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Abstract

Auctions are useful mechanisms for allocating items
(goods, tasks, resources, etc.) in multiagent systems. The
bulk of auction theory assumes that the bidders know their
own valuations for items a priori. However, in many appli-
cations the bidders need to expend significant effort (com-
putational or information gathering) to determine their val-
uations. This leads to the possibility of complex strategic
behavior as agents may have incentive to not only use re-
sources to determine their own valuations, but may also
attempt to determine the valuations of competing bidders.
It has been shown that given any commonly used auction
protocol, it is theoretically possible to construct special in-
stances such that this strategic deliberation occurs. We study
the prevalence of strategic deliberating in order to deter-
mine whether it is merely of theoretical interest or if it is
an issue which arises in practice. Using anytime algorithms
and performance-profile-tree-based deliberation control in
different real-world problem domains, and the deliberation
equilibrium solution concept, we show that strategic delib-
eration does occur in practice whenever there is a certain
amount of asymmetry between the agents.

1. Introduction

In many AI and multiagent applications, computational
limitations are simply a necessary evil that has to be dealt
with. The realities of limited computational resources and
time pressures caused by real-time environments mean that
agents are not always able to optimally determine their best
decisions and actions. The field of artificial intelligence has
long searched for useful techniques for coping with this
problem. Herbert Simon advocated that agents should forgo
perfect rationality in favor of limited, economical reason-
ing. His thesis was that “the global optimization problem is
to find the least–cost, or best–return decision, net of com-
putational costs” [15].

Considerable work in AI has focused on developing nor-
mative models that prescribe how a computationally limited
agent should behave [12]. This is a highly nontrivial under-
taking, encompassing numerous fundamental and technical
difficulties (see, for example [1, 4, 13]). While simplifica-
tions can be acceptable in single-agent settings, as long as
the agent performs reasonably well, any deviation from full
normativity can be catastrophic in multiagent systems. If a
system designer can not guarantee that a strategy (includ-
ing the computing actions) is the best strategy that an agent
can use, there is a risk that the agent will be motivated to use
a different strategy. Since the strategy choice that one agent
makes can influence the strategic decisions of other agents,
this may result in an outcome which is far from the pre-
dicted one.

Recently in the multiagent systems community, there has
been interest in studying and understanding the strategic
ramifications created by limited computing resources in dif-
ferent market mechanisms. Sandholm noted that if there is a
cost associated with the act of determining the value for an
item, then an agent may no longer have a dominant strategy
in a Vickrey auction [14]. Auction design has also been pre-
sented as a way to simplify the meta-deliberation problems
of the agents by providing incentives for the “right” agents
to compute for the “right” amount of time [11]. In these pa-
pers it was assumed that agents may only compute on their
own valuation problems. In recent work, we relaxed this as-
sumption, allowing agents freedom to use their computing
resources, coupled with fully normative deliberation con-
trollers, on any valuation problem—including the problems
of competing agents [7]. Using the deliberation equilibrium
as the game-theoretic solution concept, where agents’ com-
puting actions are explicitly included in the strategies, we
found that for all commonly used auction protocols, it was
possible to construct instances such that agents had incen-
tive to use some of their deliberation resources on other
agents’ valuation problems. We coined the term strategic
deliberation to describe this phenomenon. However, this
work was highly theoretical, with no experimental backing
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Figure 1. A performance profile tree.

and it was unclear as to whether, in practice, this strategic
behavior occurs. This paper addresses this criticism.

In this paper, using real-world data obtained from black-
box domain solvers, we do a full game-theoretic analysis
and classify the deliberation equilibria which occur when
two agents participate in reverse Vickrey auctions. We ex-
amine different criteria which affect the strategic behavior
of agents, including the role of reserve prices, and the im-
portance of asymmetry.1

2. Decision theoretic deliberation control

We begin by providing a short overview of deliberation
control methods. We assume that agents have algorithms
that allow them to trade off computational resources for so-
lution quality. In particular, we assume that agents have any-
time algorithms, that is, algorithms that improve the solu-
tion over time and return the best solution available even
if not allowed to run to completion [5, 1]. Most iterative
improvement algorithms and many tree search algorithms
(such as branch and bound) are anytime algorithms. The
anytime algorithm can also be used as a paradigm for in-
formation gathering.

