
Miscomputing Ratio: Social Cost of Selfish Computing

Kate Larson
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213, USA

klarson@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213, USA

sandholm@cs.cmu.edu

ABSTRACT
Auctions are useful mechanism for allocating items (goods, tasks,
resources, etc.) in multiagent systems. The bulk of auction theory
assumes that the bidders’ valuations for items are given a priori.
However, in many applications the bidders need to expend signif-
icant computational effort to determine their valuations. We intro-
duce a way of measuring the negative impact of agents choosing
computing strategies selfishly. Our miscomputing ratio isolates the
effect of selfish computing from that of selfish bidding. We present
a Bayes-Nash equilibrium analysis of a Vickrey auction where the
bidders’ strategies include computational actions. This equilibrium
analysis allows us to predict the overhead caused by miscomput-
ing, as measured by the miscomputing ratio. We show that in some
situations, the outcome can be arbitrarily far from optimal. How-
ever, by carefully designing cost functions for agents, it is possible
to provide incentives for bidders to choose computing policies that
result in optimal social welfare.
Categories and Subject Descriptors: 1.2.11 Multiagent systems
General Terms: Design, Theory
Keywords: Auctions, Resource-bounded agents

1. INTRODUCTION
Auctions are useful mechanisms for allocating items (goods, tasks,

resources, etc.) in multiagent systems. The bulk of auction theory
assumes that the bidders’ valuations for items are given a priori. In
many applications, however, the bidders need to expend significant
effort to determine their valuations. This is the case, for example,
when the bidders can gather information [13, 1] or when the bidders
have the pertinent information in hand, but evaluating it is complex.

For agents with restrictions on their computational resources,
valuation determination can be difficult. Agents must decide how
much of their resources to use on their valuation problems. De-
cision making under settings of bounded resources is challenging
even for single agents and the field of AI has long searched for
useful techniques for coping with restricted resources (see, for ex-
ample [17, 15, 3]). For self-interested agents interacting in multi-
agent systems, the problem of how to use their resources is made

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

even more complex as agents must also take into account the (de-
liberation and other) actions of other agents in the system. A fully
normative deliberation control method coupled with game theoretic
analysis is required in order to guarantee that agents’ optimal strate-
gies result in desirable outcomes.

A normative deliberation control model of how additional work
(e.g., computing) refines valuations was recently introduced [8, 7].
The authors analyzed auctions strategically, where each agent’s
strategy included both computing and bidding. They found that for
certain auctions, properties such as incentive compatibility cease to
hold if agents explicitly deliberate to determine valuations. Instead
agents strategize and counterspeculate, sometimes using comput-
ing to (partially) determine opponents’ valuations. It was conjec-
tured that such strategic computing may lead to suboptimal social
welfare.

In this paper we introduce a way of measuring the negative im-
pact of agents choosing computing strategies selfishly. Our mis-
computing ratio isolates the effect of selfish computing from that of
selfish bidding. We provide a game-theoretic analysis that allows
us to predict the overhead, as measured by our miscomputing ratio.
If we only focus on the social welfare of the bidding agents, we
show that under both limited and costly computing, the outcome
can be arbitrarily far worse than in the case where computations
are coordinated. However, by carefully designing computing cost
functions, it is possible to provide appropriate incentives for bid-
ders to choose computing policies that result in the optimal social
welfare. If the center (auctioneer) is included in the social welfare
measure, then cost functions are not required to obtain the opti-
mal social welfare, this can be achieved by enforcing deadlines on
agents. Furthermore, if agents’ cost functions are exogenous, we
can predict what the negative impact of miscomputing will be.

The paper is organized as follows. In Section 2 the auction
model and deliberation model are described. Section 3 introduces
the miscomputing ratio. Section 4 includes an equilibrium analy-
sis of computational agents in a Vickrey auction, and a discussion
of the role of cost functions and how they should be imposed. We
conclude with related work and a summary of the paper.

2. THE MODEL
In this section we describe the model. We first review relevant

game theoretic solution concepts and the model of deliberation con-
trol. We then describe how the deliberation actions of agents can
be incorporated into a standard auction setting, and mention some
issues that arise.

2.1 Concepts from Game Theory
A game has a set of agents, I , and a set of outcomes O. Each

agent has a set of strategies from which it chooses a strategy to use.
A strategy of agent i, si, is a contingency plan that determines what
action the agent will take at any given point in the game. A strategy
profile, s = (s1, s2, . . . , s|I|), is a vector specifying one strategy
for each agent in the game. We use the notation s = (si, s−i)
to denote a strategy profile where the strategy of agent i is si and
s−i = (s1, . . . , si−1, si+1. . . . , s|I|). The strategy profile deter-
mines how the game is to be played, and thus determines an out-
come o(s) ∈ O. Each agent has a utility function, ui : O 7→ R.
Each agent tries to choose a strategy which leads to an outcome
that maximizes its own utility.

Noncooperative game theory is interested in finding stable points
in the space of strategy profiles. These stable points are the equilib-
ria of the game. There are many types of equilibria, the two most
common being dominant strategy equilibria and Nash equilibria.

A strategy is said to be dominant is said to be dominant if it is a
player’s strictly best strategy against any strategies that other agents
may follow.

Definition 1 Agent i’s strategy, s∗i is a dominant strategy is

∀s−i∀s′i 6= s∗i ui(o(s
∗
i , s−i)) > ui(o(s

′
i, s−i)).

