases considered, theonce of a range dk + 1) pri’ce mechanisms with varying
Optimal approach achieves more tham improvement ;. “ang our Halving and Pairing mechanisms to the optimal
over the Single approach. In particular, when the deadlingfo previty, we consider only two representative scersrio

5This is found using our branch-and-bound algorithm when ther&erej b_Ut S|mll_ar results _are obtained in other settln_gs).
are up to ten providers. We then use the heuristic algorithm to obtain It is immediately obvious here that all mechanisms suf-
a lower bound for the optimal when there are more providers. Howfer from a loss in utility for the consumer — a cost that re-
ever, as we show later, the heuristic obtains near-optimal results. sults from incentivising providers to report truthfully. dve
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Figure 2: Performance of incentive-compatible mechanisms

specifically, the bestk + 1) price mechanism in each case known, and need to be elicited by a consumer. Furthermore,
achieves an averag®% of the optimal, while Pairing and we intend to apply this approach to larger settings with mul-
Halving both achieve ovei0%. We also note that the perfor- tiple, interdependent tasks.

mance of the(k + 1)* depends heavily on the choice bf
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