While anytime algorithms are models that allow for the
trading off of computational resources, they do not provide
a complete solution. Instead, anytime algorithms need to be
paired with a meta-level deliberation controller that deter-
mines how long to run the anytime algorithm, that is, when
to stop deliberating and act with the solution obtained. The
deliberation controller’s stopping policy is based on a per-
formance profile: statistical information about the anytime
algorithm’s performance on prior problem instances. This
helps the deliberation controller project how much (and
how quickly) the solution quality would improve if further
computation were allowed. Performance profiles are usually
generated by prior runs of the anytime algorithm on differ-
ent problem instances.

In order to capture all of the information available for
making stopping decisions, the performance profile tree
(PPTree) representation was introduced [7]. In a PPTree, the

1 In the paper we use the terms “deliberate”, “compute”, and “gather in-
formation” interchangeably.

nodes represent solution types at given time points, and each
edge carries the probability that the child node is reached
given that the parent was reached. Figure 1 exemplifies one
such tree. A PPTree can support conditioning on any and
all features that are deemed to be of importance for making
stopping decisions. The nodes can hold information about
solution quality and any other solution feature that may be
important.

A key aspect of the PPTree is that it automatically sup-
ports conditioning on the path (of the feature vector) so far.
The performance profile tree that applies given a path of
computation is the subtree rooted at the current node n. This
subtree is denoted by T (n). If an agent is at node n with so-
lution quality V (n), then when estimating how much addi-
tional computing would increase the solution quality, the
agent need only consider paths that emanate from node n.
The probability, Pn(n′), of reaching a particular future node
n′ in T (n) is simply the product of the probabilities on the
path from n to n′. The expected solution quality after allo-
cating t more time steps to the problem, if the current node
is n, is

∑
Pn(n′)·V (n′) where the sum is over the set {n′|n′

is a node in Ti(n) which is reachable in t time steps}.

3. Game theory and auctions

A game consists of a set of agents, I (|I| = n), a set
of actions available to each agent, i, a set of histories for
each agent i (sequences of actions taken by agent i), and
a set of outcomes, O. Each agent is free to choose which
strategy to use where a strategy is a contingency plan that
determines what action the agent will take at any given
point in the game. A strategy profile, s = (s1, . . . , sn),
is a vector that specifies one strategy for each agent i in
the game. We use the notation s = (si, s−i) to denote a
strategy profile where agent i’s strategy is si and s−i =
(s1, . . . , si−1, si+1, . . . , sn). The strategies in a strategy
profile determine how the game is played out, and deter-
mine the outcome, o(s) ∈ O. Each agent i tries to choose a
strategy si, so as to maximize its utility, which is given by a
utility function ui : O 7→ R.

A strategy is said to be dominant if it is an agent’s strictly
best strategy, against any strategy the other agents might
play. If in strategy profile s∗ = (s∗1, . . . , s

∗
n), each strategy,

s∗i , is a dominant strategy for agent i, then the strategy pro-
file s∗ is a dominant strategy equilibrium. Agents do not
always have dominant strategies, and so dominant strategy
equilibria do not always exist. Instead, the Nash equilibrium
solution concept is used.

Definition 1 A strategy profile s∗ is a Nash equilib-
rium if no agent has incentive to deviate from its strat-
egy given that the other players do not deviate. Formally,
∀i ∀s′i ui(o(s∗i , s∗−i)) ≥ ui(o(s′i, s∗−i)).
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Figure 2. An auction with two bidding agents. In
order to submit a bid, each agent needs to first
(approximately) determine its valuation.

Auctions are stylized markets and have been well studied
in the game theory and economics literature [6]. While there
are many types of auctions, in this paper we focus on the
private-value (reverse) Vickrey auction. In a Vickrey auc-
tion, every agent submits a sealed-bid to an auctioneer. The
highest bidder wins the item and must pay the amount of
the second highest bid. The Vickrey auction has nice game-
theoretic properties, since each agent has a dominant strat-
egy which is to submit a bid equal to its own value of the
item.

4. Deliberation equilibria

The bulk of auction theory assumes that bidders know
their own valuations for items a priori. However, in many
applications the bidders need to expend significant effort
(computational or information gathering) to determine their
valuations. In this section we describe how to incorporate
bidding agents’ deliberation actions into their strategies and
present the deliberation equilibrium solution concept.