If each agent’s strategy in a strategy profile is the agent’s dominant
strategy, then the strategy profile is in a dominant strategy equilib-
rium.

Agents will often not have dominant strategies and so dominant
strategy equilibria do not always exist. Instead a different notion of
equilibrium is often used, that of the Nash equilibrium.

Definition 2 A strategy profile s∗ is a Nash equilibrium if no agent
has incentive to deviate from its strategy given that the other agents
do not deviate. Formally,

∀i ∀s′i ui(o(s
∗
i , s∗−i)) ≥ ui(o(s

′
i, s

∗
−i)).

The Nash equilibrium solution concept assumes that agents know
everything about all other agents in the game. Often it is the case
that an agent does not know the preference of another agent. These
situations are modeled as Bayesian games. Each agent’s prefer-
ences are determined by the realization of a random variable. The
agent, i, will be the only one who knows the realization of the ran-
dom variable (its type, θi), however, the probability distribution
from which θi was drawn is common knowledge. A pure strategy
for agent i in a Bayesian game is a function si(θi) that gives the
player’s strategy choice for each possible type θi. Agent i’s utility
if it has type θi and s = (s1(·), . . . , s|I|(·)) is
ui(o(s)) = E(θ1,...,θ|I|)

[ui(o(s1(θ1), . . . , s|I|(θ|I|), θi)]. A Nash
equilibrium in a Bayesian game is called a Bayes-Nash equilibrium.

Definition 3 A strategy profile s∗ is a Bayes-Nash equilibrium if
no agent has incentive to deviate given that no other agent deviates.
That is

∀i ∀s′i ui(o(s
∗
i , s∗−i)) ≥ ui(o(s

′
i, s

∗
−i)).

While we focus our attention to outcomes that are obtained by
agents playing in equilibrium, there are some equilibrium outcomes
that are more desirable than others. One common measure for com-
paring outcomes is Pareto efficiency. It is a desirable measure in
that it does not require cardinal utility comparisons across agents.

Definition 4 An outcome, o, is Pareto efficient if there exists no
other outcome o′ such that some agent has higher utility in o′ than
in o, and no agent has lower utility. Formally,

6 ∃o′s.t.[∀i ui(o
′) ≥ ui(o) and ∃j uj(o

′) > uj(o)].

Another measure that is commonly used is social welfare. It
allows prioritizing one Pareto optimal outcome over another, but it
does require cardinal utility comparison across agents.

Definition 5 The social welfare of outcome o ∈ O is

SW (o) =
∑

i∈I

ui(o).

Equilibrium play does not always optimize social welfare. A
classic example of this is the Prisoner’s Dilemma game where the
dominant strategy equilibrium leads to an outcome with lowest so-
cial welfare.

The definitions used above were for general utility functions.
However, in this paper, as is standard when discussing auctions,
we will assume that agents all have quasilinear utility functions.
That is, the utility is agent i is of the form ui = vi − pi where vi

is the value of the outcome of the auction to the agent and pi is the
amount the agent pays for the item.

2.1.1 Auctions
In this paper we study auctions where one good is being sold.

There are numerous auction mechanisms, but we choose to work
solely with the Vickrey auction. In a Vickrey auction (also known
as a second-price sealed-bid auction) each agent can submit a sin-
gle sealed bid to the auctioneer. The agent with the highest bid is
allocated the item, but pays only the amount of the second highest
bid. The desirable feature of this auction is that it has a dominant
strategy equilibrium. If bidders know their valuations then their
dominant strategy is to reveal the valuations truthfully rather than
strategically under or over bidding.

2.2 Model of Deliberation
In order to bid sensibly in an auction, agents need to have a val-

uation for the item being sold. In this paper we focus on settings
where agents do not simply know their own valuations, but, instead
must allocate computational resources to determine them.

If agents know their own valuations (or are able to determine
them with ease) they can execute the equilibrium bidding strate-
gies for rational agents. However, agents often have restrictions
on their capabilities for determining valuations. In this paper we
are interested in settings where agents must compute to determine
valuations. Settings where the value of an item depends on how it
is used often have this property. For example, in a vehicle routing
domain, jobs are auctioned off to delivery companies. The value
of a job depends, among other things, how it fits into the current
delivery schedule of a company. To determine this involves solving
an NP -complete optimization problem.

In many situations it may not be feasible to optimally solve the
valuation problem. Instead, one must resort to some form of ap-
proximation. In this paper we assume that agents have anytime
algorithms for approximating valuations [2]. The defining prop-
erty of an anytime algorithm is that it can be stopped at any point in
time to provide a solution, and the quality of the solution improves
as more time is allocated to the problem. This allows for a tradeoff
between solution quality and time spent on computing.

Since the computational resources of agents may be restricted,
agents must make tradeoffs in how to determine their valuations.
Alone, anytime algorithms do not provide an adequate tool set. In-
stead, they need to be paired with a meta-level control procedure
that determines how long to run the algorithm, and when to stop
and act with the solution obtained. In this paper we assume that
agents use a meta-level control procedure called a performance pro-
file tree [6].

Performance profile trees are created from statistics collected
from previous runs of the algorithm on valuation problem instances.
A tree describes how deliberation (computation) changes the solu-
tion to the valuation problem. Figure 1 is an example of a perfor-
mance profile tree.

