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Abstract

In many settings, agents participating in mechanisms do not know their preferences a priori. Instead, they must actively
determine them through deliberation (e.g., information processing or information gathering). Agents are faced not only with
the problem of deciding how to reveal their preferences to the mechanism but also how to deliberate in order to determine their
preferences. For such settings, we have introduced the deliberation equilibrium as the game-theoretic solution concept where
the agents’ deliberation actions are modeled as part of their strategies. In this paper, we lay out mechanism design principles
for such deliberative agents.

We also derive the first impossibility results for such settings - specifically for private-value auctions where the agents’ utility
functions are quasilinear, but the agents can only determine their valuations through deliberation. We propose a set of intuitive
properties which are desirable in mechanisms used among deliberative agents. First, mechanisms should be non-deliberative:
the mechanism should not be solving the deliberation problems for the agents. Secondly, mechanisms should be deliberation-
proof: agents should not deliberate on others’ valuations in equilibrium. Third, the mechanism should be non-deceiving: agents
do not strategically misrepresent. Finally, the mechanism should be sensitive: the agents’ actions should affect the outcome.
We show that no direct-revelation mechanism satisfies these four properties. Moving beyond direct-revelation mechanisms, we
show that no value-based mechanism (that is, mechanism where the agents are only asked to report valuations - either partially
or fully determined ones) satisfies these four properties.

1 Introduction

Game theory, and mechanism design in particular, have long been successfully used in economics and have recently drawn a lot
of research interest from computer scientists (e.g., [13] [14]). In most of this work it is assumed that the participants, or agents,
know their preferences and the goal of the mechanism is to extract this information to a sufficient extent, and select an outcome
such that desirable properties are achieved. However, there are many settings where agents do not know their preferences
a priori. Instead they may, for example, have to solve computationally complex optimization problems, query databases, or
perform complicated searches in order to determine the worth of an outcome. We call the actions taken to determine preferences
deliberation.

If there are no restrictions placed on the deliberation capabilities of agents, they could optimally determine their preferences
and act as fully rational agents. However, in many settings there are costs associated with deliberation. Agents are not able
to optimally determine their preferences, but instead must trade off quality of valuations against deliberation cost. Decision
making under costly deliberation resources is challenging even in single-agent settings. Having to interact with other agents
complicates the problem further. Agents must take into account the other agents’ actions in determining both how to act in the
mechanism and also how to use deliberation resources.

We have proposed explicitly including the deliberation actions of agents into their strategies, and then analyzing games
for deliberation equilibria which are fixed points in the space of strategy profiles from this enlarged strategy space [7] [8] .
Using this approach, we have studied common auction mechanisms such as the first-price auction, Vickrey auction, ascending
auction, descending auction, and generalized Vickrey auction. We discovered the existence of interesting strategic behavior. In
each auction mechanism studied, there existed instances where, in equilibrium, agents would use their deliberation resources to
determine other agents’ valuations of the item(s) being auctioned. We coined this phenomenon strategic deliberation.



In this paper, we build on this body of work. Instead of looking at the properties of mechanisms that were designed for fully
rational agents, we ask the question: “Is it possible to design mechanisms that have desirable properties for such deliberative
agents?” We propose a set of weak, intuitive properties that are desirable for mechanisms designed for such agents. In particular,
we propose that mechanisms should not solve the deliberation problems for the agents, that strategic deliberation should not
occur in equilibrium, that agents should not have incentive to misreport, and that the agents’ actions affect the outcome. We
show that no direct-revelation mechanism satisfies these four properties. Moving beyond direct-revelation mechanisms, we
show that no value-based mechanism (that is, mechanism where the agents are only asked to report valuations - either partially
or fully determined ones) satisfies these four properties.

The rest of the paper is as follows. We first provide an example application where our approach is needed (Section 2). We
then given an overview of pertinent mechanism design concepts, and describe the model for deliberative agents (Sections 3
and 4). We show that there is a parallel to the revelation principle for our setting, but argue that the direct mechanism produced
in the proof has highly impractical properties. We then propose a set of mechanism properties which are important when the
mechanism is to be used among deliberative agents. Our main results show that it is impossible to design a direct-revelation
mechanism that satisfies those desirable properties, and furthermore, it is impossible to design any value-based mechanism that
satisfies them (Section 5).

2 An Example Application

To make the presentation more concrete, we now discuss an example domain where our methods are needed. Consider a dis-
tributed vehicle routing problem with two geographically dispersed dispatch centers that are self-interested companies (Figure
1) [19] [21]. Each center is responsible for certain tasks (deliveries) and has a certain set of resources (vehicles) to take care of
them. So each agent—representing a dispatch center—has its own vehicles and delivery tasks.
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Figure 1: Small example problem instance of the distributed vehicle routing problem. This instance has two dispatch centers
represented in the figure by computer operators. They receive the delivery orders and route the vehicles. The light dispatch
center has light tasks and trucks while the dark dispatch center has darker tasks and trucks. The dispatch centers receive all of
their delivery orders at once, and then have some time to compute a routing solution before the trucks need to be dispatched.
For example, in some practical settings, the delivery tasks are known by Friday evening and the route plan for the next week
has to be ready by Monday morning when the trucks need to be dispatched.

Each agent’s problem is to minimize transportation costs (driven mileage) while still making all of its deliveries while
honoring the following constraints: 1) Each vehicle has to begin and end its tour at the depot of its center (but neither the
pickup nor the drop—off locations of the orders need to be at the depot), 2) Each vehicle has a maximum load weight and
maximum load volume constraint, 3) Each vehicle has a maximum route length (prescribed by law), and 5) Each delivery has
to be included in the route of some vehicle. This problem is A'P-complete.

