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Abstract Scoring rules are traditional techniques to measure the association 
between a reported belief and an observed outcome. The condition that a scoring 
rule is proper means that an agent maximizes his expected score when he reports 
a belief that equals his true belief. The implicit assumption that the agent is risk 
neutral is, however, often unrealistic, at least when the underlying agent is a human. 
Modern decision theories based on rank-dependent utilities, such as cumulative 
prospect theory, have been shown to be more effective at describing how human 
beings make decisions under risk and uncertainty. Traditional proper scoring rules 
are, however, incompatible with cumulative prospect theory because they fail to 
satisfy a property called comonotonicity. In this paper, we provide novel insights 
on why comonotonicity is crucial to make proper scoring rules indeed proper when 
eliciting beliefs from cumulative prospect theory agents. After suggesting strategies 
to create comonotonic proper scoring rules, we propose calibration procedures to 
obtain an agent’s true belief by removing the influence of the agent’s value function 
and weighting functions from his reported belief, when beliefs are elicited by means 
of comonotonic proper scoring rules.
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1 Introduction

There are many scenarios in which an agent’s assessment of the likelihood of a 
future event is of interest to others. For example, a manager might be interested in 
the probability employees assign to the success of a new product/service. Likewise, 
central banks often rely on experts’ forecasts of economic indicators, such as GDP 
and unemployment rate, when shaping economic policies. A potential issue in those 
scenarios is that strategic agents are not necessarily honest when reporting their 
beliefs. For example, Friedman (1983) said:

In the absence of a well-chosen incentive structure, the experts may indulge in 
game playing which distorts their stated probability distributions. For instance, 
casual observation of economic forecasters suggests that experts who feel they 
have a reputation to protect will tend to produce a forecast near the consensus, and 
experts who feel they have a reputation to build will tend to overstate the probabili-
ties of events they feel are understated in consensus.” (Friedman 1983 [p. 447])

This is precisely what Nakazono (2013) found when analyzing forecasts from board 
members of the Federal Open Market Committee. In particular, Nakazono (2013) sug-
gested that the reported forecasts are heavily dependent on the previous consensus: 
members with permanent voting rights tend to report forecasts close to the previous 
consensus, whereas members who rotate voting rights tend to report forecasts far away 
from the previous consensus. In other words, there is a mix of herding and anti-herd-
ing behavior, which implies that individual members behave strategically.

When agents report subjective probabilities (beliefs), strategic behavior is very 
often undesirable since the reported information might not correspond to an agent’s 
true belief. Proper scoring rules (Winkler and Murphy 1968) are well-established 
scoring methods to induce honest reporting of subjective probabilities. Formally, an 
agent maximizes the expected score from a proper scoring rule by honestly report-
ing his belief. Hence, an implicit assumption behind the use of proper scoring rules 
is that agents are risk neutral, i.e., that they behave so as to maximize their expected 
scores. We discuss later in this paper how reporting a belief under a proper scor-
ing rule is equivalent to making a decision under uncertainty. Since the paradoxes 
noted by Allais (1953), violations of risk neutrality and, more generally, violations 
of the expected utility theory framework have been widely reported in the literature 
(Starmer 2000). Hence, a logical research direction is to adapt proper scoring rules 
to a more appropriate decision theory.

Modern theories of decision under uncertainty based on rank-dependent utili-
ties assert that the values that human beings derive from payoffs are represented by 
nonlinear utility functions, which in turn are weighted by decision weights, instead 
of subjective probabilities (Quiggin 1982; Schmeidler 1989). Decision weights are 
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defined in terms of differences between weighting functions applied to cumulative 
probabilities. Thus, according to rank-dependent models, both a utility function and 
weighting functions drive an agent’s attitude towards risk and uncertainty.