A strategy for an agent is composed of two interrelated
components — the deliberating component and the bidding
component. What an agent bids depends on the solutions it
has obtained for the valuation problems, and the problem
on which an agent deliberates depends partially on how it is
planning on bidding, and how other agents bid. Figure 2 il-
lustrates this relation.

In our model the game is divided into time periods. In
each time period, an agent, i, is allowed to either execute a
deliberation action, compi(j), or a deliberation action fol-
lowed by a bidding action, (compi(j), bi). A deliberation
action is the act of deliberating for one time step on some
agent j’s valuation problem. An agent may also decide to
take a null deliberating action, ∅C , by not deliberating on
any problem. In our (reverse) Vickrey auction, each agent,
i, submits a single bid, bi ∈ R.

In general a history for agent i at time period t, hi(t),
is a list of all actions agent i has taken. We augment this

definition of a history to include the cost incurred by the
agent at time t, costi(t), and a state of deliberating at time
t, θi(t), i.e., the deepest nodes in the PPTrees reached by
the agent. We represent this augmented history by Hi(t) =
(hi(t), costi(t), θi(t)) and defineHi(t) = {Hi(t)}.

A strategy is a mapping from history to action. In the (re-
verse) Vickrey auction the agents can take deliberation ac-
tions until a specified time T , when they have to submit a
bid to the auctioneer. A (deliberation) strategy for an agent
is defined as follows.

Definition 2 A strategy for agent i in a (reverse) Vickrey
auction with closing time T is Si(σi(t))Tt=0 where

σi(t+ 1) :

{
Hi(t) 7→ {compi(j)|j ∈ I} if t < T
Hi(t) 7→ R if t = T

If agents’ deliberation and bidding strategies are in
(Nash) equilibrium then we say there exists a (Nash) de-
liberation equilibrium.

Agents can use their deliberation resources in different
ways. They can deliberate on their own problems in or-
der to obtain better valuations. They can also deliberate on
their opponents’ problems in an attempt to gather informa-
tion about the bids that the opponents may be submitting.

Definition 3 (Strategic Deliberation) If an agent i uses
part of its deliberation resources to deliberate on another
agent’s valuation problem, then agent i is strategically de-
liberating. That is, a strategy, Si = (σi(t))

T
t=0, consists of

strategic deliberation if there exists a time step t and a his-
tory x ∈ Hi(t) such that σi(t)(x) = compi(j) where j 6= i.

We believe that strategic deliberation is undesirable.
First, it may lead to a decrease in social welfare as agents
compute on problems which do not directly improve their
utility. Second, deliberation control is difficult when there
is only a single problem. Having to make deliberation con-
trol decisions across multiple problems may be overwhelm-
ing for the agents.

5. Experiments

Using performance profile trees as our deliberation con-
trol procedure, we conducted a series of experiments to
explore the effect that limited deliberation resources has
on agents’ strategies. After generating performance profiles
using data from different real-world application domains,
we used Gambit [10], a popular solver for finding game-
theoretic equilibria, to find and categorize all Nash deliber-
ation equilibria.

5.1. Application scenarios

We conducted our experiments using data from two dif-
ferent scenarios; vehicle routing and single-machine



manufacturing scheduling. We treated the domain prob-
lem solvers as black boxes.

5.1.1. Vehicle routing In the real-world vehicle routing
problem (VRP) in question, a dispatch center is responsi-
ble for a certain set of tasks (deliveries) and has a certain
set of resources (trucks) to take care of them. Each truck
has a depot, and each delivery has a pickup location and a
drop-off location. The dispatch center’s problem is to mini-
mize transportation cost (driven distance) while still making
all of its deliveries and honoring the following constraints:
1) each vehicle has to begin and end its tour at its depot,
and 2) each vehicle has a maximum load weight and maxi-
mum load volume constraint.

To generate data for our experiments, an iterative im-
provement algorithm was used for solving the VRP. The
problem instances were generated using real-world data col-
lected from a dispatch center that was responsible for 15
trucks and 300 deliveries. We generated two independent
sets by randomly dividing the deliveries in half. To gener-
ate 1000 instances for each set used to build PPTrees, we
randomly selected (with replacement) 60 deliveries.