Assume that an additional task is to be allocated to a dispatch center via some auction mechanism. Before agents’ can
formulate and submit bids, they must first know how they value the new task. This requires determining the cost of incorporating
the new task into the current delivery schedule which potentially requires solving two A/P-complete problems (one without
the new task, and one with the new task). The resources available to the agents to solve these problems may be limited. For
example, the agents may have deadlines by which they require a solution or computing may be costly. Each agent must carefully



consider the tradeoff they are willing to make on solution quality given the restrictions on their computing resources. It may
also be in an agent’s best-interest to use some of its deliberating resources to (partially) determine the values of the other agents.
By doing some initial deliberating on a competitor’s problem, an agent can gather information that may be useful in formulating
its own deliberating and bidding strategies. By carefully designing the auction rules, it may be possible to reduce the strategic
burden placed on agents.

3 Mechanism Design

In this section we present an overview of pertinent mechanism design concepts. We assume that the reader has a basic back-
ground in game theory. The mechanism design problem is to implement an optimal system-wide solution to a decentralized
optimization problem with self-interested agents with private information about their preferences for different outcomes. In
recent years mechanism design has been used in many important applications such as electronic market design and resource
allocation problems.

We assume that there is a set of agents, I, |I| = n. Each agent, ¢, has a type, 6; € O, which represents the private
information of the agent that is relevant to the agent’s decision making. In particular, an agent’s type determines its preferences
over different outcomes. We use the notation u; (0, 6;) to denote the utility of agent ¢ with type 6; for outcome o € O (O is
the space of possible outcomes). As mentioned in the first paragraph, the goal of mechanism design is to implement some
system-wide solution. This is defined in terms of a social choice function.

Definition 1 (Social Choice Function). A social choice function is a function f : ©1 x ... x O, — O, such that, for each
possible profile of agents’ types 0 = (01, ..., 0,) assigns an outcome f(0) € O.

The mechanism design problem is to implement a set of “rules” so that the solution to the social choice function is imple-
mented despite agents’ acting in their own self-interest.

Definition 2 (Mechanism). A mechanism M = (S1,...,Sn, g(+)) defines the set of strategies S; available to each agent and
an outcome rule g : S1 X ... x S, — O, such that g(s) is the outcome implemented by the mechanism for strategy profile
$=(81,--+,8n)

A mechanism implements a social choice function f(-) if there is an equilibrium of the game induced by the mechanism
which results in the same outcomes as f(-) for every profile of types, 6.

Definition 3 (Implementation). A mechanism M = (S1,...,Sn,g(-)) implements social choice function f(-) if there is an
equilibrium strategy profile s* = (s3,...,s}) such that g(s*(0)) = f(0) for all 6.

An important class of mechanisms are direct revelation mechanisms.

Definition 4 (Direct {evelation mechanism). AkdirectA revelatiAon mechanism is a mechanism in which s; = ©; for all i and
has outcomes rule g(0) based on reported types 0 = (01,...,0,).

One of the most important results in mechanism design is the Revelation Principle. It states that any mechanism can be
transformed into an equivalent direct mechanism where, in equilibrium, all agents truthfully reveal their types (that is, the
mechanism is incentive compatible).

Theorem 1 (Revelation Principle). Suppose there exists a mechanism M that implements the social choice function f(-) in
dominant strategies (Bayesian-Nash equilibrium). Then f(-) is truthfully implementable in a dominant strategies (Bayesian-
Nash) incentive compatible direct-revelation mechanism.

The Revelation Principle suggests that mechanism designers need only be concerned with direct-revelation mechanisms.
Later in the paper we will discuss the Revelation Principle in more detail.
In this paper we restrict ourselves to settings where agents have quasilinear preferences.

Definition 5 (Quasilinear Preferences). A quasilinear utility function for agent ¢ with type 0; is of the form:
ui(o, 91) = Ui(l‘, 91) + ti

where outcome o defines a choice © € K from a discrete choice set K and a transfer t; by the agent. The notation v;(x,0;)
represents the valuation function of agent i, that is, the value the agent places on choice x € K.



In general, mechanisms for quasilinear preferences take a certain form.

Definition 6 (Mechanisms for quasilinear environments). A mechanism for quasilinear environments is a mechanism M =
(81,3 Sn, (k(-),t1(+), ..., tn(*))) such that the outcome function g(-) = (k(-),t1(:), ..., tn(-)) where k : Sy x... xS, — K
is a choice rule which selects some choice from choice set IC, and transfer rules t; : S1 x ... x S, :— R. one for each agent,
compute the payment t;(s) made by agent i.

In addition to quasilinear environments, we also assume that agents’ have private values. This means that an agent’s utility
depends only on its own type. Many ecommerce applications are set in the quasilinear private-value environment. For example,
many auctions belong to this set of mechanisms. The choice rule &(-) specifies which agents are allocated which items, and the
transfers, ¢;(-), specify the amount each agent must pay.

4 Deliberative Agents

To participate in a mechanism, agents need to know their preferences over different outcomes. In quasilinear environments,
like those studied in this paper, the preferences of agents are represented by valuation functions which assign a numerical value
to each outcome, given the agent’s type.! In this paper we study settings where agents do not simply know their valuation
functions. Instead agents are deliberative; they must deliberate in order to determine their valuations. In this section we present
a model for deliberative agents.

4.1 Deliberative Agent Model

We assume that agents do not know their valuation functions a priori. Instead, each agent 7 has some amount of deliberation
resources R; that it can use to determine valuation functions for different problems. For each valuation problem j, agent 4 has
some algorithm A7 that is uses to determine valuations. It may use the same algorithm for multiple problems and has algorithms
for other agents’ valuation problems.

We assume that all algorithms are anytime algorithms. The defining property of an anytime algorithm is that it can be
stopped at any point and it will return a solution. If the algorithm is given additional resources then the quality of the solution
improves. Many algorithms have anytime properties. For example, most iterative refinement algorithms are anytime since
they always return a solution, and improve it if allowed to run longer [11]. Similarly, many search and information gathering
applications can be viewed as anytime algorithms. As more information about an item is obtained, the knowledge about the
true valuation improves. 4

Deliberation can either improve or refine agents’ valuations. Let v/ (r;) be the value obtained by agent 7 for problem j by
supplying r; deliberation resources to algorithm Ag . If an agent deliberates to improve its valuations, then for all amounts of
deliberation resources r, ' such that r < 7/, v{ (r) < v{ (r"). In particular, deliberating changes the actual valuation for the
problem. The agent’s true valuation for problem j after devoting r; resources to the problem is vZ (r;). If an agent refines its
value, its deliberating does not change the valuation. Instead, there is a preexisting valuation which the agent learns through
deliberating. The agent starts with a probability distribution over the space of valuations. By deliberating, the probability
distribution is refined. The agent determines the true valuation of the outcome only when the distribution becomes a point mass
or the outcome of the mechanism is revealed.