Cumulative prospect theory (Tversky and Kahneman 1992) is regarded as one of 
the most prominent theories of individual decisions under risk and uncertainty. As 
we elaborate in Sect. 4, cumulative prospect theory advances original rank-depend-
ent models by considering loss aversion and reference dependence. Camerer (2004) 
documented the superior predictive performance of cumulative prospect theory over 
expected utility theory, which subsumes risk neutrality, for a range of phenomena, 
e.g., the equity premium puzzle, the disposition effect, asymmetric price elastici-
ties, etc. Consider, for example, the disposition effect, i.e., the tendency of investors 
to sell stocks that have gone up in value since purchase as opposed to the ones that 
have gone down. Prospect theory explains the disposition effect by assuming that 
investors’ preferences are defined over realized gains and losses (Barberis and Xiong 
2009). That said, an investor holding a stock that has risen in value since purchase 
may think of the same as trading at a gain. Hence, the investor might be inclined 
to sell the stock if he is risk-averse over gains. Alternatively, the investor might be 
inclined to hold on to a stock that has gone down in value if he is risk seeking over 
losses. Therefore, the action taken by the investor is dependent on a reference price 
plus the investor’s risk attitudes towards gains and losses.

Given the discrepancy between cumulative prospect theory and risk neutrality, it 
is expected that agents who behave according to cumulative prospect theory misre-
port their true beliefs under a proper scoring rule since they are no longer expected 
value maximizers. In other words, proper scoring rules, as a payment structure, 
might induce cumulative prospect theory agents to report beliefs other than their true 
beliefs. This fact happens not necessarily because agents are strategic, but because 
traditional proper scoring rules do not take agents’ risk attitudes into account.

A potential way to deal with the above issue is to calibrate agents’ reported beliefs 
a posteriori. Unfortunately, this is not always possible. We show in this paper that 
traditional proper scoring rules are naturally incompatible with cumulative prospect 
theory, in a sense that there might be multiple true beliefs associated with a single 
reported belief. As a consequence, a reported belief cannot be always mapped back 
to a unique true belief.

Although this problem was already noted before (Offerman et  al. 2009; Kothi-
yal et al. 2011; Offerman and Palley 2016), previous works focused on the narrow 
case having probability values around 0.5. We show in this paper that this is not the 
only case and that, depending on the underlying proper scoring rule, such a problem 
might happen around any probability value.

We also provide a novel explanation for why a property called comonotonicity 
can solve the above incompatibility problem, and further suggest new strategies to 
construct comonotonic proper scoring rules from any bounded proper scoring rule. 
We finally suggest an approach to calibrate an agent’s reported belief so as to obtain 
the agent’s true belief when beliefs are elicited by means of a comonotonic proper 
scoring rule. In short, our proposed method eliminates the influence of the agent’s 
risk attitude, as defined by cumulative prospect theory, on his reported belief.
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2  Related work

Several mechanisms for inducing honest reporting of beliefs have been proposed 
in the literature. We refer the interested readers to the work by Schlag et al. (2015) 
and Schotter and Trevino (2014) for a detailed review of such mechanisms. Our 
focus in this paper is on proper scoring rules (Winkler and Murphy 1968). Proper 
scoring rules have been used directly and indirectly to promote honest reporting 
in a variety of domains, e.g., when grading students’ exams (Bickel 2010), when 
sharing rewards amongst a set of agents based on peer evaluations (Carvalho 
and Larson 2012), to elicit predictions in patient management and clinical trials 
(Spiegelhalter 1986), to elicit policy makers’ beliefs regarding the occurrence of 
political and economic events (Tetlock 2005), and in prediction markets set to 
aggregate agents’ subjective probabilities (Hanson 2003; Carvalho 2017).

Proper scoring rules rely on two main assumptions, namely risk neutral-
ity and the existence of observable outcomes. Our focus in this paper is on the 
first assumption. It is fair to say that risk neutrality is an acceptable assumption 
for computational agents since one can always argue that such agents are pro-
grammable (Parkes and Wellman 2015). When agents are humans, however, the 
assumption of risk neutrality is often unrealistic, even when the involved stakes 
are small (Weber and Chapman 2005; Armantier and Treich 2013). Focusing on 
the quadratic scoring rule, Winkler and Murphy (1970) investigated how nonlin-
ear utility functions affect agents’ reporting behavior. For some specific utility 
functions, Winkler and Murphy (1970) showed that a risk-seeking agent reports 
a sharp probability distribution, whereas a risk-averse agent reports a distribution 
close to the uniform distribution. In other words, different utility functions might 
induce different reporting behavior. Focusing on risk-averse agents, Armantier 
and Treich (2013) characterized how proper scoring rules might bias reported 
beliefs for different scoring ranges, when the agent has a financial stake in the 
event he is predicting, and when the agent can hedge his prediction by taking an 
additional action whose payoff depends on the outcome of the event.

