Incentive-Compatible Differentiated Scheduling”

Martin Karsten
School of Computer Science
University of Waterloo
Waterloo, ON, Canada

mkarsten@uwaterloo.ca

Yunfeng LinT
Department of Electrical and
Computer Engineering
University of Toronto
Toronto, ON, Canada

Kate Larson
School of Computer Science
University of Waterloo
Waterloo, ON, Canada

klarson@uwaterloo.ca

ylin@eecg.toronto.edu

ABSTRACT

In this paper, we take a novel approach at service differen-
tiation in packet-switched networks. Existing mechanisms
for delay control and differentiation typically require some
form of explicit resource allocation and consequently, admis-
sion control. We propose incentive-compatible differentiated
scheduling as a basic building block for Internet service pro-
visioning. This scheduling scheme enables policy-free ap-
proximate service differentiation without admission control,
for example at Internet peering exchanges. In addition, the
same building block can also facilitate precise service dif-
ferentiation in combination with several forms of admission
control. We present the basic design of a scheduling al-
gorithm and discuss its implementation details and design
alternatives. We prove that the algorithm has strong game-
theoretic properties and present some initial simulations il-
lustrating the effect of this scheduler on Internet traffic.

1. INTRODUCTION

Service differentiation in IP networks is a long-standing
open issue. There are numerous technical proposals focus-
ing on various aspects of the overall problem. Typical solu-
tions comprise differentiated scheduling at the flow or traffic
class level, admission control, and eventually accounting and
billing. In contrast, the current Internet model is dominated
by the prevalent best-effort service and the notion of “all
flows are equal”’-fairness implied by TCP’s congestion con-
trol algorithm. Service differentiation is a generalization of
this concept, but comes at the price of increased complexity.

Existing proposals for service differentiation come in two
variants: with or without admission control. Absolute ser-
vice guarantees inevitably require some form of admission
control to reliably avoid resource overload. In the absence
of admission control, systems usually resort to only offer-
ing relative service differentiation. Some proposals employ
proactive resource allocation while others use network feed-
back for edge-based control. Edge-based control can com-
prise rate control and/or admission control. Certain ideas
rely on cooperation among network users. In contrast, any
scheme that relies on economic back-pressure also requires
an accounting system in the management plane, which typ-
ically contributes significantly to the overall complexity and
cost. In fact, the management complexity may pose a more
serious obstacle to the deployment of service differentiation

*This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada.

TWork done while at the University of Waterloo.

than any computational complexity of low-level functions
that are targeted by most research proposals.

In this context, first-in first-out (FIFO) scheduling has
nice characteristics, besides just being extremely simple:
FIFO scheduling does not interfere with any rate alloca-
tion policy from an end- or edge-based control regime, re-
gardless of whether admission control, feedback-based rate
control, or a combination of both is being used. The con-
trol regime only needs to support a single class of service.
Also, Internet transport and application protocols are typ-
ically well-equipped to cope with the varying loss and rate
allocation resulting from single-class FIFO scheduling, at
least to a certain extent. We denote these characteristics
as the FIFO principle. However, FIFO scheduling does not
support delay differentiation at all. Delay differentiation
requires traffic classification and multiple services classes.
Any kind of allocation-based or priority scheduler then re-
quires control intervention to avoid overloading the “good”
or “fast” classes. Existing schedulers that support delay dif-
ferentiation typically violate the FIFO principle by requiring
multi-class traffic regulation.

The goal of incentive-compatible differentiated scheduling
(ICDS) is to adhere to the FIFO principle but to support
delay differentiation. ICDS uses dynamic proportional rate
allocation to avoid creating any preferable service class. In-
stead, each traffic source has a natural incentive to pick the
service class with the most suitable delay target, depending
on its burst characteristics. Thereby, ICDS is a compact
and versatile building block for service differentiation.

The rest of this paper is organized as follows. In Section 2,
we discuss traditional approaches to quality of service (QoS)
and present previous work that is related to our approach.
In Section 3, a system model for ICDS is presented and an-
alyzed for its game-theoretic properties. There are several
design alternatives and implementation aspects, which are
briefly illustrated and discussed in Section 4. Then, in Sec-
tion 5 we present simulation results to explore the actual
effect of ICDS on traffic. This is followed by a discussion in
Section 6 and a summary and outlook in Section 7.