To highlight the difference between improving and refining we provide examples. In the dispatch center example in Sec-
tion 2 the valuation of the item up for auction was the difference between the computed cost of including it into a delivery
schedule and not including it. This fits into an improving model since if the agent did not compute a delivery solution, the item
would have no value. An art auction where there is some question as to whether the artwork is a forgery or not is an example
where agents refine their valuations. By researching (deliberating) the agent may be better able to determine the likelihood of
whether the painting is forged. The deliberating does not change the painting, but it does change the agent’s estimation of the
value of the painting. The results in this paper apply to both improving and refining scenarios. We included a discussion of
these two models to illustrate the generality of our approach.

If agents had unlimited deliberation resources then they would be able to optimally determine their valuations and act as
though they were fully rational as assumed in most of the game theory and mechanism design literature. However, in many
situations agents have restrictions on their resource usage (for example, deadlines, cost associated with making queries, etc.).
We model the restrictions of agents’ deliberation resources by using cost functions. Assume there are m possible problems that

! An example of an outcome is an allocation of goods in an auction.



agent ¢ can deliberate on. Define R}" to be the set of vectors (r1, ..., 7,,) such that r4 is the amount of deliberating resources
used on problem k. A cost function maps resource vectors to non-negative real numbers,

cost; : R™ — R U{0}.

The only restrictions we place on cost functions is that they must be non-decreasing and additive. That is, given resource vectors
7,7 € R™, cost;(F +T') = cost;(T) + cost;(7') and if 7 < 7 then cost; (T) < cost; (7).

4.2 Controlling Deliberation

As mentioned earlier, if agents had unlimited resources for deliberating, then they would be able to optimally determine their
valuations and thus act like fully rational agents. However, restrictions on the deliberating resources of agents force them
to make deliberation tradeoffs between valuation quality and cost. Anytime algorithms allow for this tradeoff to occur, but
do not provide a complete solution since they do not help the agents determine how the tradeoff should be made. Instead,
anytime algorithms are paired with a meta-level control procedure that aids in determining how much resources to devote to
an algorithm and when to stop deliberating and act with the valuation obtained. There are two components of the procedure;
the performance profile which describes how deliberating affects the output of the algorithm, and a process for using the
information in the performance profile to make decisions. For the rest of the paper we will use the term performance profile to
refer to both the descriptive and procedural aspects.

In order to make decisions about how to use deliberating resources, an agent must know what results deliberating has
produced. Agents keep this information in a state of deliberation. Let r; be the amount of resources spent on problem j. Let
Vj(r;) be the set of valuations for problem j after r; resources have been allocated. If agents are improving their valuations
then |V;(r;)| = 1, if agents are refining their valuations then |V} (r;)| > 1. Let AV;(r;) be the probability distribution over
V;(r;). Define path(r;) to be a list of all deliberating results obtained for problem j for r < r;.

Definition 7 (State of Deliberation). The state of deliberation for agent i at resource vector 7; = (r1,..., ) is

~:(T) = ((path(r1), AVi(r1)), ..., (path(rm), AV (rm)))

We provide an example to help in clarifying the definition. Assume that an agent can improve its valuations on two problems,
1 and 2. Assume that V(1) = {4}, V1(2) = {7} and V5(1) = {3}. The state of deliberation for the agent with resource vector
7=1(2,1)is (((0,{4},{7}), (0,{3})) where we assume that {2} means that with probability 1 the value was x.

A performance profile is a procedure that takes information about current results (state of deliberation) and maps it into a
probability distribution over potential future results.

Definition 8 (Performance Profile). Ler «y;(T) be the current state of deliberation for agent i with resource vector T =
(r1iy...,7m). Assume that the agent wishes to apply an additional 7“; resources to problem j. A performance profile for
agent 1 and problem j is a mapping from the current deliberation state and resource vector to a probability distribution over

the set of all deliberation states given the new resource vector. That is
PP} (vi(T,r})) = AT ()
where 7' = (r1,...,15 + 1%, ..., Tm).

The performance profile is used by an agent to determine its expected valuation for problem j after devoting an additional
7“;. resources to it. Assume that an agent is in current deliberative state +; (7). The expected valuation for problem j in this state
is

E[vf(rj)] = / w;pri(wj)dw;
Vj(rj)

where pr; is the probability density function over V;(r;).
By investing an additional r; resources to the problem, the expected valuation for problem j is

/

Bty o) = [ o) [ e ededn)
! G (rj+r}

(7

where g is the density function provided by the performance profile over the states of deliberation, and pr’ is the density function
over V;(r; + %) for each state of deliberation.



If the agent is only concerned about obtaining the best valuations, and ignored the other agents in the mechanism, the agent
can determine the value of deliberating for an additional 7‘;- steps on problem j. The value of deliberating is defined to be

VD = E[v}(rj +1})] — E[v](r;)] + cost;(F) — cost;(7 + (0,...,0,7%,0,...,0)).

If the value of deliberating is positive then the agent should deliberate for an additional step. If it is O or negative the agent
should stop deliberating and act with the current solution.?