Winkler and Murphy (1970) and Armantier and Treich (2013) assumed that 
agents are expected utility maximizers, where different risk attitudes are driven 
exclusively by utility functions. Modern models of decisions under uncertainty 
based on rank-dependent utilities suggest that besides nonlinear utility functions, 
probability sensitivity also plays a role in defining an agent’s attitude towards 
uncertainty (Gilboa 1987; Quiggin 1982; Schmeidler 1989). Carvalho (2015) dis-
cussed the consequences of assuming that agents are expected utility maximizers 
when they actually behave according to rank-dependent utility (RDU) theory and 
the rank-affected multiplicative weights (RAM) model (Birnbaum 1997, 2008). 
In the former case, Carvalho (2015) showed that even when a proper scoring rule 
is tailored to a RDU agent’s utility function, that agent still misreports his true 
belief by reporting a vector of decision weights. Decision weights reflect a cogni-
tive bias concerning how human beings deal with probability values when making 
decisions under risk and uncertainty. Thus, Carvalho’s analysis highlighted the 
importance of knowing all the components that drive an agent’s attitude towards 
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uncertainty before appropriately eliciting that agent’s belief. The author, however, 
did not elaborate on why a property called comonotonicity is crucial when elicit-
ing beliefs from RDU agents, which is one of the main arguments in our paper. 
Moreover, our analysis relies on less stringent technical assumptions.

Offerman et  al. (2009) suggested an approach to calibrate probability values 
reported under the quadratic scoring rule by agents who make decisions based on 
rank-dependent utilities in settings involving only two outcomes. The focus on a 
single variant of the quadratic scoring rule makes the method by Offerman et  al. 
(2009) quite limited. Furthermore, the suggested mechanism does not work well 
when analyzing probability values less than 0.5. Our work generalizes the results by 
Offerman et al. (2009) in three different ways: (1) by considering multiple outcomes, 
as opposed to binary outcomes; (2) by considering all comonotonic proper scoring 
rules, as opposed to only the quadratic scoring rule; and (3) by considering cumu-
lative prospect theory (Tversky and Kahneman 1992), a decision theory based on 
rank-dependent utilities which also incorporates loss aversion and reference depend-
ence. Cumulative prospect theory has consistently outperformed expected utility 
theory in terms of predictive accuracy (Camerer 2004; Starmer 2000), thus being 
a more suitable candidate to describe how agents make decisions under risk and 
uncertainty.

Kothiyal et al. (2011) noted that traditional proper scoring rules might not actu-
ally be proper under rank-dependent models. In particular, focusing on positive ver-
sions of the quadratic scoring rule and settings involving binary outcomes, Kothiyal 
et al. (2011) showed that many subjective probabilities might relate to the reported 
probability of 0.5 and, hence, such a probability value cannot be used to uniquely 
determine an agent’s true belief. We generalize the results by Kothiyal et al. (2011) 
in three different ways. First, we show that the above regression problem has noth-
ing to do with the specific probability value of 0.5. Instead, it is dependent on the 
underlying proper scoring rule. We illustrate how different proper scoring rules 
might cause similar regression problems around probability values other than 0.5. 
Second, we provide a novel and more formal explanation for why comonotonicity 
is a sufficient condition for mapping each reported belief to a single true belief and, 
consequently, to make proper scoring rules indeed proper under cumulative prospect 
theory. Finally, we show how to construct a comonotonic proper scoring rule from 
any bounded proper scoring rule and for any number of outcomes, whereas Kothiyal 
et al. (2011) focused only on positive proper scoring rules and binary outcomes.