5.1.2. Manufacturing scheduling The second domain is
a single-machine manufacturing scheduling problem with
sequence-dependent setup times on the machines, where
the agent’s objective is to minimize weighted tardiness,∑
j∈J wjTj =

∑
j∈J wj max(fj − dj , 0), where Tj is the

tardiness of job j, and wj , fj , dj are the weight, finish time,
and due-date of job j.

In our experiments, we used a state-of-the-art scheduler
developed by others as the domain problem solver [3]. It is
an iterative improvement algorithm that uses a scheduling
algorithm called Heuristic Biased Stochastic Sampling [2].
We treated the domain problem solver as a black box with-
out any modifications.

The problem instances were generated according to a
standard benchmark [9]. The due-date tightness factor was
set to 0.3 and the due-date range factor was set to 0.25. The
setup time severity was set to 0.25. These parameter val-
ues are the ones used in standard benchmarks [9]. Each in-
stance consisted of 100 jobs to be scheduled. We generated
two independent sets of instances by using different random
number seeds.

5.2. Generating performance profiles

We used independent sets of 1000 instances per set from
both application domains to generate performance profile
trees for the agents. Due to limitations in Gambit [10], the
software used for the game-theoretic analysis, we were re-
quired to use coarse discretizations on both solution qual-
ity and time steps. Each tree had depth two (an agent could
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Figure 3. Performance profile trees for the
scheduling domain (top two trees) and trucking
domain (bottom two trees). Each node in a tree
contains two numbers. The first number is the so-
lution quality and the second number is the prob-
ability of reaching the node, given that its parent
was reached.

compute for two time steps on a single problem). The solu-
tion quality was coarsely discretized in order to reduce the
branching factor of the PPTrees so that the problems were
feasible for Gambit. Figure 3 shows sample performance
profile trees produced when the solution quality was uni-
formly discretized into buckets of size 25000 for schedul-
ing and size 10000000 for the trucking domain.2

5.3. Cost functions

In our model there are costs associated with deliberat-
ing. The costs for agent i are represented by a function
ci(t1, t2) = K1

i t1 + K2
i t2 where tj is the amount of time

agent i deliberated on the valuation problem of agent j, and
K1
i ,K

2
i ≥ 0 are predefined constants. The cost functions of

the agents are either symmetric or asymmetric.

Definition 4 A cost function ci(t1, t2) = K1
i t1 + K2

i t2
is symmetric if K1

i = K2
i . A cost function ci(t1, t2) =

K1
i t1 +K2

i t2 is asymmetric if K1
i 6= K2

i .

Symmetric costs naturally model situations where agents
compute on problems in order to determine valuations. For
example, an agent may pay some amount K for each CPU
cycle used running an algorithm. Asymmetric cost func-
tions naturally model information gathering scenarios as it
is not unreasonable that there are different costs associated
with gathering information from different sources.

2 We experimented with other feasible uniform discretizations. The re-
sults were all similar to the results reported in this paper. Therefore,
due to space considerations we do not include them.



5.4. The reverse Vickrey auction

We provide a motivating example. A company wishes to
contract out a set of 100 tasks as a sole-source contract, i.e.,
the entire set is allocated to one manufacturer. The com-
pany runs a reverse Vickrey auction to allocate the set to
one of two possible manufacturers. Each task in the set has
a deadline, and a task-specific penalty for each unit of time
that the task is late. The manufacturer has to pay the to-
tal weighted tardiness to the company as a penalty. If agent
i wins the auction, has obtained a valuation, vi, by deliber-
ating, and has incurred cost ci while doing so, then its util-
ity is ui = x − vi − ci where x = min(bj , R) where bj
is the second lowest bid (if any) and R is the company’s re-
serve price, i.e., the company’s maximum willingness to pay
to get the task set manufactured. If agent i does not win, its
utility is ui = −ci.

In our experiments there are two agents, agent 1 and
agent 2. Each agent has different valuation problems and
thus different performance profiles. The performance pro-
file trees are common knowledge. At each time step an
agent has a choice of actions available to it: it can deliber-
ate on its own valuation problem, on its competitor’s prob-
lem, or it can choose not to deliberate. Once both agents
stop deliberating (after at most two time steps), they sub-
mit bids to the auctioneer.