4.3 Strategic Behavior of Deliberative Agents

Deliberation control in single agent settings is difficult. Having to interact with other agents complicates the problem further.
Agents must take into account the other agents’ actions in determining both how to act in the mechanism and also how to use
deliberation resources. We have proposed explicitly including the deliberation actions of agents into their strategies and then

{ auction ]
M N
agent agent
[ deliberation controller } [ deliberation controller }
compute one step ¢ T result compute one step ¢ T result
domain problem solver domain problem solver
(black box) (black box)

Figure 2: An auction mechanism with two deliberative agents. In order to submit a reasonable bid, each agent needs to first
(approximately) compute its valuations for the item that is up for auction The deliberation strategies of the agents may include
deliberating on each others’ valuation problems. We call this strategic deliberation.

analyzing games for deliberation equilibria [7, 8]. Let D; be the set of deliberative actions for agent ¢. A deliberative action
d; € D; is the act of taking one deliberation step on problem j where a step is defined exogenously. Since it is similar to a
time step, we will use the notation ¢ to represent the ¢'th step. The set A; is the set of non-deliberative actions that an agent can
take. The set is defined by the mechanism. For example, in a sealed-bid auction, the set A; is simply the set of bids that the
agent may submit to the auctioneer, while in an ascending auction the set A; is the set of messages that an agent can send to
the mechanism whenever the price increases (i.e. A; = {in,out}). A strategy for a deliberative agent is a plan which specifies
which actions to execute (deliberative and other) for all histories, where a history at step ¢, H (t) € H(¢) is a tuple consisting of
the current deliberation state of the agent, all non-deliberative actions it has taken, and all actions it has observed other agents
taking.

Definition 9 (Strategy for a Deliberative Agent). A strategy for deliberative agent i is

t)oo

si = (07)iZ0

such that
LYH(E) — D x A

g

In this new strategy space, we look for equilibria. We call these equilibria Deliberation equilibria [7]. In earlier work, we
studied common auction mechanisms such as the first-price auction, Vickrey auction, ascending auction, descending auction,
and generalized Vickrey auction [8]. We discovered the existence of interesting strategic behavior. In each auction mechanism
studied, there existed instances where, in equilibrium, agents would use their deliberation resources to determine other agents’
valuations of the item(s) being auctioned. We coined this phenomenon strategic deliberation.

2Performance profile deliberation control has been well studied by Al researchers [18] [2] [22] [5] [7]. There are many techniques for doing this form of
deliberation control, including curve-based, table-based, and tree-based performance profiles.



Definition 10 (Strategic Deliberation). If an agent i uses any of its deliberation resources to determine another agent’s value,
then agent i is strategically deliberating. That is, strategy s; = (0!)3°, has strong deliberation if at time t there exists a history
H;(t) such that

i (H;(t)) = (dj, )

(2

where x is any action in A; and d; is the action of devoting deliberation resources to a problem of agent j where j # 1.

S Mechanism Design for Deliberative Agents

In this section we tackle the problem of designing mechanisms for deliberative agents. We start with the obvious solution of
defining an agent’s type to be its entire set of deliberation tools and derive a revelation principle. We then argue that this results
in unsatisfactory mechanisms. We propose a list of properties which we believe mechanisms for deliberative agents should
have. We then study value-based mechanisms and show that it is not possible to design mechanisms which have all these
properties.

5.1 Revelation Principles for Resource Bounded Agents

The type of an agent is all its private information that is relevant to the agent’s decision making. In the deliberative agent
model there are several interpretations of type. An agent’s type may be its entire deliberating apparatus (performance profiles,
algorithms, cost functions etc.) or it may only be the most recent valuations obtained by the agent. How types are defined
changes the mechanisms. ‘

We start this section by defining a type of an agent to be its entire deliberating apparatus. Let {.A7 7Ly be the set of

algorithms available to agent ¢ (this includes random number generators and other required technology), let {PPZ-j =1 be the
set of performance profiles for agent ¢, let cost; () be the cost function of agent ¢ and let Z be the set of problem instances on
which agent 7 may have to deliberate. Define the type of agent 7 to be

0i(zx) = ({A! T (PP} T, costy(-), inst)
where inst € Z. That is, the type of an agent is defined by its algorithms, performance profiles, cost function and specific
problem instances.® It is now straightforward to derive a Revelation Principle for deliberative agents.

Theorem 2. Suppose there exists a mechanism M = (Si,...,S1,9()) that implements the social choice function f(-) in
dominant strategies Then f(-) is truthfully implementable in dominant strategies.

Theorem 3. Suppose there exists a mechanism M = (S1,...,5r,9()) that implements the social choice function f(-) in
Bayesian Nash equilibrium. Then f(-) is truthfully implemented in Bayesian Nash equilibrium.

Appendix A contains the proofs. Theorems 2 and 3 imply that mechanism design for deliberative agents can be reduced
to the problem of mechanism design for rational agents. In particular, if a social choice function is implementable then it is
implementable by a mechanism where agents truthfully reveal their types in a single step. However, this completely ignores
the deliberative properties of the agents. First, Theorems 2 and 3 assume that agents are able to reveal all their deliberative
properties including algorithms, performance profiles, cost functions, and any other technology that could be used by the agents.
Secondly, it assumes that the mechanism has enough deliberating resources of its own to do all the deliberating for all the agents.

5.2 New Properties for Mechanisms

We believe that mechanisms for deliberative agents should have good deliberative properties in addition to good economic
properties. In this section we propose a set of properties which we argue are desirable.

Property 1 (Non-Deliberative). A mechanism should be non-deliberative. This is, the mechanism should not solve the agents’
individual deliberation problems.

3In example of a problem instance is the set of delivery jobs in a travelling-salesman application.



If a mechanism is non-deliberative the agents’ are responsible for solving their own deliberation problems while the mech-
anism’s primary concern is determing an outcome given the agents’ strategies. We believe that in many settings it is unrea-
sonable to assume that the mechanism is capable of both determining optimal deliberation policies for agents and computing
the outcome given the policies. The problem with the mechanisms presented in Theorems 2 and 3 is that they were not non-
deliberative.

Property 2 (Deliberation-Proof). A mechanism should be deliberation-proof. That is, agents should have no incentive to
strategically deliberarate.

Recall that strategic deliberation is defined to be the act of actively using deliberation resources to determine the values of
other agents (Definition 10). A well designed mechanism reduces the amount of strategizing required by agents to act optimally.
A deliberation-proof mechanism eliminates the need for agents to gather information on competitors problems. In earlier work,
Larson and Sandholm showed that the Vickrey and ascending price auctions are not deliberation-proof [8].