3  Proper scoring rules

We consider a set of exhaustive and mutually exclusive outcomes {�1,… , �n} , for 
n ≥ 2 . We are interested in obtaining estimates on the probability of the occur-
rence of each outcome. To achieve this, we elicit probability vectors over the out-
comes from experts, henceforth referred to as agents. Agents have no influence on 
the occurrence of the outcomes, and they have no stakes in the outcomes of inter-
est. We denote an agent’s belief by the probability vector � = (p1,… , pn) , where 
pk is the subjective probability regarding the occurrence of outcome �k . Agents are 
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potentially strategic, meaning that they are not necessarily honest when reporting 
their beliefs. Therefore, we distinguish between an agent’s true belief � , and his 
reported belief � = (q1,… , qn) . Clearly, from a decision making perspective, it is 
desirable to obtain � = � . When � = � , we say that the agent is honestly reporting 
his belief. We induce honest reporting using payment structures called proper scor-
ing rules (Winkler and Murphy 1968). Finally, we assume that each agent behaves 
according to cumulative prospect theory (Tversky and Kahneman 1992) when mak-
ing decisions under uncertainty. We describe cumulative prospect theory in Sect. 4.

A scoring rule R(�, �x) evaluates the accuracy of a reported belief � by provid-
ing a real-valued score upon observing an outcome �x , for x ∈ {1,… , n} . Scores are 
often coupled with relevant incentives, such as financial and/or social-psychological 
rewards, which implies that agents seek to maximize the obtained scores. A scoring 
rule is called strictly proper when an agent receives his maximum expected score if 
and only if his reported belief � corresponds to his true belief � (Winkler and Mur-
phy 1968). The expected score of � at � for a real-valued scoring rule R(�, �x) is:

Some of the best known proper scoring rules, together with their scoring ranges are 
(Carvalho 2016b):

Savage (1971) showed that any differentiable strictly convex function that is well-
behaved at the endpoints of the scoring range can generate a proper scoring rule. 
Schervish (1989) and Gneiting and Raftery (2007) later provided more rigorous 
versions of the characterization by Savage (1971). An important property of proper 
scoring rules is that a positive affine transformation of a proper scoring rule is still 
proper (Toda 1963). Hence, in practice, one can easily change the range of a scoring 
rule, meaning that the above scoring rules are not always associated with the listed 
ranges.

Henceforth, we say that a scoring rule is positive when all the returned scores 
are nonnegative, i.e., R(�, �x) ≥ 0 for all x ∈ {1,… , n} . The spherical scoring rule 
in (1) is an example of a positive scoring rule. A negative scoring rule, on the other 
hand, only returns nonpositive scores, i.e., R(�, �x) ≤ 0 for all x ∈ {1,… , n} . The 

��

[
R(�, ⋅)

]
=

n∑
x=1

px R(�, �x)

(1)
spherical:R(�, �x) =

qx�∑n

k=1
q2
k

[0, 1]

(2)logarithmic:R(�, �x) = log qx(−∞, 0]

(3)quadratic:R(�, �x) =2qx −

n∑
k=1

q2
k
[−1, 1]
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logarithmic scoring rule in (2) is an example of a negative scoring rule. Finally, a 
mixed scoring rule might return both positive and negative scores. The quadratic 
scoring rule in (3) is an example of a mixed scoring rule.

Throughout this paper, we assume a strict ordering of the outcomes such that the 
scores from a proper scoring rule are ordered: R

(
�, �n

)
 > R

(
�, 𝜃n−1

)
> ⋯ > R

(
�, 𝜃1

)
 

for all � , i.e., an agent will always receive the highest score when outcome �n hap-
pens, the second highest score when outcome �n−1 happens, and so on, no mat-
ter what he reports. In other words, the proper scoring rule R satisfies a property 
called comonotonicity (Schmeidler 1989; Kothiyal et  al. 2011). For our purposes, 
a proper scoring rule R satisfies comonotonicity when R(�, 𝜃x+1) > R(�, 𝜃x) for any 
x ∈ {1,… , n − 1} and � ∈ Δn−1 , where Δn−1 is the unit simplex in ℜn . We discuss 
later in this paper why comonotonicity is a crucial property to ensure properness 
when agents behave according to cumulative prospect theory. We note that the out-
comes �1,… , �n can always be rearranged so that the above inequalities hold true.