I0

2

6

4 4

P(E|C)

P(0)

P(1) C

B

E

G

H

J

K

5

10

7

15

20

P(H|E)

P(F|C)

A

F

D

Figure 1: An agent’s stochastic performance profile tree for a
valuation problem. The diamond shaped nodes are random nodes
and the round nodes are solution nodes. At random node A, the
probability that the random number will be 0 is P (0), and the
probability that the random number will be 1 is P (1). At solution
node E, the edges are labeled with the probability of reaching
each child, given that node E was reached.

A performance profile tree has two different types of nodes; so-
lution nodes and random nodes. Solution nodes store the solution
and other problem features that may be of interest to the agent that
the algorithm has computed given a certain amount of computa-
tional resources. Random nodes occur whenever a random number
is used to chart the path of the algorithm run. The edges of the tree
are labeled with the probability that after one more step of compu-
tation, the solution returned will be the node found by following
the edge.

An agent uses performance profile trees to help in making deci-
sions about how to allocate its resources (for example, comput-
ing time). As an agent allots resources (time) to an algorithm,
the solutions returned correspond to nodes in the tree. The per-
formance profile tree provides information about how the solution
will change with future computation. In particular, if an agent has
reached a certain node in the tree, then the agent need only con-
sider solutions in the subtree rooted at that node. The probabil-
ity of obtaining a solution v′, given that the agent has reached a
node of solution v is equal to the product of the probabilities of
the edges connecting node with solution v to v′. Using this infor-
mation, agents are able to decide at which point it is best to stop
computing.

In order to do game-theoretic analysis one must have a fully nor-
mative model for deliberation control because one must take into
account the possibility that an agent will use all possible informa-
tion and resources available to it when determining its best strategy.
The performance profile tree is fully normative since it can model
all resource usage, algorithms, and solution features that an agent
might have available to it. The performance profile tree also allows
for optimal conditioning on many parameters, including results of
execution so far and on the actual problem instance.

2.2.1 Restrictions on Computational Resources
We model agents’ computational restrictions as cost functions.

A cost function for agent i is

ci : T 7→ R
+

where T is the set of resources available to the agent.1 For exam-
ple, in many situations time is the resource of interest so that ci(t)
1We can easily generalize the cost functions to be mappings from

is the cost to agent i for computing t time steps. A common setting
is when agents are faced with deadlines. This can be modeled by
using cost functions. If Di is the deadline for agent i and t repre-
sents the time the agent has computed then

ci(t) =

{
0 if t ≤ Di

∞ if t > Di

2.3 Strategic Computing and Bidding
A strategy for an agent is composed of two interrelated com-

ponents - the computing component and the bidding component.
What an agent bids depends on the solutions that it has obtained
for the valuation problems, and the problem an agent decides to
compute on depends partially on how it is planning on bidding, and
how other agents bid. Figure 2 illustrates this relation.

domain problem solver
(black box)

deliberation controller deliberation controller

domain problem solver
(black box)

auction

result result

bid bid

compute one step compute one step

agent agent

Figure 2: An auction with two computationally restricted agents.
In order to submit a reasonable bid, each agent needs to first (ap-
proximately) compute its valuations for the item that is up for
auction.

A strategy of a computationally restricted agent participating in a
Vickrey auction can be formally defined as follows. Let {a1, . . . , aI}
be the set of computational actions, that is ai is the action of com-
puting one step on the valuation problem of agent i. A state of com-
putation for agent i at time t, θi(t) = 〈v1, . . . , vI〉 stores the results
the agent has obtained from computing for t time steps. Note that
the agent may have computed on its own problem and other agents’
valuation problems. An agent’s strategy at time t is a mapping from
its current state of computation to either a computational action, aj ,
or a mapping from its current state of computation to a bid.

The deliberation component can be quite complex, since at each
time step there is no restriction as to what problem an agent can
compute on. In fact, as mention previously, it may even use some of
its resources to compute on the valuation problems of other agents
participating in the auction. This is called strong strategic comput-
ing. It has been shown in earlier work that the restrictions on the
agents’ resources have a significant impact on what (deliberation)
strategies agents may use. In situations where agents are faced with
hard deadlines we get the following result.

Theorem 1 Assume that agents are allowed to compute at no cost,
but have deadlines. Then, in a Vickrey auction, the bidders have
(weakly) dominant strategies where they only compute on their own
valuation problems [7].

If agents incur a cost while computing, then the deliberation strate-
gies can be quite different.

resource vectors to the real numbers. That is, ci : T |I| 7→ R where
(t1, . . . , tI) is a vector that specifies how much resources were al-
located to each agent’s problem. This allows us to model situations
where the cost computing on a problem varies, depending on the
agents.

Theorem 2 Assume that agents have a cost associated with com-
puting. Then, in a Vickrey auction, strong strategic computation
can occur in strict Nash equilibrium [8].

3. THE SOCIAL COST OF SELFISH COM-
PUTING

Now, a natural question to ask is whether the restrictions on com-
puting resources results in a loss of efficiency. However, efficiency
is difficult to compare in such settings. The Vickrey auction is effi-
cient in the sense that it always allocates the item to the bidder with
the highest valuation. However, an agent who might have been
able to obtain the highest valuation via computing may have used
its computing resources on a different problem, thus causing a dif-
ferent agent to have the highest valuation and win the auction. This
outcome is still efficient given how agents computed, but it over-
looks the computational issues in an unsatisfying way. This sug-
gests that Pareto efficiency may not always be the right measure to
use in the context of computationally bounded agents. Is there an
alternative measure?