Property 3 (Non-Deceiving). A mechanism should be non-deceiving. Assume that v; is the true computed value of agent i. A
mechanism is non-deceiving if it never sends a report to the mechanism such that if any agent had seem the report, their belief
that agent i’s value is v; would be 0.

A non-deceiving mechanism does not require that an agent directly reveal its true values. It just ensures that an agent does
not lead all participants to believe that its true value is not possible. For example, assume that an agent had secretly computed
a value v. A mechanism would be deceiving if the agent had incentive to report that its value was strictly greater than v. The
mechanism would not be deceiving if the agent had incentive to report that its value was greater than some y, y < v.

Since we desire that mechanisms be non-deliberative, we restrict our attention to value-based mechanisms for the rest of
the paper.

Definition 11 (Value-based Mechanism). A value-based mechanism, M = (S1,...,5;,9()), is a mechanism where each
agent i’s strategies are restricted so that the only allowable messages are functions of (partially) determined valuation functions
and where ¢() is a function only of the agents declared values. Thatis g : V1 x ... x Vi — O. Agents do not reveal information
about performance profiles, algorithms, cost functions etc.

Value-based mechanisms are non-deliberative. The mechanism is not given any of the tools required for it to actively delib-
erate on agents’ problems. Examples of value-based mechanisms include sealed-bid auctions where agents submit numerical
bids, and ascending and posted-price auctions where agents answer yes or no to the query of whether they would be willing to
buy an item at a specified price.

Mechanisms can be broadly classified into two groups, sensitive and non-sensitive.

Definition 12 (Sensitive). A mechanism is sensitive to agents’ strategies if for each agent i there exist strategies s, s/, si # s!/

3
such that for strategy profiles s' = (S1,...,8i—1,85, Sit1,---,51), 8" =(s1...,8i-1, 87, Sit1,---,51), g(8') # g(s").

Non-sensitive mechanisms are ones in which agents’ strategies do not influence the outcome. Dictatorial mechanisms
which always choose the preferred outcome of a specific agent and totally random mechanisms which choose outcomes in a
completely random fashion are examples of non-sensitive mechanisms.

Theorem 4. Assume mechanism M = (S1,..., Sy, g(-)) is value-based and non-sensitive. Then M is non-deliberative, non-
deceiving and deliberation-proof.

The proof is found in appendix B. While this is a positive existence result (there do exist mechanisms with the set of
desirable properties) it is not particularly useful. Most interesting mechanisms (efficient mechanisms, for example) are sensitive.
In the rest of the paper we will focus on sensitive mechanisms.

5.3 Sensitive Mechanisms

We first look at direct mechanisms to see how deliberative agents behave.

Theorem 5. There exists no value-based sensitive direct mechanism that is deliberation-proof across all problem instances.
(An instance is defined by the agents performance profiles, cost functions, and current deliberation problems.)



The proof is found in Appendix C. While direct mechanisms are not deliberation-proof in general, they do allow us to study
why strategic deliberation occurs. The first reason is that by knowing the valuations of others, an agent may be able to tailor the
announcements in such a way so as to increase their chances of being included in the final allocation. However, by designing
mechanisms which are incentive-compatible this issue disappears. A more insidious problem is the following. Agents may have
asymmetric cost functions. It may be more difficult to deliberate on some problems as opposed to others. If an agent finds itself
in a situation where it is easier to deliberate on a competitor’s problem compared to its own problems, then it may strategically
deliberate in order to determine if it is worth while to actually do (or continue doing) its own deliberation. For example, in a
Vickrey auction, if agent 1 can learn for a low cost that agent 2 has achieved a very high valuation after deliberating then it may
be in agent 1’s best interest to not waste additional deliberation resources on determining its own problems.

To get rid of strategic computing the deliberative agents must be provided enough information by the mechanism so that
they can determine whether to devote resources to their own problems or not. Many indirect mechanisms reveal information.
This information can be used by the agents to help determine which are the best deliberative and non-deliberative actions to
take. For example, in a single item ascending auction, as the price rises the mechanism may reveal to all agents the number
of agents remaining in the auction. The agents can use this information to deduce valuation information about the remaining
agents.

To explicitly model the information that is revealed to the agents by the mechanism we introduce a feedback game. A
feedback game (M, F') is the extensive form game induced by mechanism M (this includes the deliberation actions of the
agents) coupled with a feedback function. At each step of the game, the feedback function maps all messages that are sent to
the mechanism at that step to the information that would have been revealed to the agents through the mechanism. To illustrate,
we provide two examples. Let M be a direct auction. At each step agents have the choice of taking a deliberation action, and
at some step ¢’ agents submit bids to the auction. The feedback function for this example is

_ [0 ift #t
F(t’w)_{(x,p) ift =1t

where w is the vector of agents’ messages. In an ascending auction more information is revealed by the mechanism. The
feedback function is
F(t,w,p) = {i|i € I and i is still in the auction at price p}.

Introducing an explicit feedback function does not change the original mechanism. However, it provides a tool to the
mechanism designer for reasoning about what information is available to agents and how the agents are doing belief revision
given the information reported by the feedback function.

Lemma 1. Given any mechanism M it is possible to construct a feedback function such that the equilibria in the feedback
game (M, F) are the same equilibria in the original mechanism M.

Using the feedback function as a tool to help in the analysis, we are able to show our final impossibility result. In general,
sensitive value-based mechanisms do not satisfy the proposed desirable properties.

Theorem 6. There exists no sensitive value-based mechanism that is
e non-deliberative,
e deliberation-proof, and
e non-deceiving

across all problem instances. (An instance is defined by agents’ performance profiles, cost functions).

6 Related Research

Both the the game theory and the computer science research communities are interested in mechanism design issues where
computation and information gathering are issues. In this section we review the literature which is most closely related to the
work presented in this paper.