3.1  Constructing a comonotonic proper scoring rule

We discuss in this subsection how to create comonotonic proper scoring rules from 
any bounded proper scoring rule by adding stakes to the underlying outcomes, thus 
extending the work by Kothiyal et al. (2011) who considered proper scoring rules 
only in domains with binary outcomes. Consistent with the definition of Kadane and 
Winkler (1988) and Armantier and Treich (2013), we introduce stakes by assum-
ing that scores increase by an exogenous amount when different outcomes occur. 
For instance, an agent may be asked to predict whether the closing price of a stock 
he holds will go up in the coming day. The final payoff of that agent is depend-
ent not only on the score from the proper scoring rule, but also on the final stock 
value, which in turn is dependent on the observed outcome, but independent from 
the reported prediction. This is formally equivalent to adding different constants to 
R(�, �x) for different values of x ∈ {1,… , n} . Formally, one can think of stakes as 
a function that maps outcomes to real values. As a result, it is immediate that any 
proper scoring rule remains proper in the presence of stakes. In this subsection, we 
assume that the baseline proper scoring rule R is bounded within the range (a, b). 
When R is a positive proper scoring rule, i.e., a, b ∈ ℜ+ , we can then define a new 
scoring rule S as follows:

for x ∈ {1,… , n} . The above scoring function has different non-overlapping ranges 
for different outcomes. When the first outcome happens, i.e., when x = 1 , the range 
of the resulting score is (a, b). When �2 happens, the range of the resulting score is 
(b, 2b − a) . When �3 happens, the range of the resulting score is (2b − a, 3b − 2a) , 
and so on. Clearly, we obtain S(�, 𝜃n) > S(�, 𝜃n−1) > ⋯ > S(�, 𝜃1) ≥ 0 , meaning 
that S is positive and comonotonic. Moreover, S is trivially proper, i.e., an agent has 
to report � = � to maximize the expected value of S.

When R is a negative proper scoring rule with range (a,  b), for a, b ∈ ℜ− , we 
define S as follows:

(4)S(�, �x) = R(�, �x) + (x − 1) ⋅ (b − a)
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for x ∈ {1,… , n} . Once more, S is proper and it has different non-overlapping 
ranges for different outcomes, thus satisfying comonotonicity. Moreover, we obtain 
0 ≥ S(�, 𝜃n) > S(�, 𝜃n−1) > ⋯ > S(�, 𝜃1) , meaning that S is negative.

Finally, when R is a mixed proper scoring rule satisfying 
R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, 𝜃i) ≥ 0 > R(�, 𝜃i−1) > ⋯ > R(�, 𝜃1) , bounded 
within the range (a, b), for a ∈ ℜ− and b ∈ ℜ+ , we can then define a new scoring 
rule S as follows:

that is, the resulting scoring rule S is a combination of (4) and (5). S is a mixed scoring 
rule satisfying S(�, 𝜃n) > S(�, 𝜃n−1) > ⋯ > S(�, 𝜃i) ≥ 0 > S(�, 𝜃i−1) > ⋯ > S(�, 𝜃1) , 
and it is proper and comonotonic. Note that the index i determines when scores 
move from positive to negative. In particular, when i = 1 (respectively, i = n + 1 ), a 
mixed proper scoring rule becomes a positive (respectively, negative) proper scoring 
rule.

It is important to note that the the design of a comonotonic proper scoring rule 
and, consequently, the ranking of the underlying outcomes are done a priori, i.e., 
before eliciting an agent’s belief. Hence, they are independent of any reported belief 
� . A question that might then arise is: how should a requester order the outcomes? 
An interesting idea is to minimize each agent’s payment when scores are coupled 
with financial rewards and the requester has a prior/baseline belief over the out-
comes. For example, the lowest score range can be associated with the outcome the 
requester believes is the most likely to occur, the second score range with the second 
most likely outcome, and so on. Clearly, one can adapt this idea in different ways, 
e.g., when the requester wants to maximize the collected payments resulting from 
the use of a negative proper scoring rule. In spirit, our idea is similar to the concept 
of tailored proper scoring rules by Johnstone et al. (2011), where scoring rules are 
tailored to specific decision-making problems and to the utility functions of particu-
lar requesters. In particular, one can see our suggestion as a way of tailoring a proper 
scoring rule to a requester’s objective regarding scoring rule payments.