2. RELATED WORK

There is plenty of related work in the area of network QoS.
In this section, we only discuss archetypical examples of the
various proposals. At one end of the spectrum, the IETF
Integrated Services Architecture (IntServ) recreates the tra-
ditional telecommunications QoS model relatively closely. It
comprises admission control and packet scheduling. IntServ
implicitly conveys the notion of having these functions at

each node, although this is not strictly necessary.

The IETF Differentiated Services Architecture (DiffServ)
has been conceived to reduce the complexity of service dif-
ferentiation. In particular, it is focused on class-based traf-
fic control to reduce the data-plane overhead compared to
IntServ. Service signalling is treated as an independent
problem domain and recently receives renewed attention in
an IETF working group [18]. DiffServ is a rather loosely de-
fined packet processing framework, which can be populated
by many schedulers and control regimes and then results in
equally many different QoS proposals.

A very simple form of service differentiation is possible
by employing strict priority scheduling. In fact, this is one
specific example for a relative or proportional class-based
scheduler. A number of others are described in [7], for ex-
ample. This kind of differentiated scheduling creates prefer-
able traffic classes that deliver better service in all relevant
parameters than other classes in the system. Consequently,
it requires traffic regulation across service classes to avoid
all traffic being directed to the high-quality class. Thereby,
the multi-class system formed by any such a scheduler does
not conform to the FIFO principle.

A different form of QoS system is created by employing
admission control without any specific scheduling regime.
This is often combined with traffic and load measurement for
measurement-based admission control [3]. In a related sce-
nario, active queue management schemes, such as RED [9]
or one of its many successors, are used to produce load feed-
back that is transported to edge or end systems by means
of packet marking. An example for such a system proposal
is given in [4], which also includes many further references.
All proposals implicitly assume a single scheduling class and
limit service differentiation to the transmission rate.

Yet another proposal for efficient network QoS is given by
core-stateless techniques, such as [20] and [14]. These ap-
proaches exclusively focus on reducing the data-plane over-
head of packet processing, similar to DiffServ. However,
there are two important shortcomings. First, core-stateless
scheduling reduces the amount of state information, but still
requires per-flow signalling with all nodes in a domain. How-
ever, a large fraction of the processing overhead of network
signalling is spent per message transmission, regardless of
the amount of state being stored [13]. Second, the nature of
the distributed scheduling state results in a somewhat frag-
ile system where a single misconfigured or erroneous node
may disrupt services in a whole network domain.

In fact, operational complexity and deployment consid-
erations may completely outweigh low-level implementation
efficiency. For example, the QBone activity as part of Inter-
net2 has abandoned the concept of premium services, cit-
ing “non-architectural, and largely non-technical obstacles”
[21]. For these reasons, non-elevated services may be a much
better fit for the Internet. Such services can be described as
“deploy incrementally, with no need for policing, accounting,
or significant change to operational practices” [19].

The Best Effort Differentiated Services (BEDS) [8] main-
tains fixed delay and drop ratios between two services classes.
One of the service classes is intended for delay-sensitive traf-
fic, but might incur a higher packet loss, while the other one
provides lower packet loss. A similar proposal, although
different in certain details is presented as Fquivalent Differ-
entiated Services (EDS) in [10]. In both cases, it is unclear
how to configure the respective service ratios for any mean-

ingful absolute service guarantee. A different proposal for
non-elevated service differentiation is given by Alternative
Best-Effort (ABE) [11]. A delay-oriented service class pro-
vides an absolute bound on packet latency, but not adversely
affect the throughput-oriented other service class. ABFE’s
one slight drawback is its fairly complex drop operation. In
a sense, ICDS is a generalization of ABE by providing an
arbitrary number of delay classes, rather than just two.
Another important consideration is that of relevance. The
original reason for significant buffer capacity (resulting in
noticeable delay) in routers is to provide smooth service to
end systems producing bursty traffic, e.g. stemming from
window-based flow control. Recently, it has been speculated
that the necessary amount of buffer may be much less and
may become irrelevant in terms of delay [15]. While this
may be true for backbone routers [1], it is not clear whether
this assumption always holds [16] and in particular, whether
it holds for all parts of the network [6]. Regardless of the
outcome, incentive-compatible delay and buffer differentia-
tion is a future-proof technique that increases the flexibility
to build meaningful services in packet-switched networks.