From the computer science research community there has been work on both bounded-rational bidding agents and mech-
anisms. Sandholm noted that under a model of costly computing, the dominant strategy property of Vickrey auctions fails to
hold, even with simple agent models [20]. Instead, an agent’s best computing action can depend on the other agents. In recent



work, auction settings where agents have hard valuation problems have been studied [15]. Auction design is presented as a
way to simplify the meta—deliberation problems of the agents’, with the goal of providing incentives for the “right” agents to
compute for the “right” amount of time. A costly computing model, with simple computing control where agents compute to
refine their valuations, is used. However, situations where agents may compute on each others’ problems in order to refine their
bids are not considered. There has also been recent work on computationally limited mechanisms. In particular, research has
focused on the generalized Vickrey auction and investigates ways of introducing approximate algorithms to compute outcomes
without loosing the incentive compatibility property [12, 6, 9]. These methods still require that the bidding agents compute and
submit their valuations.

In the economics and game theory literature there has been some recent work on information acquisition and mechanism
design. This work has mainly focused on studying the incentives to acquire information in different auction mechanisms. Most
work assumes that an agent can only gather information about its own valuation. Perisco compares first-price and second-price
auctions and shows that if agents have affiliated valuations then agents choose to acquire more information about their own
valuation in a first price auction [16]. Compte and Jehiel compare the ascending price auction with the second price auction and
show that there exist situations where an agent will pay to acquire information in an ascending auction but not in the second
price auction [3, 4]. Rezende also studies an ascending price auction where agents are allowed to pay to acquire information
about their own valuation. He shows that in such a setting, in equilibrium a bidder’s best response function has a simple
characterization which is independent of other agents’ strategies. Bergemann and Véliméki study general mechanisms [1].
They are interested in mechanisms where agents acquire the efficient amount of information. They show that in the private value
model then VCG mechanism is efficient in the sense that agents have incentive to acquire enough information so as to maximize
the social welfare. However, in a purely common value setting agents either over-acquire or under-acquire information.

Rasmusen’s work is the most similar to ours [17]. It assumes that agents do not know their valuations but must invest to
learn them and are also able to invest in competitors value problems. Like us, he shows that in a second price auction, an agent
may base its decision on whether to learn its true valuation on another agent’s valuation, but his focus is on understanding
behavior such as sniping that is commonly seen in different online auctions like eBay.

7 Conclusion

In many settings, agents participating in mechanisms do not know their preferences (valuations) a priori. Instead, they must
actively determine them through deliberation (e.g., information processing or information gathering). Agents are faced not only
with the problem of deciding how to reveal their preferences to the mechanism but also how to deliberate in order to determine
their preferences. For such settings, we have introduced the deliberation equilibrium as the game-theoretic solution concept
where the agents’ deliberation actions are modeled as part of their strategies.

In this paper, we laid out mechanism design principles for such deliberative agents. We first showed that the revelation
principle applies to such settings in a trivial sense by having the mechanism carry out all the deliberation for the agents. This is
impractical, and we propose that mechanisms should be non-deliberative: the mechanism should not be solving the deliberation
problems for the agents. Second, mechanisms should be deliberation-proof: agents should not deliberate on others’ valuations
in equilibrium. Third, the mechanism should be non-deceiving: agents do not strategically misrepresent. Finally, the mechanism
should be sensitive: the agents’ actions should affect the outcome. We showed that no direct-revelation mechanism satisfies
these four intuitively desirable weak properties. This is the first impossibility result in mechanism design for deliberative
agents. Moving beyond direct-revelation mechanisms, we showed that no value-based mechanism (that is, mechanism where
the agents are only asked to report valuations - either partially or fully determined ones) satisfies these four properties.

This result is negative. It states that either we must have mechanisms which do the deliberating for the agents, or complex
strategic (and costly) counterspeculation can occur in equilibrium. However, there is some hope. It may be possible to weaken
one of the properties slightly, while still achieving the others. For example, it may be possible to design multi-stage mechanisms
that are not value based; the mechanism could help each agent decide when to hold off on deliberating during the auction (and
when to deliberate on one’s own valuation on different bundles of items in a combinatorial auction). In another direction, by
relaxing strategic deliberation and compensating agents appropriately, it may be possible to design mechanisms where agents
who can deliberate cheaply and efficiently deliberate for all agents. These are areas which we plan to pursue in future work.
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A Proof of Theorem 2

In this section we prove Theorem 2. The proof for Theorem 3 is similar.

Proof. The proof follows an argument similar to that of the original Revelation Principle. Assume agent ¢ has m problems it

can deliberate on. Let {AJ " | be the set of algorithms and all required tools for running the algorithms for agent ¢, { PP} } "

be the set of performance proﬁles cost;(+) be the cost function of agent i, and let « € Z be a specific problem instance.
Recall the definition of the type of agent i. The type of the agent,

Bi(x) = ({A] )Ly, {PP] YLy, costi(), z)

Suppose an indirect mechanism M = (Sl, ,S71,9(+)) implements social choice function f(-) in dominant strategies.
Then, there exists a strategy profile s* 57, .- ) such that

= (
ui(g(s7 (0(2)), 5-i(0-4))) — costi(s7 (0:(x)) = ui(g(s;(0i(x)), 5-i(0-4))) — costi(s;(6i(x)))

for all s; and s_;.

Alter the mechanism in the following way. Introduce a mediator who says to each agent i: “You tell me your type, and
when you say your type is 0;(x), I will play s} (0;(x)) for you. This includes deliberating on the problems as specified by s.
I will charge an amount cost; (s} (0;(x)) for this service.” If s¥(;(x)) is the optimal strategy for agent ¢ for each ;(x) € ©;
in the initial mechanism M for any strategy chosen by the other agents, then agent ¢ will find telling the truth to be a dominant
strategy in this new scheme. This means we have a mechanism which truthfully implements f (). O

j=1

B Proof for Theorem 4

Proof. Suppose a mechanism M = (S1,...,57,¢(-)) is value-based and non-sensitive. Clearly, the mechanism is non-
deliberative. Since it is value-based, the mechanism is not provided by the set of tools it would require to solve the agents’
deliberation problems. Let s and s be two strategles for agent 7 such that all deliberation actions of specified by the two
strategies are the same, but s} is non- dece1v1ng and s/ is deceiving. Therefore, cost;(s;) = cost;(s;). Since the mechanism is
non-sensitive, g(s;,s_;) = g(s7,s_;) and so

ui(g((sj, 5-i)) — costi(s;) = ui(g(si, s-i)) — costi(s})

and so following a non-deceiving strategy is weakly dominant for agent :.