To summarize, one can create a comonotonic proper scoring rule from any bounded 
proper scoring rule by adding different stakes to different outcomes, so that the range 
of the score an agent receives depends on the observed outcome, where different non-
overlapping ranges are associated with different outcomes. Hence, an agent’s reported 
belief defines the agent’s scores inside the possible ranges. Our approach is constructive 
in nature. We note, however, that our approach can be further generalized. In particular, 
any scheme that defines score ranges that do not intersect will result in comonotonic 
proper scoring rules. It is noteworthy that none of the traditional proper scoring rules 
we mentioned in this section satisfies comonotonicity (we elaborate on the quadratic 
scoring rule case in Sect. 5) and that a positive affine transformation of a comonotonic 
proper scoring rule is still comonotonic and proper. Moreover, under a comonotonic 
proper scoring rule, the requester loses some control over the highest/lowest score 

(5)S(�, �x) = R(�, �x) + (n − x) ⋅ (a − b)

S(�, �x) = R(�, �x) + (n − x) ⋅ (a − b), for x ∈ {1,… , i − 1}

S(�, �x) = R(�, �x) + (x − 1) ⋅ (b − a), forx ∈ {i,… , n}
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values assigned to different reported beliefs. This happens because the ranges the 
scores belong to are now dependent on the observed outcome. For example, one can 
no longer state that a completely wrong reported belief assigning the probability 1 to an 
outcome that does not occur will receive a specific score value, say zero, because the 
range of that score value is now dependent on the underlying observed outcome.

4  Cumulative prospect theory

A basic assumption behind proper scoring rules is that agents behave to maximize their 
expected scores, i.e., they are risk neutral. It has been widely reported that humans very 
often fail to be risk neutral, no matter if the underlying stakes are high or low (Starmer 
2000; Weber and Chapman 2005). Different from risk neutrality and, more broadly, 
expected utility theory, modern theories of individual decisions under risk and uncer-
tainty based on ranks assert that both sensitivity to payoffs and sensitivity to probabili-
ties generate deviations from risk neutral behavior.

Cumulative Prospect Theory (CPT) (Tversky and Kahneman 1992) is a prominent 
theory based on ranks which also incorporates loss aversion and reference depend-
ence. CPT is defined in terms of prospects, which are outcome-contingent payoffs. 
We use the notation � = [s1 ∶ �1,… , sn ∶ �n] to denote a prospect � which yields a 
payoff of sk ∈ ℜ if outcome �k occurs, for k ∈ {1,… , n} . Since one can always rear-
range the outcomes, we assume without loss of generality that sn ≥ sn−1 ≥ ⋯ ≥ s1 . 
The uncertainties regarding the occurrence of the outcomes are quantified in terms 
of a probability vector � = (p1,… , pn) . Consequently, we can represent a prospect as 
� = [s1 ∶ p1,… , sn ∶ pn] , which yields a payoff of sk ∈ ℜ with probability pk.

A prospect is called positive if all payoffs are nonnegative, i.e., 
sn > sn−1 ≥ ⋯ ≥ s1 ≥ 0 . We denote a positive prospect by �+ . A prospect is called 
negative if all payoffs are nonpositive, i.e., 0 ≥ sn ≥ ⋯ ≥ s2 > s1 . We refer to a nega-
tive prospect as �− . Finally, a mixed prospect �± contains both positive and negative 
payoffs, i.e., sn > sn−1 ≥ ⋯ ≥ si ≥ 0 ≥ si−1 ≥ ⋯ ≥ s2 > s1.

In expected utility theory, which subsumes risk neutrality, the utility of a prospect, 
i.e., the value an agent derives from a prospect, is equal to the sum of the utilities of 
the payoffs, each one weighted by its underlying (subjective) probability. CPT proposes 
two major modifications of the expected utility theory framework: (1) the utility of 
each payoff is multiplied by a decision weight, not by an additive probability; and (2) 
the carriers of value are gains and losses relative to a reference point, not final payoffs. 
Formally, the value an agent derives from a prospect is defined in terms of a utility 
function, a loss aversion parameter, and weighting functions. We discuss these compo-
nents in the following subsections before going into details about CPT utilities.