Instead of looking at efficiency, we propose to use social welfare
as the measure. We want to know how letting agents freely choose
their own computing strategies impacts the social welfare of the
set of all bidders. In particular, we compare the highest achievable
social welfare to the lowest social welfare achievable in any Nash
equilibrium.

When we determine the highest achievable social welfare we op-
timistically assume that there is a global controller who imposes
each agent’s computing strategy (so as to maximize social welfare).
The controller has full information about all performance profiles,
deadlines, cost functions, and intermediate results of computing,
and given this information, specifies exactly how each agent must
use its computational resources. In the bidding stage agents are
free to bid as they wish, but their goal is still to maximize their own
utility, and so they bid truthfully in the Vickrey auction, given the
valuations they have obtained under the enforced computing policy.

Definition 6 Let o∗ be the outcome that is reached if the global
controller dictates computing policies to all agents, and agents are
free to bid in the Vickrey auction.

On the other extreme, we are interested in what happens when
agents are free to choose to follow any computing and bidding strat-
egy. Let NashEq be the set of Nash equilibria in that game. We now
define what is meant by the worst-case Nash equilibrium.

Definition 7 The worst case Nash equilibrium is
NE = argmins∈NashEq SW (o(s)).

We use the following ratio to see how much letting agents choose
their own computing strategies reduces the social welfare.

Definition 8 The miscomputing ratio is

R =
SW (o∗)

SW (o(NE))
.

This ratio isolates the impact of selfish computing from the tra-
ditional strategic bidding behavior in auctions. This is because in
both the coordinated and uncoordinated scenario, the agents bid
based on self-interest.

We actually study the impact of selfish computing in two slightly
different settings. In the first setting we are only interested in the
impact on the strategic agents (i.e. the bidding agents). In this case,
if I is the set of bidding agents then SW (o) =

∑

i∈I
ui(o). We

denote the miscomputing ratio in this setting as RI . In the sec-
ond setting we study the impact of computation on all agents in the
game, including the auctioneer. The social welfare of an outcome
is computed as SW (o) =

∑

i∈I
ui(o) + uauc(o) where uauc(o)

is either the amount that was paid to the auctioneer by the winning
bidder, or else the value the auctioneer has for the item up for auc-
tion in the case where no one wins (and so the auctioneer keeps the
item). Under this social welfare measure, the miscomputing ratio
is denoted by RI∪{auc}.

4. RESULTS
In this section we present the results of the paper. We first outline

the assumptions made in the paper, and prove a result concerning
agents’ strategies that is used throughout. We then do a Bayes-Nash
equilibrium analysis of the Vickrey auction with computationally
restricted agents. Using this equilibrium analysis, it is possible to
determine the miscomputing ratio under different conditions. We
show that sometimes it is best to just allow all agents to compute
freely, while at other times cost functions can be used to motivate
all agents to compute “correctly”.

4.1 Agents’ Nondominated Strategies
Assume there is a set of bidding agents, I , who are competing

in a Vickrey auction being run by auctioneer agent, auc. Before
a bidding agent can submit a bid, it must first use some of its re-
sources to determine its valuation. For ease of exposition, we as-
sume that each agent i has a deterministic algorithm, vi, and perfor-
mance profiles and that these are common knowledge.2 While this
assumption does make the analysis simpler in that there is less un-
certainty in what possible values have been computed, agents with
deterministic performance profiles can still suffer from miscomput-
ing.

Each agent has to expend some of its resources (time) while com-
puting. We model this expenditure by assuming that each agent i
has a cost function, as described in Section 2. The cost function
of agent i, ci, is private. However, the cost function is drawn from
some set Ci by distribution fi : Ci 7→ [0, 1] where fi is common
knowledge.

An agent’s utility depends on whether it has computed, what
value it has obtained by computing, and whether it has won the
auction. If an agent does not compute then it does not have a val-
uation for the item, and so we state that its utility is 0. Assume an
agent computes for town on its own problem and ttotal on all prob-
lems. If it does not win the auction, then its utility is −c(ttotal).
If it does win the auction, and the second highest bid is b, then its
utility is v(town)− c(ttotal)− b.

Given these assumptions, we can now determine agents nondom-
inated strategies.

Theorem 3 Assume that agent i ∈ I has a deterministic algo-
rithm vi and some cost function ci(·). Then, agent i has only two
possible nondominated strategies. It will either not compute at all,
or it will compute for t∗i steps on its own problem where

t∗i = arg max
t

{vi(t)− ci(t)}.

If agent i does compute, then it submits a bid equal to vi(t
∗
i).

Proof First, the argument that an agent is best of submitting a bid
equal to the value that it has computed is identical to the proof that
bidding truthfully is optimal for rational agents. Thus, we omit this

2This assumption is not necessary. We can also assume the more
general situation where vi is drawn with distribution gi() from the
set of algorithms Vi, where gi() is common knowledge.

part of the proof. If an agent does not compute at all, then it can not
submit a bid and be allocated the item. We use this as the default
situation, and assume that an agent i will have utility ui = 0.

Second, agent i is best off never computing on another agent’s
valuation problem. Since the algorithms are deterministic and com-
mon knowledge, agent i already knows what vj(t) is for any agent
j and any time t. Therefore, by computing on agent j’s problem it
gains no new knowledge, yet incurs a cost.