3. SCHEDULER MODEL AND ANALYSIS
3.1 Scheduler Model

When considering service differentiation in packet-switch-
ing networks, we make the following observations. Different
applications and usage scenarios vary greatly in their re-
quirements for transmission rate. Many applications can
operate in a spectrum of different rates. In economic terms,
such applications have a concave rate utility function. There-
fore, a freely configurable transmission rate (as opposed to a
few fixed rate classes) is highly desirable for a multi-service
communication network. In contrast, it seems less impor-
tant to support a wide variety of delay settings. In economic
terms, delay utility curves are usually S-shaped, since delay
requirements are based on human perception or other exter-
nal factors. There is not much variety in delay requirements
and consequently, a fixed number of delay classes is suffi-
cient. On the other hand, dynamic rate allocation requires
suitable buffer adjustments to achieve high utilization and
meet delay targets. Inspired by these observations, ICDS is
defined as a system of n service classes, with each class ¢
having a delay target of d;, and consists of two components.

Rate Allocation - ICDS dynamically allocates service rates
in proportion to the instantaneous arrival rates. Given a
link capacity C and a set of arrival rates a;(t) at time ¢, the
service rate r¢(i) for class ¢ is computed as

0=Cm "

This (idealized) rate allocation policy is critical to maintain
the FIFO principle.

Packet Discard - The packet discard component enforces
the delay target by discarding those packets that cannot
be forwarded in time. This assessment is non-trivial in the
presence of dynamic service rate allocation.

Both components are necessary for incentive-compatibility.
Various implementation alternatives, discussed in Section 4,
offer different trade-offs between precision and complexity.

In summary, ICDS provides a simple and intuitive service
differentiation model by offering a fixed set of delay classes

and adhering to the FIFO principle with respect to rate
allocations. Besides a standalone scenario, ICDS has useful
properties in combination with admission control. This is
further discussed in Section 6. Therefore, ICDS is a highly
flexible and reusable building block for different IP routers.

3.2 Game-theoretic Properties

To understand the game-theoretic properties of ICDS, it
is necessary to map the system description of ICDS into a
game-theoretic model. Each traffic source is considered as
one of m players. Each player j is defined by its maximum
delay target dj € D = {d1,...,dn} where D is the set of
delay targets provided by n service classes of the ICDS mech-
anism. The delay target dj is called the type of player j and
it is assumed to be private information (i.e. the mechanism
and the other players do not know d}).

A strategy for player j, sj, is a mapping s; : D — D,
where, given its true delay target d;, the player announces
some delay target s;(dj) = d; by means of choosing the
corresponding ICDS service class. We place no further re-
strictions on the strategy of player j and, in particular,
we do not assume that s;(dj) = dj. A strategy profile,

s = (s1,...,8m), is a vector specifying that each player j
is playing strategy s;. A strategy profile is also written as
s =1(8j,5—;) where s_j = (81, ...,8j—1,Sj41s---,Sm)-

The outcome of the game depends on the strategies chosen
by the players. In particular, given a strategy profile s, we
describe the resulting outcome by o(s) = (d(s),y(s)) where
d(s) = (di(s),...,dm(s)) specifies the delay d;(s) that the
traffic of player j experiences, and v(s) = (y1(s), ..., Ym(s))
where 7;(s) is the drop rate experienced by player j.

The players have preferences over different possible out-
comes, given their type dj, which we capture using utility
functions uj;. We assume (as is commonly done) that all
the players are self-interested so that their utility depends
only on the delay and drop-rate of their own traffic. That
is: u;(0(s), ;) = 1wy (d(s),7(s)), &) = wy(d; (s),75(s), 7).
In addition, we assume that the rate allocation policy in (1)
follows the FIFO principle, such that the service rate is un-
affected by the choice of service class and can be ignored
here. Each player tries to choose a strategy that maximizes
its utility, given that all other players are doing the same.