4.1  Value functions

Cumulative prospect theory asserts that the carriers of value are gains and losses 
relative to a reference point. When defining positive, negative, and mixed prospects 
in the beginning of this section, we implicitly assumed that the reference point was 
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equal to 0. Such an assumption will be made throughout the rest of this paper. We 
argue that this is not a strong assumption since we are dealing with one-shot mecha-
nisms for eliciting beliefs. Moreover, our results are independent of specific values 
for the reference point. An alternative modeling choice would be to consider the 
reference point as the current wealth of the reporting agent. We note that such an 
approach would require the truthful elicitation of wealth, thus overcomplicating the 
original task of eliciting beliefs.

CPT agents have different risk attitudes towards gains and losses, i.e., with 
respect to payoffs above and below the reference point. Formally, the intrinsic value 
of a payoff sk is defined in terms of a strictly increasing function V ∶ ℜ → ℜ , called 
the value function, which satisfies:

where U ∶ ℜ → ℜ is a continuously differentiable, strictly increasing utility func-
tion satisfying U(sk) ≥ 0 , for sk ≥ 0 , and U(sk) ≤ 0 , for sk ≤ 0 . The parameter � ≥ 1 
is the loss aversion parameter. The loss aversion parameter captures the psychologi-
cal phenomenon that “losses loom larger than gains” (Tversky and Kahneman 
1992). As a consequence, the value function is steeper for losses than for gains, i.e., 
V �(sk) < V �(−sk) , for sk > 0 . It is often the case that the parameter � is defined in 
terms of the utility function. For example, Tversky and Kahneman (1992) implicitly 
assumed that � = −

U(−1)

U(1)
 , finding empirically that � = −U(−1) = 2.25 . Another 

property of the value function V is that it is concave for gains, convex for losses, and 
it satisfies V(0) = 0 . Tversky and Kahneman (1992) proposed the following value 
function:

where � and � are parameters of the underlying power utility function. Figure  1 
illustrates the value function in (6) for parameter values empirically determined by 
Tversky and Kahneman (1992).

4.2  Weighting functions

Cumulative prospect theory asserts that the weight associated with the value V(sk) is 
the difference between two transformed ranks, instead of an individual probability 
value pk , as in expected utility theory. Following the notation in the book by Wakker 
(2010), for a positive prospect �+ , the rank of a payoff sk is the probability of �+ yield-
ing a payoff better than sk , i.e., the rank of sk is equal to pk+1 + pk+2 +⋯ + pn . In this 
way, ranks are numbers between 0 and 1 and not integers. The weight of V(sk) is then 
the marginal contribution of the individual probability pk to the total probability of 

V(sk) = U(sk) for sk ≥ 0

V(sk) = 𝜆U(sk) for sk < 0

(6)V(sk) =

{
s�
k

for sk ≥ 0,

� ⋅
(
−(−sk)

�
)

otherwise
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receiving better payoffs, measured in terms of a continuous and strictly increasing func-
tion W+ ∶ [0, 1] → [0, 1] . Formally, the weight of V(sk) is �+

k
 , where:

For a negative prospect, the weight associated with V(sk) , �−
k
 , is the marginal 

contribution of the individual probability pk to the total probability of receiving 
worse payoffs, measured in terms of a continuous and strictly increasing function 
W− ∶ [0, 1] → [0, 1] , i.e.:

The �-values in (7) and (8) are traditionally referred to as decision weights. Deci-
sion weights reflect a cognitive bias concerning how human beings distort prob-
ability values and, thus, they should not be taken as a measure of an agent’s true 
belief. Importantly, (�+

1
,… ,�+

n
) and (�−

1
,… ,�−

n
) are probability vectors because 

W+
�∑n

k=1
pk
�
= W−

�∑n

k=1
pk
�
= 1 , whereas the same is only true for (�−

1
, 

… ,�−
i−1

,�+

i
,… ,�+

n
) when W−(�) +W+(1 − �) = 1 , for all � ∈ [0, 1].