Finally, if the agent does compute for t time steps then its utility
is

ui =

{
vi(t)− ci(t)− b if vi(t) > b = maxj 6=i{bj}
−ci(t) otherwise

If agent i won the auction, then it is best off computing so as to
maximize its utility, that is computing for t∗i steps on its problem.
If agent i did not win, then it is best off not having computed at all
(ui = 0). �

4.2 When Should an Agent Compute?
From Theorem 3 we know that agent i should either compute so

as to maximize vi(t)− ci(t) or not compute at all. Which strategy
it should follow depends on what other bidding agents are doing.
Figure 3 illustrates how an agent’s utility depends on both its com-
putational actions and the bids of other agents.

v
i
(t

i
*)-cost

i
(t

i
*) v

i
(t

i
*)

Agent j’s computed valuation, vj(tj*)

0

v
i
(t

i
*)

-cost
i
(t

i
*)

A
ge

nt
 i’

s
ut

ili
ty

, u
i

Figure 3: Assuming that both agent i and agent j have computed,
the utility of agent i is a decreasing function of the computed
valuation of agent j. As agent j’s computed valuation increases,
agent i’s utility decreases. Agent i’s utility is 0 when vj(t

∗
j) =

vi(t
∗
i). When vj(t

∗
j) ≥ vi(t

∗
i), the utility of agent i is equal to

−ci(t
∗
i).

So far we have determined how much an agent should compute,
if it decides to, but we still do not know under what conditions
an agent should decide to compute. If agent i knew every other
agents’ computed valuations and thus what they would bid, it would
be able to optimally decide whether to compute or not. While an
agent does not have this information available to it, it does have
probabilistic information about the other agents’ cost functions. It
can use this information to derive a distribution over every other
agents’ possible computed valuations. Recall that Cj is the set of
possible cost functions for agent j and fj(cj(·)) is the probability
that agent j has cost function cj(·). The distribution, f j , over the
valuations that agent j may have computed is

f j(x) =

∫

Cj

fj(cj)χcj
(x)dcj

where

χcj
(x) =

{
1 if x = maxt vj(t)− cj(t)
0 otherwise.

For ease of presentation we assume that there are just two bid-
ding agents, i and j.3 Let sj(x) represent the strategy of agent j if
vj(t

∗
j) = x. That is

sj(x) =

{
1 if j computes when x = vj(t

∗
j)

0 if j does not compute when x = vj(t
∗
j)

Let Pj(x) be the probability that sj(x) = 0.
The expected utility from computing for agent i on what agent j

decides to do. If agent j does not compute, then, by the rules of the
Vickrey auction, agent i will win the auction, and will pay nothing
for the item. Its utility will be ui = vi(t

∗
i) − ci(t

∗
i). If agent j

does compute, then the utility of agent i depends on whether the
computed valuation of agent j is greater than its own. If vj(t

∗
j) <

vi(t
∗
i), then the utility of agent i is ui = vi(t

∗
i)− ci(t

∗
i)− vj(t

∗
j).

However, if vj(t
∗
j) > vi(t

∗
i) then ui = −ci(t

∗
i). This is captured

in the following equation:

ui =

∫ ∞

0

Pj(x)f j(x)(vi(t
∗
i)− ci(t

∗
i))dx

︸ ︷︷ ︸

j does not compute

+

∫ vi(t
∗)

0

(1− Pj(x))f j(x)(−ci(t
∗
i))dx

︸ ︷︷ ︸

j computes and vj(t
∗
j) ≥ vi(t

∗
i)

+

∫ ∞

vi(t
∗
i
)

(1− Pj(x))f j(x)(vi(t
∗
i)− ci(t

∗
i)− x)dx

︸ ︷︷ ︸

j computes and vj(t
∗
j) < vi(t

∗
i)

Agent i will only compute if the above equation is greater than its
utility from not computing (ui = 0). Therefore, agent i will only
compute under the condition

ci(t
∗
i) ≤ vi(t

∗
i)

[

1 +

∫ ∞

vi(t
∗
i
)

Pj(x)f j(x)dx

]

−

∫ vi(t
∗
i)

0

(1− Pj(x))f j(x)xdx

This is a cutoff equilibrium. Agent i will compute only when its
cost for computing is below a certain threshold.

4.3 Examples
With the analysis in the previous section, we are able to deter-

mine when an agent should compute and when it should not.

4.3.1 Free Computation with Deadlines
Assume that all agents have cost functions of the following form

ci(t) =

{
0 for t ≤ Di

∞ t > Di.

This corresponds to the situation where agents have free computa-
tion but must stop computing by some deadline. We will assume
that the uncertainty between the agents about the cost functions is
3The multiple agent setting is not conceptually more difficult. The
techniques and logic used to find the equilibrium is the same as the
two agent setting. However, one must keep track of multiple proba-
bility distributions which makes the notation cumbersome. For this
reason, we present the two agent case.

caused by having the deadlines be private information. For each
agent i, t∗i = Di since Di = arg maxt{vi(t)− ci(t)}. Clearly

vi(Di)

[

1 +

∫ ∞

vi(Di)

Pj(x)f j(x)dx

]

≥ vi(Di).