Game theory is concerned with finding equilibria in the
space of strategy profiles. A strategy is said to be dominant,
if it is a player’s best strategy against any set of strategies
that other players may choose. Formally, a strategy sj is
a dominant strategy if u;(o(s},s—;),d}) > u;(o(s;,5-;),d;)
holds for all s; # s} and arbitrary s_;. A dominant strat-
egy equilibrium is a strategy profile s* where every player is
using a dominant strategy. While many games do not have
dominant strategy equilibria, ICDS has one. In fact, the
players’ dominant strategies are to reveal their true target
delay to the mechanism. That is, ICDS is strategy-proof,
which is an even stronger notion than incentive-compatible.
The proof relies on a set of assumptions about the system
and the players’ utility functions:

1. If dj > dy then ’yi(dﬁs,i) < ’yi(dk7 872‘)
2. If dj(s) > dj then u;(o(s),d;) =0
3. For two strategy profiles s and s', if d;(s),d;(s)

packet discard

classification

rate—proportional
packet scheduler

A

packet queue

rate

|
estimation rate allocation

Figure 1: ICDS Implementation

Assumption 1 states that a lower delay target, enforced by
a smaller buffer, results in a higher drop rate. Assumption 2
states that if the service delay is greater than the maximum
target delay then the player’s utility is 0. Assumption 3
states that for a fixed drop-rate, then as long as the delay is
less than the maximum target delay, the player is ambivalent
between the two outcomes. Assumption 4 states that as long
as the delay is less than the max target delay, a player prefers
to have a lower drop rate.

THEOREM 1. ICDS is a strategy-proof mechanism.

PROOF. (Sketch) If a player declares its target value truth-
fully, that is follows a strategy s;(d;) = d; when all others
play s_j, then its utility will be u;(o(d},s—;),d}) > 0. If,
instead, the player had followed strategy s;(d;) > dj then
ICDS would put its traffic into a class with delay greater
than its true target delay, resulting in w;(o(s;,s-;),dj) =0
(Assumption 2) and so the player is better off declaring
its true target value. If the player had followed a strat-
egy sj(d;) < dj then ICDS would put it into a class with
delay which is lower than if it had declared its true delay
target, but with a higher drop rate (Assumption 1). From
Assumptions 3 and 4, we can conclude that the player would
be better off by truthfully declaring its delay target. Since
player 7 and s_; were arbitrarily chosen, we can conclude
that any player is always best off truthfully revealing its
true delay. That is, there is a dominant strategy equilib-
rium where each player reveals its target delay truthfully, or
ICDS is strategy-proof. [

4. SCHEDULING ALGORITHM

A simple and straightforward implementation of ICDS is
sketched in Figure 1. It consists of a rate estimation compo-
nent, which controls a rate-proportional packet scheduler.
Additionally, a packet discard module enforces the maxi-
mum delay target by checking the queue status in relation
to the service rate and potentially discarding packets. Note
that this is a first attempt at implementing ICDS. We expect
that other approaches are possible.

4.1 Rate Estimation

The rate estimation algorithm used in our ICDS imple-
mentation is a modification of the Time Sliding Window
(TSW) algorithm [5], which allows for good control over the
rate estimation interval and decay of old values, indepen-
dently of the different arrival rates per class. For an esti-
mation window W, current packet size [;, and inter-packet

spacing d;, the original estimation formula is

R W+,
Ri=———. 2
W +;)
This formula requires a division over an arbitrary value,
which is prohibitive for a high-speed packet forwarding en-
vironment. We have designed a modified version, termed
efficient TSW (eTSW) as
Rioa(W—0:)+1;
R; = 3
= 3)

and have shown that it has the same properties as TSW [17].
The advantage of eTSW is that the division is fixed. If the
window size W is chosen as a power of 2, then the division
can be replaced by a faster shift operation. The implementa-
tion uses scaled integer representation for all computations.