5.5. Representing equilibria

We denote a (deliberation) strategy by AiBi where Ai
is the deliberation action taken by agent i in the first step,
and Bi is the set of deliberation actions taken by agent i
in the second step, conditional on the results observed af-
ter the first step. We do not denote the bidding actions since
agents are motivated to always submit their value obtained
by deliberating.

We represent the deliberation actions as follows: N is
the action of not deliberating, O is the action of deliberat-
ing for one step on its own problem, and, Z is the action of
deliberating for one step on its opponent’s problem. Agents
may play mixed strategies, that is, they can randomize be-
tween multiple actions. For example, at a given time step,
an agent may decide to randomize between not deliberat-
ing (N ) and deliberating on its own problem (O). We de-
note this by m(O,N).

Consider the following example. Assume that there ex-
ists an equilibrium where agent 1 randomizes between de-
liberating on its own problem and the problem of agent 2,
and then either stops deliberating or deliberates for one step
on its own problem in the second stage. Agent 2 random-
izes between all three actions, and then stops. This is de-
noted by (m(O,Z)(O,N),m(O,Z,N)N ).

5.6. Symmetric cost functions

We first investigate what happens if agents have sym-
metric, but potentially different, cost functions. For both
application domains we ran a series of reverse Vick-
rey auctions, varying the reserve prices and cost func-
tions of the agents. Table 1 presents a complete taxonomy
of all Nash (deliberation) equilibria in the scheduling do-
main, when the reserve price was taken from the set
{25000, 50000, 100000}. These price choices span the in-
teresting range for the scheduling domain. Reserve prices
cap the potential utility of the agents. At the bottom end
the agents’ utilities are capped so that there is a poten-
tial that even if both agents deliberate on their own prob-
lems, neither agent will win the auction. At the high
end the reserve price has little influence, since the cap
is set high enough such that as long as agents deliber-
ate, an agent will win the auction. The cost functions of
the agents were of the form ci(t1, t2) = Ki(t1 + t2)
for Ki ∈ {10, 100, 12500, 25000, 50000}. These value
choices span the interesting range for the scheduling do-
main: at the bottom end the values are low enough so
that deliberation on problems is a potential strategy, while
at the top end there is the potential that the deliberat-
ing cost is higher than any possible utility that could be
achieved.3

There are several observations. First, we did not observe
any equilibria where strategic deliberation occurred. Sec-
ond, the cost functions of the agents influenced their strate-
gic behavior. For example, when K1 = 100 then agent 1 al-
ways spent the first time step deliberating on its own prob-
lem. However, the action it took in the second time step
depended on the actions of agent 2. Third, multiple and
mixed equilibria appeared when the costs were high enough
(12500), and disappeared when the costs became too high
(compared to the reserve price). Finally, reserve prices in-
fluenced the deliberation equilibria. For example, the equi-
libria that occurred when c1(t1, t2) = 50000 · (t1 + t2) and
c2(t1, t2) = 25000 · (t1 + t2) changed according to the re-
serve price. When the reserve price was R = 25000 then
there was a single equilibrium: neither agent deliberated on
any problem. When R = 50000, there was a different, sin-
gle equilibrium. Finally, whenR = 100000 there were mul-
tiple equilibria: two pure equilibria where one agent delib-
erated on its own problem for one time step while the other
did not deliberate at all, and a mixed equilibrium where both
agents randomized between not deliberating and deliberat-
ing on their own problem in the first step.4

3 We experimented with other reserve prices and cost functions. The re-
sults of these experiments were similar to the ones presented in the pa-
per.

4 We conducted similar experiments for the vehicle routing domain. The
same properties were observed. Due to space considerations we do not



R=25000 100 1000 12500 25000 50000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON ON , N ON , N

and m(O,N)N ,m(N,O)N

12500 ON , N

25000 N,O(O,N) N,O(O,N) N,ON N,N N,N

and 50000

R=50000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON N,ON ON , N

12500 m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

and 25000 ON , N ON , N

50000 N,O(O,N) N,O(O,N) N,ON N,ON N,N

R=100000

100 ON , O(O,N) ON , ON O(O,N), N O(O,N), N O(O,N), N

1000 N,O(O,N) N,O(O,N) N,ON N,ON N,ON

12500 m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

25000 ON , N ON , N ON , N

and 50000

Table 1: All Nash equilibria for the scheduling domain with symmetric cost functions. The rows are different cost functions for agent
1 and the columns are different cost functions for agent 2. Each cell contains all Nash equilibria given the agents’ cost functions and
the reserve price R. To conserve space, we have combined rows which have identical equilibria.
5.7. Asymmetric cost functions