A similar argument holds when showing that the mechanism is deliberation-proof. Let s; be a strategy such that agent ¢
deliberated only on its own problems. Further assume that it devotes some amount r; on deliberating. Let s be any strategy
where agent 7 deliberates r; on its own problems and 7_; on other agents’ problems. Since the mechanism is not sensitive,

g(3i7 s—i) = 9(5;7 S—i)
for all s_;. Therefore,
u;i(g(si,5-i)) — costi(si) > ui(g(s],s—i)) — costi(s)

since the cost function is additive and nondecreasing. This holds for any r;. Therefore, agent 7 is always better off by not
deliberating on other agents’ problems. O

C Proof of Theorem 5

Proof. To prove the theorem, we need only show that there exist instances, defined by the performance profiles, where in
equilibrium agents will strategically deliberate. We will restrict ourselves to mechanisms which are individually rational. If
a mechanism is not satisfy participation constraints then agents have no incentive to deliberate in the first place. Let M =
(S1,--.,5n,9()) be any incentive compatible mechanism. Since our agents have quasilinear utilities, it must be the case the
g() = (k(),t()) where k: Sy x ... x S, — X andt: Sy x...S, — R"™
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Assume that |I| = 2, that is there are two agents. The agents have access to the same algorithms. Each agent ¢ has
performance profiles PPi{” V. The performance profiles are common knowledge. Each agent has a cost function cost; where

2
costi(r) = ¢ Z T
i=1

for some small € > 0, and
costa(r) =r1 + Kry

for some constant K > 1.
Since we are free to choose the problem instance, we define the performance profiles as follows. The performance profile
for agent 1 is
0 if Z r; = 0
PPi(r) = { o} with probability p Vr such that r; > 0
v} with probability 1 —p  Vr such that r; > 0

The performance profile for agent 2 is

0 ift>r;, =0
PPy(r) = { vl with probability ¢ Vr such that ro > 0
vk with probability 1 — ¢ Vr such that ro > 0
where v?, v}, vl and vl are chosen such that k(vh, v3) = 1, k(vi,vl) = 1 and k(v},v}) = 2. The transfers t;(v, v2) are
determined so that the mechanism is incentive compatible. In particular, the transfer function of agent ¢ can not be a function
of its own declaration. That is, t; = t;(v;),j # i.
For small € agent 1 has a dominant strategy which is to deliberate for one step on its own problem. For example if agent
2 decides not to deliberate then clearly agent 1 is best off deliberating on its own problem since it does not matter what value
agent 2 could have obtained. If agent 2 deliberates on its own problem, then agent 1 is still best off deliberating on its own,
since
e+ (0} + qta(vh) + (1= @)t (v8)) + (1= p)(L — )k + £ (vh)) > 0

where 0 is the utility if agent 1 does not deliberate and
—e+p(oy +qti(vg) + (1= @)t (v3)) + (1= p)(1 = q)(v] + 11 (v)) = —eq + (1 — q)(=2¢ +poy + (1 = p)oy +t1(v3))

where the left hand side is the utility if agent 1 deliberates on agent 2’s problem and then deliberates on its own problem only if
agent 2’s valuation is v}. In a similar way it is easy to show that for small € agent 1 is best off deliberating on its own problem
when agent 2 deliberates on agent 1°s problem first.

Given that agent 1 will deliberate on its own problem, agent 2 must determine its best strategy. It can determine its own
true valuation for a cost of K > 1 but it can also determine the valuation of agent 1 at a cost of 1. Agent 2 will first determine
whether agent 1 has high or low type under the following conditions;

—p+ (1= p)(a(v} +t2(v))) = (1 + K)) >0,
that is agent 2 is better off deliberating on agent 1’s problem than not deliberating at all, and
—p+ (1 =p)(q(vh +12(v])) = (1 + K)) = =K + (1 = p)g(v} +t2(v])),

that is agent 2 is better off deliberating on agent 1’s problem than deliberating on its own problem. This means that agent 2 will
strategically deliberate if K is set such that

p+(1—p)g

T g SKS q(v5 +t2(v)) — ——

where we are free to choose p, ¢, vg, vll. U
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D Proof of Theorem 6

The feedback function is a tool used in the main proof to formally model the information exchanged between agents. Since we
aim to prove a theorem over all mechanisms we need to first show that introducing a feedback function is possible.
Proof of Lemma 1

Proof. Let M = (Sy,...,Sn,g()) be any mechanism and let G be the extensive form game that agents play when partici-
pating in mechanism M. For each stage ¢ in the game let w(t) represent the messages sent to the mechanism by the agents. Let
info(w(t)) be the information revealed at stage ¢ in the game G after agents send w(t). Define the feedback function F() as
follows

F(t,w(t)) = info(w(t)).

By introducing the feedback function, nothing in the game G has been changed. Therefore, the feedback game (M, F) is
equivalent to the game G™. O

In Theorem 6 we study agents’ strategic behavior in feedback mechanisms. To do so, we do a perfect Bayesian equilibrium
(PBE) analysis. Before starting the proof, we review the definition of a PBE. We assume that the reader is familiar with
extensive form games [10].

Definition 13 (System of Beliefs). A system of beliefs y in an extensive form game A is a specification of a probability p(z) €
[0, 1] for each decision node x in A such that
> ) =1

cEH

for all information sets H.

Definition 14 (Sequentially Rational). A strategy profile s = (s1,...,sr) is sequentially rational given belief system p if
whenever it is agent i’s turn to move
Elui|H, p, 815 53] > Elui|H, p, 5}, 5]

for all s} and for all information sets H.

Definition 15 (Perfect Bayesian Equilibrium). A profile of strategies and system of beliefs (s, ) is a perfect Bayesian equi-
librium if it has the following properties:

o The strategy profile s is sequentially rational given belief system L.
o The system of beliefs . is derived from strategy profile s using Baye’s Rule when ever possible.