Rather than estimating the absolute arrival rates, the rate
estimation component in ICDS estimates the relative arrival
rates, which can be used directly as the weight parameters
for the rate-proportional packet scheduler. Also, relative
rate estimation does not require any reference to wall-clock
time and is thus cheaper to implement. It is achieved in (3)
by using the total amount of arrived traffic as §;. This only
requires a simple byte counter. Depending on the particu-
lar type of rate-proportional scheduler, the reciprocal of the
relative weight may be needed to avoid a division operation
when computing deadlines. This can be achieved easily in
(3) by exchanging d¢; and ;.

To spread the execution overhead of rate estimation, (3) is
not computed synchronously for all classes at certain times.
Instead, each packet arrival triggers an update of the rate es-
timate for the corresponding class. This asynchronous com-
putation introduces a slight error in addition to the inherent
estimation error, in that the sum of all estimated rates can
exceed 1 temporarily. If delay targets are considered strict,
this needs to be handled by an additional test before in-
stalling a new service rate.

4.2 Packet Scheduling

Since the number of classes in ICDS depends on the num-
ber of delay targets being offered and this number is rather
limited, it seems feasible to pick any one of the more re-
cent proposed rate-proportional packet schedulers. It is de-
sirable to control burstiness and packet delays as precisely
as possible without incurring large scheduling error terms.
The current prototype of ICDS employs WF2Q+ [2], such
that experimental observations are not obfuscated by a lack
of scheduling precision. It may even be worthwhile to ex-
plore the slightly more precise L-WF2Q scheduler presented
in [22]. In a related proposal, one of this paper’s authors
presents a constant-time packet scheduler with characteris-
tics similar to WF2Q+4 [12].

4.3 Packet Discard

There are several alternatives for implementing the packet
discard decision in ICDS. In the simplest scenario, packet
deadlines are checked against the delay target whenever a
class is selected for service. However, this may lead to a
number of packet drops before servicing the next packet,
which may not be feasible at line speed. If it is possible to
limit the number of such late drops in relation to the number
of packets sent, an output buffer and amortization scheme
may be used to maintain efficient execution, but we have
not yet investigated this.

Without such a late drop scheme, the packet discard com-
ponent must assess the estimated queueing time for an arriv-
ing packet in the presence of variable rate allocation. Con-
sidering anything else than the queue and rate allocation of
that packet’s service class seems infeasible. Two detailed
discard strategies are outlined in the next section.

4.4 Rate Allocation and Delay

A crucial aspect for the operation of ICDS is the enforce-
ment of delay targets in the presence of variable rate al-
location. We distinguish between two scenarios. If it is
acceptable for a small number of packets to miss their de-
lay targets, loose delay operation is used. In this mode, the
sum of rate allocations may occasionally exceed 1 (cf. Sec-
tion 4.1) and delay enforcement is always only based on the
instantaneous backlog and rate allocation at packet arrival.

In strict delay mode, ICDS is enhanced by two mecha-
nisms. First, the total amount of available service rate is
kept as a state variable. Only if the new rate estimate does
not exceed the sum of the existing rate allocation plus the
available rate, it is used for the service class. Otherwise,
the allocation remains unchanged. Second, any reduction
of the rate allocation is deferred until all currently back-
logged packets are serviced whereas an increase is installed
immediately. This requires storing the future service rate
with each packet in the packet queue and further, to keep
track of the estimated queueing delay based on the sum of
packet times given the respective per-packet rate allocation.
Clearly, these operations result in a sub-optimal utilization
of transmission resources. Also, they require to keep track
of both the relative rate (to maintain the available rate) and
its reciprocal, regardless of the packet scheduler. This in-
troduces another source of inaccuracy. The effect of these
measures is investigated in [17] and found to be limited.

In summary, we believe that both loose and strict delay
mode are feasible operation regimes. In loose delay mode
not many packets miss their deadline, while in strict delay
mode the resource utilization is still very good.