We conducted experiments with asymmetric cost func-
tions. Tables 2 and 3 present results from the vehicle routing
domain, where the reserve price, R, was set to 5 · 107, i.e.,
high enough so that it did not introduce additional strate-
gic considerations, and where Kj

i ∈ {1000, 2.5 · 106, 5 ·
106, 1 ·107}. These values were chosen so as to span the in-
teresting range for the routing domain.

We only present results where cost functions had the
form ci(t1, t2) =

∑2
j=1K

j
i · tj where Ki

i ≥ Kk
i . If the

cost of deliberating on a competitor’s valuation problem is
higher than the cost of deliberating on the agent’s own prob-
lem, then clearly no strategic deliberation will occur in equi-
librium.

Several interesting phenomena were observed. First,
when the cost of deliberating on the other agent’s valua-
tion problem was low, strategic deliberation occurred in
equilibrium. This is illustrated by Table 2. Almost ev-
ery mixed Nash equilibrium involved agent 1 deliberating
on the problem of agent 2 with positive probability. How-
ever, when K2

1 = 2.5 · 106, then agent 1 never deliberated
on the valuation problem of agent 2. The same behav-
ior was observed for agent 2 (see Table 3). Second, if
Kj
i was high enough then no strategic deliberation oc-

curred, irrespective of the value of K i
i (Table 3). Third,

the other agent’s actions also play an important role. That
is, agents’ do not have dominant strategies which are pa-

present the results here.

rameterized by their own cost functions, instead, complex
strategic behavior occurs. This can be observed from Ta-
ble 3.5

How much asymmetry is required in order for strate-
gic deliberation to occur? The experiments reported in Ta-
bles 2 and 3 involved gross asymmetries. It was not clear
whether large differences in deliberating costs are required
in order to force strategic deliberation, or whether just an
ε-difference in the cost constants could produce interest-
ing strategic behavior. Using the scheduling domain as our
sample application, we fixed the cost function of agent
2 as c2(t1, t2) = 100 · (t1 + t2) and set c1(t1, t2) =
100 · t1 + K2

1 · t2. We decreased K2
1 by increments of 0.5.

When K2
1 ≥ 97.0 the unique Nash (deliberation) equilib-

rium was (ON , ON ). However, for K2
1 < 97.0 the unique

Nash (deliberation) equilibrium was (Z(O,N), ON ). It ap-
pears as though we can conclude that gross asymmetries
are not required in order for strategic deliberation to occur,
however there should be more than an ε-difference between
the costs associated with deliberating on different problems.

6. Discussion

From studying the results from both the symmetric and
asymmetric cost function experiments, there are some in-
teresting points that arise. First, in order for strategic delib-

5 Using PPTrees generated from data from the scheduling domain, we
repeated the experiments and observed similar equilibria. Due to space
limitations we do not present the results in this paper.



(1000,1000) 1000 2.5E6 5E6 1E7

1000 ON , ON ON , N ON , N ON , N

2.5E6 N,ON N,ON N,ON N,ON

and ∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(O,Z)(O,N),m(O,Z)(O,N) ∗m(Z,N)(O,N),m(O,N)N

5E6 ON , N ON , N ON , N

1E7 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

ON , N ON , N ∗m(O,Z,N)(O,N),m(O,Z,N)(O,N)

∗m(Z,N)(O,N),m(O,N)N

ON , N

(1000,2.5E6)

1000 ON , N ON , N ON , N

2.5E6 N,ON N,ON N,ON

∗m(O,Z)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N

ON , N ON , N ON , N

5E6 N,ON N,ON N,ON

and ∗m(O,Z)(O,N),m(O,N)N ∗m(O,Z)(O,N),m(O,N)N ∗m(Z,N)(O,N),m(O,N)N

1E7 ON , N ON , N ON , N

Table 2: Nash (deliberation) equilibria for the vehicle routing domain with asymmetric cost functions. The reserve price is R =

5 · 107. The cost function of agent 1 is c1 = K1
1 · t1 + 1000 · t2. The entry in the upper left hand corner cell of each subtable specifies

(K2
1 ,K

1
2 ) The values for K1

1 are listed in the rows, and the values for K2
2 are listed in the columns. The subtables (1000, 5E6) and

(1000, 1E7) were identical to subtable (1000, 2.5E6). To conserve space, we have combined rows which have identical equilibria.