Since
∫ vi(Di)

0

(1− Pj(x))xf j(x)dx ≤ vi(Di)

it is always the case that for t∗i = Di

0 = ci(t
∗
i) ≤ vi(t

∗
i)

[

1 +

∫ ∞

vi(t
∗
i
)

Pj(x)f j(x)dx

]

−

∫ vi(t
∗
i)

0

(1− Pj(x))f j(x)xdx.

That is, agent i will compute on its own problem until its dead-
line Di.

4.3.2 Constant Cost Function
Assume that agents i and j share an algorithm, v, such that for all

t, v(t) = V . Assume that the agents have constant cost functions,
ci, cj such that for all t, ci(t) = Ki and cj(t) = Kj , where Ki, Kj

are drawn uniformly from the interval [0, K] for some constant K.
Each agent knows its own cost function, but only knows that its
competitor’s cost function is drawn uniformly from [0, K].

If agent i decides to compute on its problem, its utility depends
on whether or not agent j also decided to compute on its problem.
Assuming that agent i computed, its utility is

ui =

{
V −Ki if agent j did not compute
−Ki if agent j did compute

since, if both agents computed then the item could be allocated to
either of them but they would have to pay V . In equilibrium, agent
i will only compute when its expected utility from computing is
greater than not computing. That is

0 ≤

∫ K

0

Pj(x)(V −Ki)dx +

∫ K

0

(1− Pj(x))(−Ki)dx

As before, this is a cutoff equilibrium. Let K̂i and K̂j be the costs
at which each agent switches from a strategy involving computing
to one where it does not compute. Then, in equilibrium,

K̂i =

∫ K

0

K̂j

K
(V − K̂i)dK̂j +

∫ K

0

(1−
K̂j

K
)(−K̂i)dK̂j .

This reduces to

K̂i =
V K

2(K + 1)
,

that is, agent i will compute whenever its cost of computing of less
than V K/2(K + 1). The same cutoff equilibrium holds for agent
j also. Figure 4 displays how the cutoff changes as K approaches
V .

4.4 The Miscomputing Ratio
Given the tool set derived above, it is now possible to estimate

what the miscomputing ratio is for any Vickrey auction. By using
the Bayes-Nash equilibrium we can figure out, in expectation, what
the miscomputing ratio will be given information about agents cost
functions.

0 1 2 3 4 5

K
0

0.5

1

1.5

2

2.5

3

C
ut

of
f

va
lu

e

Figure 4: The cutoff values for agent i as a function of K. For
each value of K, if agent i’s cost of computation falls below the
line then it will compute. Otherwise, it does not. In this example,
V = 5.

First, we have learned that if agents have free but limited com-
putation, they will compute on their own problems only. What is
the miscomputing ratio is this setting?

Theorem 4 Let I be the set of bidding agents in a Vickrey auction.
Assume that |I| ≥ 2, and that each agent, i, has free computation
and deadline Di. Then, if the auctioneer is included in the social
welfare measure, the miscomputing ratio is RI∪{auc} = 1.

Proof To maximize social welfare, the global controller would
select agent i such that vi(Di) = maxj∈I vj(Dj), and only allow
this agent to compute for Di time steps. All other agents would be
forbidden to compute. Agent i would submit a bid equal to vi(Di)
and all other agents would submit a bid equal to 0. The social
welfare of this outcome, o∗, is SW (o∗) = vi(Di). In equilibrium,
as we have seen in, every agent would compute on its own problem
until it reached its own deadline. Each agent would then submit a
bid of an amount equal to its computed valuation. Agent i where
vi(Di) = maxj∈I vj(Dj) would be allocated the item. However,
the price agent i would have to pay is equal to

vk(Dk) = max
j∈I\{i}

vj(Dj).

The auctioneer’s utility from this outcome is uauc = vk(Dk). The
social welfare is

SW (NE(o)) = (vi(Di)− vk(Dk)) + vk(Dk) + 0.

Therefore, the miscomputing ratio is

RI∪{auc} =
vi(Di)

(vi(Di)− vk(Dk)) + vk(Dk)
= 1.

�

What happens if we do not include the auctioneer in the com-
putation of the ratio? It turns out that with limited computing, the
miscomputing ratio can be arbitrarily bad.

Theorem 5 Let I be the set of bidders in a Vickrey auction (|I| ≥
2). Assume that each bidder i has free but limited computing with
deadline Di. Then, the miscomputing ratio RI can be infinity.

Proof
Each agent has a dominant strategy which is to deliberate only

on its own valuation problem until its deadline and to submit a bid
equal to the valuation that it has obtained. That is, agent i submits

a bid of vi(Di). Without loss of generality, assume that v1(D1) ≥
v2(D2) ≥ vj(Dj) for all j 6= 1, 2. In equilibrium, agent 1 will
win the auction and pay an amount of v2(T). Therefore, agent 1’s
utility is u1 = v1(D1) − v2(D2). Set u1 = ε. The utility for all
other agents is ui = 0 for i 6= 1. Therefore,

SW (o(NE)) =
n∑

j=1

uj = ε.

In order to maximize social welfare, the global controller would
prohibit all agents expect for agent 1 from deliberating. Agent 1
would compute on its valuation problem until time D1 and submit
a bid of v1(D1) while all other agents would submit a bid of 0.
Agent 1 would win the item and pay an amount of 0. The utility for
agent 1 is u1 = v1(D1)−0 = v1(D1), while ui = 0 for all i 6= 1.
Therefore

SW (o∗) =
n∑

j=1

uj = v1.