5. SIMULATION RESULTS

We have run numerous simulation experiments with our
ICDS prototype, both in strict and loose delay mode. We
report some simple exemplary results to illustrate the effect
of ICDS in loose delay mode. In a dumbbell topology, ICDS
is configured with 3 service classes providing delay targets
of 10ms, 30ms, and 60ms. The bottleneck link capacity is
155 Mbit/s. 3 traffic sources generate different traffic flows:

CBR - 1 UDP CBR source with 15.5 Mbit/s sending rate
TCP - 100 TCP flows with 30ms one-way propagation delay
Bursty - 32 Pareto sources with shape 1.4, on-period 50ms,
and 93 Mbit/s average rate

CBR and TCP sources add a small random per-packet de-
lay to emulate CPU overhead and avoid phase effects. This
traffic mix is chosen to represent a worst-case workload with
TCP data traffic, UDP traffic from streaming applications,
and a large amount of erratic and bursty background traf-
fic. In the first experiment, FIFO scheduling is used with a
buffer size equivalent to 60ms. In subsequent experiments,
the different traffic types are sent through different combi-
nations of the three service classes. The observation param-
eters are throughput, loss, and delay. The upper half of
Figure 2 depicts the evolution of the throughput with FIFO

140 + Bursty ====--- 4

Throughput (Mbit/s)

0 10 20 30 40 50 60 70 80 90 100
Time (s)

140 Bursty ------- el

Throughput (Mbit/s)

.
0 10 20 30 40 50 60 70 80 90 100
Time (s)

Figure 2: FIFO (top) vs. ICDS (bottom)

Table 1: Average Throughput in Mbit/sec

Scenario (CBR/TCP/Bursty) | CBR | TCP | Bursty
FIFO (60,/60/60) 136 | 445 | 759
ICDS (10/30/60) 135 | 452 | 724
ICDS (10/10/60) 140 | 362 | 744
ICDS (10/30/30) 13.0 | 326 | 717
ICDS (10,/60/60) 136 | 434 | 75.0
ICDS (10/30/10) 12.0 | 539 | 57.3

scheduling. This is compared with the ideal ICDS configura-
tion where CBR traffic chooses the 10ms class, TCP chooses
30ms, and Bursty traffic chooses 60ms. It is observed that
the throughput pattern does not change fundamentally.

We show the average throughput numbers from all tested
configurations in Table 1. These average numbers are ex-
cluding the first 20 and last 10 seconds of the experiments.
In all scenarios, the Bursty traffic spikes cause occasional
short-term delay violations and drive loss rates. The rel-
ative order of loss rates from high to low is Bursty, CBR,
TCP. In contrast to FIFO scheduling, the differentiated de-
lay targets are generally met in the ICDS scenarios.

The first ICDS case 10/30/60 is the same as shown in Fig-
ure 2. No amount of buffer is really sufficient to cope with
the self-similar background traffic and ICDS effectively pro-
vides some isolation between service classes. Also, TCP’s
RTT is reduced due to meeting the 30ms delay target. In

summary, this is leads to a better rate allocation for TCP,
at the expense of Bursty. The next scenario 10/10/60 sim-
ulates an attempt of the TCP traffic to get better service
by sneaking into the low-delay class. It can be observed
that this attempts fails, as TCP’s rate average allocation
is reduced. In the scenario 10/30/30 the Bursty traffic en-
ters the 30ms class. Because the increased burstiness in the
30ms service class results in a higher loss rate, TCP con-
gestion control results in a lower average service rate for
TCP. However, Bursty traffic experiences no significant im-
provement, so one could describe this as a denial-of-service
scenario, which will require further attention in future work
(also see Section 6). The fourth scenario 10/60/60 illustrates
that choosing the right service class for traffic sources with
closed-loop rate control is not trivial. If the TCP traffic
chooses the higher delay class at 60ms, it is not as sensi-
tive to interference from the Bursty traffic class as before.
The fifth scenario 10/30/10 shows that without the benefit
from other traffic’s end-to-end congestion control, there is
no incentive for the Bursty traffic to enter low-delay classes.
In the 10ms class, its service rate suffers significantly while
harming the CBR traffic only to a moderate extent. Note
that the results are very preliminary and do not account for
various configuration details that affect the interaction of
ICDS with feedback-controlled traffic sources such as TCP.