Proof. Theorem 6

Let mechanism M be an incentive compatible (non-deceiving) direct mechanism which implements social choice function
f(-). Mechanism M is not deliberation-proof (Theorem 5). Therefore, it is possible to construct problem instances such that
in equilibrium, agents will strategically deliberate. Using the technique in the proof for Theorem 5 construct performance
profiles PP;, PPs (such that in one deliberation step agents learn their true valuation) and cost functions, cost; costs, for
2 agents such that in the mechanism M, one agent (agent 2) has incentive to strategically deliberate while the other (agent
1) has a dominant strategy to deliberate only on its own problem. We will need an additional assumption on the equilibrium
strategies and transfer functions. If an agent decides not to deliberate and thus have valuation 0, then we assume that its strategy
indicates to the mechanism that v; = 0. Second, we assume that ¢;(0) < t;(v) Vv # 0. These assumptions do not change the
equilibrium behavior of the agents since if an agent, for all intents and purposes, resigns from the game, declaring its valuation
to be anything else but the default valuation of 0 is weakly dominant.

Since strategic deliberating occurs in equilibrium in the direct mechanism M, there exists an information set H9 such that

Elug|Ha, i, ((a1, Hz)s2, 51] > Elug|Ha, p1, (ag, Hz)s2, 51]

or
Elus|H, p, ((a1, H2)s2, s1] > Elua|Ha, p, (0, Ha)s2, $1]

where (a, H)s denotes the strategy which specifies taking deliberation action a at information set H. In particular in the direct
mechanism this information set occurs at the start of deliberating for agent 2.
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Let M’ = (S1,...,54,k(),t1(),...,t,()) be an indirect mechanism which also implements the social choice function
f (). Let s* be the equilibrium strategy profile for mechanism M’. Since the mechanism implements the same social function
as M the outcomes of the two mechanisms must be the same. Create an appropriate feedback function F'(-) to produce feedback
game (M’ F(-)) (Lemma 1).

Let v represent agent j’s actual valuation that it could achieve if it deliberated on its own problem (recall that in this example
instance, agents need only deliberate for one step on a problem to determine the valuation. With no deliberation their valuation
is 0). At each stage ¢ of the game induced by the mechanism M’ define V;(t) to be a partition that agent i makes of agent 5’s
possible deliberatable valuations. In particular, V;(t) = {V, V'} where if v € V then agent i has incentive to deliberate on its
own problem and if v € V' then agent i is best off stopping all deliberation on any problem. Given the construction of the
problem instance, there exists stages such that V'’ = ().

The feedback function F' can exhibit different properties at each stage ¢ of the game.

Definition 16 (Separating). Let V;(t) = {V,V'} be a partition for agent i at stage t. A feedback function F is separating at
stage t if for any messages m(v;), m(v’;) sent by agent j # i such that v; € V and v; € V',

F(t, (m(vi), m(v;))) # F(t, (m(vi), m(v5))).

Definition 17 (Pooling). A feedback function F(-) is pooling at stage t if it is not separating at stage t.

Since agent 1 has a dominant strategy we assume that it determines its own valuation and then sends signals to the mech-
anism. Assume that at stage t — 1 agent 2 has partition V;(t — 1) = {V,V’} where V' # ). Upon observing in stage ¢
F(t,s1(v1)) agent 2 updates its beliefs about what set the actual valuation of agent 1 is in.

Assume the feedback function F' is pooling at stage t. Let m(v*) be the message that agent 1 sends to the mechanism in
equilibrium and let a*(F'(t, m(v*)) be the deliberation action that agent 2 takes upon observing F'(¢, (v*)). Since F' is pooling
at stage ¢, agent 2 must base its beliefs on whether v; € V orv; € V' solely on the probability given by the performance profiles.
However, this is the same beliefs that agent 2 would have in a situation where there was a direct mechanism. Therefore, agent 2
is best off strategically deliberating (since the performance profiles were chosen so as to have strategic deliberation in the direct
mechanism) or doing nothing (not even sending a message) and waiting for the next stage of the game.*

Assume that at stage ¢ the feedback function is separating. Again, let m(v}) be the signal that agent 1 sends to the feedback
mechanism in equilibrium and let a* (F'(t, m(v7))) be the action that agent 2 takes in equilibrium upon observing F'(¢, m(v7y)).
In perfect Bayesian equilibrium, the beliefs on the equilibrium path must be correctly derived from the equilibrium strategies
using Bayes Rule. This implies that upon seeing F'(t, m(v?)) agent 2 must assign probability one to agent 1 having high type.
Similarly it assigns probability one to agent 1 having low type if it observes F'(t,m(v})). Upon observing F'(t,m(v)) agent 2
believes that agent 1 has high type, it also believes that the mechanism will choose an outcome preferable to agent 1 (since the
mechanism is implementing social choice function f() which would select an outcome favorable to agent 1 when it has high
type). Therefore, agent 2 is best off not computing at all since otherwise it would just incur a cost without being able to recoup
the cost from getting a preferred outcome. Therefore, a*(F(t, m(v?)) is to do nothing, agent 1 gets its preferred outcome and
pays t1(0). That is, the utility of agent 1 is

v{l +t1(s52(0)) —e = ’U{L +t1(0) — €

If agent 2 witnessed F'(t, m(v})) then it believes that agent 1 is low type and it has incentive to deliberate. The expected utility
for agent 1 in this situation is

(1= @)(vi + ta(s2(v}))) — €
However, if agent 1 has a low type but sends a message to the mechanism m (v}) then agent 2 would not deliberate and the
utility of agent 1 would be
Vi + t1(52(0)) — € > (1= q)(v; +ta(s(v3))) — €

Therefore, if the feedback function is separating, agent 1 has incentive to misreport its deliberated value to the feedback
mechanism. Therefore, the mechanism is deceiving. O

“4To get rid of situations where agents wait forever, one can introduce a liveness condition which will force an agent to eventually take some action.
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