The miscomputing ratio, RI , is

RI =
SW (o∗)

SW (o(NE))
=

v1(D1)

ε
.

As ε → 0 (that is, as the difference between the highest and second
highest valuations decreases), R →∞. �

This is a negative result. Allowing agents to choose their com-
puting strategies leads to an outcome that can be arbitrarily far from
optimal.

Prior literature has shown that in Vickrey auctions, computation-
ally limited agents have no incentive to use strong strategic com-
puting (i.e., they do not counterspeculate each other) while agents
with costly computing do [8, 16]. This suggests that if there is a
system designer who can control how the agents’ computational
capabilities are restricted, the designer should rather impose limits
than costs.

However, it turns out that computing costs can be adjusted so that
the optimal miscomputing ratio (R = 1) is reached. This would
mean that charging for computing is at least as desirable as impos-
ing limits.

Theorem 6 Computing cost functions can be used to motivate bid-
ders to choose strategies that maximize social welfare.

Proof Consider the following example. Let there be 2 agents,
agent 1 and agent 2, each with a deterministic performance profile.
Assume that each agent has free but limited computing resources,
and that the deadlines are D1 and D2. Each agent has a dominant
strategy, which is to deliberate on their own problem and submit a
bid of vi(Di). Assume that v1(D1) > v2(D2). The equilibrium
outcome is to award the item to agent 1 and have agent 1 pay an
amount v2(D2). Agent 1’s utility is then u1 = v1(D1) − v2(D2)
while agent 2’s utility is u2 = 0. To maximize social welfare the
global controller would forbid agent 2 to deliberate, and thus agent
1 could get the item and need not pay anything. The maximum
social welfare would be u1 = v1(D1). Therefore

R =
v1(D1)

v1(D1)− v2(D2)

Next, consider the case where a simple cost function is intro-
duced. Define

ci(t) =

{
k if t ≤ Di;
∞ if t > Di;

for some constant k, 0 < k ≤ v2(D2) ≤ v1(D1). Any strategy
that involves deliberating on the other agent’s valuation problem is
dominated as the computing action incur a cost without improving
the agent’s overall utility. Thus, the remaining strategies are for
the agents to compute only on their own valuation problems until
the cost becomes too high, or not to compute at all. The game is
represented in normal form in Table 1.

compute no
compute v1(D1)− v2(D2)− k, −k v1(D1)− k, 0

no 0, v2(D2)− k 0,0

Table 1: Normal form game representation of the Vickrey auction
where agent i has cost k for computing until Di, and infinite cost
if it computes for more than Di. Agent 1 is the row player and
agent 2 is the column player. Each agent would submit a bid that
is equal to its computed valuation minus the cost spent to obtain
the valuation.

The sole Nash equilibrium is for agent 1 to compute and submit a
bid of v1(D1) and for agent 2 to not compute. The global controller
trying to maximize the social welfare would force each agent to
also follow those strategies. Therefore

RI =
v1(D1)− k

v1(D1)− k
= 1.

�

In the proof the constant k can be made arbitrarily close to zero.
Therefore, the maximum social welfare generated by the global
controller in the costly computing setting and be made arbitrar-
ily close to the maximum social welfare obtainable if computing
resources are free.

The results suggest that in many settings cost functions can be a
useful tool for providing appropriate incentives for agents to com-
pute in such a way so as to maximize social welfare. To provide
incentives, the mechanism designer is not required to know any-
thing about the agents performance profiles. Instead, just enforcing
a small, constant cost function can possibly provide the correct in-
centives.

There are several present day real life scenarios where designers
have the capability to enforce cost functions. For example, many
supercomputer centers operate by having groups pay for the num-
ber of computer hours that they use. This is clearly modeled by the
costly computation formalization presented in this paper. Another
example is mobile agent platforms. The owner of the platform can
impose whatever restrictions it wants on the agents using the plat-
form, including, potentially, cost functions.

5. RELATED RESEARCH
In auctions, computational limitations have been discussed both

as they pertain to bidding agents and as they pertain to running
the auction (the mechanism). For bounded–rational bidding agents,
Sandholm noted that under a model of costly computing, the dom-
inant strategy property of Vickrey auctions fails to hold [16]. In-
stead, an agent’s best computing action can depend on the other
agents. In recent work, auction settings where agents have hard
valuation problems have been studied [8, 7, 12]. Parkes presented
auction design as a way to simplify the meta–deliberation problems
of the agent, with the goal of providing incentives for the “right”
agents to deliberate for the “right” amount of time [12]. Recently
Larson and Sandholm have been working on incorporating comput-
ing actions into agents’ bidding strategies using a normative model

of deliberation control and have focused on equilibrium analysis
of different auction settings under different deliberation limitations
[7, 8]. While we borrow the deliberation model from Larson and
Sandholm, this paper addresses a different question than previous
work. They investigate the impact of restricted computing capabil-
ities on agents’ strategies. We look, instead, at what the impact is
at a system-wide level, present a measure for comparing overhead
in different settings, and ask whether it is possible to place certain
bounds on the overhead added by having resource-bounded agents.

There has also been recent work on computationally limited mech-
anisms. In particular, research has focused on the generalized Vick-
rey auction and has investigated ways of introducing approximate
algorithms or using heuristics to compute outcomes without loos-
ing incentive compatibility [10, 4, 9]. Our work is different in that
it is focused on settings where the agents are computationally lim-
ited.