6. DISCUSSION

The main goal of ICDS is to provide the right incentives
for traffic sources to avoid bursts or to choose the appro-
priate service class. Ideally, if all sources choose the proper
service class, the resulting rate allocation and drop probabil-
ities will be very close to a configuration using a single FIFO
queue. However, under overload there is no fate-sharing
with respect to buffering and delay, but instead each ser-
vice class is treated differently. In essence, this amounts to
incentive-compatible burst differentiation between different
types of application traffic.

This characteristic of ICDS retains the FIFO principle
and facilitates service differentiation without the need to dy-
namically adjust any parameter settings in core routers or
peering exchanges. If at all possible, the intelligence of any
network control regime should reside at edge systems with
little or no control interaction with internal nodes. This is
the operational model of the Internet and works well. As
discussed, rate differentiation is easily possible using edge
control only. ICDS extends that model with delay differen-
tiation and facilitates two main deployment scenarios.

In isolated deployment, ICDS is used at specific routers
along the data path that are prone to overload, but where
sophisticated traffic management is infeasible. A good ex-
ample for such routers are Internet peering points between
network domains. In the absence of a globally coherent QoS
system, ICDS will facilitate choice and delay differentiation
for different applications without adverse side effects.

The alternative domain deployment combines ICDS with
edge-based admission and rate control, for example as pro-
posed in [4]. This creates a powerful yet simple domain QoS
system that is capable of effective service differentiation, but
without any control interaction with internal nodes. All
other domain QoS proposals that facilitate delay differenti-
ation either rely on static resource partitioning — detrimental
to utilization — or require signalling with internal nodes.

In both deployment scenarios, ICDS inevitably amounts

to traffic aggregation. In fact, it can be regarded as a per-
hop auto-aggregation scheme. At each ICDS node, traffic
from different input ports is multiplexed into the same ser-
vice class and treated as an aggregate at subsequent nodes.
Normally, QoS guarantees for traffic aggregates require traf-
fic shaping at multiplexing points. Otherwise, a “misbehav-
ing” flow may distort a traffic aggregate leaving a lightly-
loaded node. This situation is somewhat (but not exactly)
comparable to the third ICDS scenario in the simulation ex-
periments (cf. Section 5). At subsequent nodes, the result-
ing burst may lead to excessive packet drop. The problem
of misbehaving flows can be addressed by using per-input
packet discarding and traffic shaping. This is relatively easy
with a worst-case fair scheduler that includes a traffic regu-
lation component anyway. The traffic regulation component
just needs to be changed from work-conservation to actual
shaping. Given a limited number of classes and input ports,
this seems entirely feasible, especially in the light of recent
developments for fair rate-proportional schedulers.

7. SUMMARY AND CONCLUSIONS

In this paper, we present a novel basic idea to approach
service differentiation in the Internet. We identify the FIFO
principle as an important flexibility criterion and relate it to
existing QoS work. We propose the ICDS mechanism as a
scheduling regime that facilitates delay differentiation while
adhering to the FIFO principle. ICDS is not yet a complete
and operational proposal, but hopefully stimulates further
work in this direction. We discuss a number of implementa-
tion details and illustrate open questions.

When making a few simple assumptions, ICDS has prov-
ably perfect game-theoretic properties, which is a very de-
sirable characteristic in any distributed environment. We
present simulation results to illustrate the effect of ICDS
on actual traffic. Most simulation results confirm our as-
sessment of ICDS and are thus encouraging for future work.
However, more work is needed to assess whether the game-
theoretic assumptions hold in all real-world scenarios. For
example, with feedback loops in the rate control function,
such as TCP’s congestion control, the effective service rate
is not as independent of the drop and delay properties as
assumed in Section 3.2. Due to limited space, we do not
address some of the relevant rate estimation details in this
paper. Furthermore, it is not clear how multiplexing in a
multi-hop scenario affects the validity of our simple assump-
tions. Finally, we discuss several deployment scenarios for
ICDS and point out chances and challenges resulting from
the inherent traffic aggregation taking place with ICDS.

8. REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
Router Buffers. In Proceedings of SIGCOMM 2004,
pages 281-292, Aug. 2004.

[2] J. C. R. Bennett and H. Zhang. Hierarchical Packet
Fair Queueing Algorithms. IEEE/ACM Transactions
on Networking, 5(5):675-689, Oct. 1997.

[3] L. Breslau, S. Jamin, and S. Shenker. Comments on
the Performance of Measurement-Based Admission
Control Algorithms. In Proceedings of Infocom 2000,
pages 1233-1242. TEEE, Mar. 2000.

[4] B. Briscoe, G. Corliano, P. Eardley, P. Hovell,

A. Jacquet, and D. Songhurst. An Architecture for

(10]

(11]

(12]

(13]

Edge-to-Edge Controlled Load Service using
Distributed Measurement-Based Admission Control.
Internet Draft, July 2005. Work in progress.

D. Clark and W. Fang. Explicit Allocation of
Best-Effort Packet Delivery Service. IEEE/ACM
Transactions on Networking, 6(4):362-373, Aug. 1998.
A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer
Sizing for Congested Internet Links. In Proceedings of
Infocom 2005. IEEE, Mar. 2005.

C. Dovrolis, D. Stiliadis, and P. Ramanathan.
Proportional Differentiated Services: Delay
Differentiation and Packet Scheduling. IEEE/ACM
Transactions on Networking, 10(1):12-26, Feb. 2002.
V. Firoiu, X. Zhang, and Y. Guo. Best Effort
Differentiated Services: Trade-off Service
Differentiation for Elastic Applications. In Proceedings
of ICT 2001. IEEE, June 2001.

S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397-413, Aug. 1993.
B. Gaidioz and P. Primet. EDS: A new scalable service
differentiation architecture for internet. In Proceedings
of ISCC 2002, pages 777-782. IEEE, July 2002.

P. Hurley, J.-Y. L. Boudec, P. Thiran, and M. Kara.
ABE: Providing a low-delay service within best-effort.
IEEE Network, 15(3):60-69, May 2001.

M. Karsten. A Packet Scheduler with Constant Delay
and Fairness and Small Constant Execution Overhead.
Apr. 2006. Proceedings of Infocom 2006.

M. Karsten, J. Schmitt, and R. Steinmetz.
Implementation and Evaluation of the KOM RSVP
Engine. In Proceedings of Infocom 2001, pages
1290-1299. IEEE, Apr. 2001.

J. Kaur and H. Vin. Core-Stateless Guaranteed Rate
Scheduling Algorithms. In Proceedings of Infocom
2001, pages 1484-1492. IEEE, Apr. 2001.

F. Kelly. Models for a self-managed Internet. In
Philosophical Transactions of the Royal Society A358,
pages 2335-2348, 2000.

A. Kortebi, L. Muscariello, S. Oueslati, and

J. Roberts. Evaluating the Number of Active Flows in
a Scheduler Realizing Fair Statistical Bandwidth
Sharing. ACM SIGMETRICS Performance Evaluation
Review, 33(1):217-228, June 2005.

Y. Lin. Evaluation of Incentive-Compatible
Differentiated Scheduling. Master’s thesis, School of
Computer Science, University of Waterloo, Waterloo,
ON, Canada, May 2005.

Next Steps in Signaling (nsis). IETF Working Group,
http://www.ietf.org/html.charters/nsis-charter.html.
Qbone home page. http://qbone.internet2.edu//.

I. Stoica and H. Zhang. Providing Guaranteed Services
Without Per Flow Management. In Proceedings of
SIGCOMM 1999, pages 81-94, Aug. 1999.

B. Teitelbaum and S. Shalunov. Why Premium IP
Service Has Not Deployed (and Probably Never Will),
May 2002. Internet2 QoS Working Group.

P. Valente. Exact GPS Simulation with Logarithmic
Complexity, and its Application to an Optimally Fair
Scheduler. In Proceedings of SIGCOMM 2004, pages
269280, Aug. 2004.