(2.5E6, 1000) 1000 2.5E6 5E6 1E7

2.5E6 N,ON N,ON N,ON N,ON

and ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

5E6 ON , N ON , N ON , N

1E7 N,ON N,ON N,ON N,ON

∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N) ∗m(O,N)N,m(Z,N)(O,N)

ON , N ON , N ON , N ON , N

(2.5E6,2.5E6)

2.5E6 N,ON N,ON N,ON

5E6 m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N m(O,N)N ,m(O,N)N

and 1E7 ON , N ON , N ON , N

Table 3: Nash (deliberation) equilibria for the vehicle routing domain with asymmetric cost functions. The reserve price isR = 5 ·107.
The cost function of agent 1 is c1 = K1

1 · t1 + 2.5 · 106 · t2. he entry in the upper left hand corner cell of each subtable specifies
(K2

1 ,K
1
2 ) The values for K1

1 are listed in the rows, and the values for K2
2 are listed in the columns. The subtables (2.5E6, 5E6) and

(2.5E6, 1E7) were identical to subtable (2.5E6, 2.5E6). To conserve space, we have combined rows which have identical equilibria.
eration to occur, there must be a certain amount of asym-
metry between the problems of the agents. This asymmetry
may arise due to differences in cost functions, or the rel-
ative difficulty of different agents’ valuation problems. For
example, in a vehicle routing problem, it might be very easy
to find a short route in one problem instance, yet not be
so easy in a different problem instance. Even if there is no
strategic deliberation (as in the symmetric cost function set-
ting) agents’ optimal strategies depend on what strategies
the other agents are following: dominant strategy equilib-
ria do not always exist. For example, there may exist sit-
uations where an agent may decide to not compute on any
problem in order to avoid incurring a cost, given that a com-
petitor intends to solve its own valuation problem.

Second, the (reverse) Vickrey auction is a very simple
auction mechanism and when agents are fully rational, they
have dominant strategies. In spite of its simplicity, in re-
cent work it has been shown that the information structures
which appear in the Vickrey auction and drive the theoreti-
cal strategic deliberation results, also appear in many multi-
stage auctions such as the English auction and variants [8].
Thus, while our experiments focus only on one auction type,
we believe that the conclusions are applicable across a wide
range of auction mechanisms.



7. Conclusions and future research

In many auction settings it is unreasonable to assume
that agents know their valuations for items that they will
bid on, a priori. Instead, agents may need to expend consid-
erable computational resources in order to determine their
valuations before bidding. Recently there has been a body
of work which has studied the strategic implications which
arise when the deliberation actions (computing or informa-
tion gathering actions) of agents are explicitly included in
the strategies of agents. The analysis of deliberation equi-
libria in various auction settings has led to the discovery of
strategic deliberation, equilibrium strategies where agents
use some of their deliberation resources in order to (par-
tially) determine the valuations of competitor agents.

This paper presents the first experimental study of delib-
eration equilibria in auctions. We ran reverse Vickrey auc-
tions with bidding agents who had limited deliberation re-
sources and were provided with fully normative delibera-
tion control methods. We observed no strategic deliberation
when agents had symmetric cost functions.6 However, if the
cost functions of the agents were asymmetric then strate-
gic deliberation occurred in equilibrium. This supports our
position that when designing electronic markets and other
multiagent systems, it is of both theoretical and practical
importance to consider the deliberation actions of agents.

There are several research directions that should be pur-
sued. First, in our experiments we were limited in the num-
ber of deliberation steps agents could take. As the technol-
ogy becomes available, we plan to run additional experi-
ments where agents are allowed to deliberate more. The sec-
ond research direction is to game-theoretically design auc-
tions so that strategic deliberation will provably not occur
in equilibrium. This would allow agents to focus solely on
their own deliberation control problems, making it easier
for deliberative agents to participate.
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