Koutsoupias and Papadimitriou [5] first proposed the concept of
worst-case Nash equilibrium to measure the price of anarchy [11].
They focused on a network setting where agents must decide how
much traffic to send along paths in the network. The agents did
not have computational limitations. Roughgarden and Tardos stud-
ied a different model of network routing using the same measure
as Koutsoupias and Papadimitriou and obtained tight bounds as to
how far from optimal network usage the agents would be, if allowed
to send traffic as they wished [14].

6. CONCLUSIONS
Auctions are useful mechanism for allocating items (goods, tasks,

resources, etc.) in multiagent systems. The bulk of auction theory
assumes that the bidders’ valuations for items are given a priori. In
many applications, however, the bidders need to expend significant
effort to determine their valuations. In this paper we studied com-
putational bidder agents that can refine their valuations using com-
putation. We used a fully normative model of deliberation control
for each agent to determine how much computing the agent invests
on its own, and others’, valuation problems.

We focused on the Vickrey auction where bidding truthfully is
a dominant strategy in the classical model. In this paper we intro-
duced a way of measuring the negative impact of agents choosing
computing strategies selfishly. Our miscomputing ratio compares
the social welfare obtainable if a global controller enforces com-
puting policies designed to maximize social welfare (but does not
impose bidding strategies), to the social welfare that is obtained
in the worst Nash equilibrium. This measure isolates the effect of
selfish computing from that of selfish bidding.

We presented a Bayes-Nash equilibrium analysis of a Vickrey
auction where the bidders’ strategies include deliberation actions.
The equilibrium showed how each agent’s cost of computing de-
termines the agent’s strategy. The model allowed us to predict the
overhead caused by miscomputing. It also allowed for the design of
cost functions for computing. When including the auctioneer in the
welfare measure, free computing with a deadline is an optimal way
to control the cost of computing. If the auctioneer is not included
in the ratio then the outcome can be arbitrarily far worse than in the
case where computations are coordinated. However, by the careful
design of cost functions, it is possible to provide appropriate in-
centives for bidders to choose computing policies that result in the
optimal social welfare. Unlike earlier results, this suggest that if a
system designer can choose how to restrict the agents’ computing,
imposing costs instead of limits may be the right approach.

Acknowledgments
This work is based on work supported by the National Science
Foundation under CAREER Award IRI-9703122, Grant IIS-9800994,
and ITR IIS-0081246.

7. REFERENCES
[1] Dirk Bergemann and Juuso Välimäki. Information

acquisition and efficient mechanism design. Econometrica,
70:1007–1034, 2002.

[2] Mark Boddy and Thomas Dean. Deliberation scheduling for
problem solving in time-constrained environments. Artificial
Intelligence, 67:245–285, 1994.

[3] Eric Hansen and Shlomo Zilberstein. Monitoring and control
of anytime algorithms: A dynamic programming approach.
Artificial Intelligence, 126:139–157, 2001.

[4] Noa Kfir-Dahav, Dov Monderer, and Moshe Tennenholtz.
Mechanism design for resource bounded agents. In
Proceedings of the Fourth International Conference on
Multi-Agent Systems (ICMAS), 2000.

[5] Elias Koutsoupias and Christos Papadimitriou. Worst-case
equilibria. In Symposium on Theoretical Aspects in
Computer Science, 1999.

[6] Kate Larson and Tuomas Sandholm. Bargaining with limited
computation: Deliberation equilibrium. Artificial
Intelligence, 132(2):183–217, 2001.

[7] Kate Larson and Tuomas Sandholm. Computationally
limited agents in auctions. In AGENTS-01 Workshop of
Agents for B2B, pages 27–34, Montreal, Canada, May 2001.

[8] Kate Larson and Tuomas Sandholm. Costly valuation
computation in auctions. In Theoretical Aspects of
Rationality and Knowledge (TARK VIII), pages 169–182,
Sienna, Italy, July 2001.

[9] Daniel Lehmann, Lidian Ita O’Callahan, and Yoav Shoham.
Truth revelation in rapid, aproximately efficient
combinatorial auctions. Journal of the ACM, 49(5):577–602,
2002.

[10] Noam Nisan and Amir Ronen. Computationally feasible
VCG mechanisms. In Proceedings of the ACM Conference
on Electronic Commerce (ACM-EC), pages 242–252,
Minneapolis, MN, 2000.

[11] Christos Papadimitriou. Algorithms, games and the Internet.
In Proceedings of the 33rd Annual ACM Symposium on the
Theory of Computing, pages 749–253, 2001.

[12] David C Parkes. Optimal auction design for agents with hard
valuation problems. In Agent-Mediated Electronic
Commerce Workshop at the International Joint Conference
on Artificial Intelligence, Stockholm, Sweden, 1999.

[13] Nicola Perisco. Information acquisition in auctions.
Econometrica, 68(1):135–148, January 2000.

[14] Tim Roughgarden and Éva Tardos. How bad is selfish
routing? In Proceedings of the 41st Annual IEEE Symposium
on Foundations of Computer Science, November 2000.

[15] Stuart Russell and Eric Wefald. Do the right thing: Studies in
Limited Rationality. The MIT Press, 1991.

[16] Tuomas Sandholm. Issues in computational Vickrey
auctions. International Journal of Electronic Commerce,
4(3):107–129, 2000.

[17] Herbert A Simon. Models of bounded rationality, volume 2.
MIT Press, 1982.