The functionals W+ and W− are known as weighting functions. Common findings 
suggest that a weighting function is a nonlinear transformation of the probability scale 
that overweights small probabilities and underweights moderate and high probabilities 
(Abdellaoui 2000; Tversky and Kahneman 1992). In other words, the weighting func-
tion displays an inverse-S shape: it is concave near 0 and convex near 1. Moreover, 
W+(0) = W−(0) = 0 . The weighting functions proposed by Tversky and Kahneman 
(1992) for gains and loses are:

(7)

�+
n
= W+(pn)

�+

k
= W+

(
n∑

x=k

px

)
−W+

(
n∑

x=k+1

px

)
, for k ∈ {1,… , n − 1}

(8)

�−
1
= W−(p1)

�−
k
= W−

(
k∑

x=1

px

)
−W−

(
k−1∑
x=1

px

)
, for k ∈ {2,… , n}

(9)W+(�) =
��

(�� + (1 − �)� )
1

�

and W−(�) =
��

(�� + (1 − �)�)
1

�

Fig. 1  Tversky and Kahne-
man’s value function for 
� = � = 0.88, � = 2.25 , and the 
reference point equal to 0
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where � , � ≥ 0.28 for the weighting functions to be strictly increasing. Figure 2 illus-
trates the above weighting functions for � = 0.61 and � = 0.69 , the parameter values 
empirically found by Tversky and Kahneman (1992). We refer the interested reader 
to the work by Gonzalez and Wu (1999) for a review of different shapes of weight-
ing functions.

4.3  CPT utility

Cumulative prospect theory asserts that risk attitudes are jointly determined by the 
weighting functions and the value function. Together, they result in a fourfold pattern 
of risk attitudes: risk aversion for gains and risk seeking for losses of high probabil-
ity; risk seeking for gains and risk aversion for losses of low probability (Tversky and 
Kahneman 1992). Let CPT(�) be the value an agent derives from a prospect accord-
ing to cumulative prospect theory. For a positive prospect �+ = [s1 ∶ p1,… , sn ∶ pn] , 
CPT(�+) is defined as:

The CPT utility for a negative prospect �− = [s1 ∶ p1,… , sn ∶ pn] is:

Finally, the CPT utility for a mixed prospect �± = [s1 ∶ p1,… , sn ∶ pn] , where 
sn > sn−1 ≥ ⋯ ≥ si ≥ 0 ≥ si−1 ≥ ⋯ ≥ s2 > s1 , is:

(10)CPT(�+) =

n∑
k=1

�+

k
V(sk)

(11)CPT(�−) =

n∑
k=1

�−
k
V(sk)

(12)CPT
(
�±
)
=

i−1∑
k=1

�−
k
V(sk) +

n∑
k=i

�+

k
V(sk)

Fig. 2  Tversky and Kahneman’s 
weighting functions for � = 0.61 
and � = 0.69
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4.4  Numerical example

The following example illustrates how risk neutral and CPT agents might behave dif-
ferently when evaluating prospects. Consider an agent facing the choice between two 
positive prospects, namely �1 = [150, 1] and �2 = [10 ∶ 0.6, 100 ∶ 0.3, 1000 ∶ 0.1] . 
In words, the former prospect pays 150 units of numeraire for sure, whereas the 
latter prospect has a relatively high (respectively, low) probability of paying less 
(respectively, more) than the former prospect. The value of prospect �1 to a risk neu-
tral agent is equal to 1 × 150 = 150, whereas the value of prospect �2 is equal to 
10 × 0.6 + 100 × 0.3 + 1000 × 0.1 = 136 . Hence, a risk neutral agent prefers pros-
pect �1 over prospect �2.

Now, let us analyze how a CPT agent evaluates the above prospects. We assume the 
utility and weighting functions represented by, respectively, Eqs. 6 and 9, the param-
eter values being equal to the ones in Figs. 1 and 2. The CPT agent evaluates prospect 
�1 as follows: CPT(�1) = W+(1)V(150) = 1500.88 = 82.21675 . Note how the value 
function affects the valuation of the prospect, whereas the weighting function does 
not. This happens because the prospect is deterministic, i.e, there is no uncertainty 
involved in its payment. Now, consider how the CPT agent evaluates prospect �2 : 
CPT(�2) = W

+(0.1)V(1000) + (W+(0.3 + 0.1) −W
+(0.1))V(100) + (1 −W

+(0.3+

0.1))V(10) = 96.6749 . That is, the CPT agent prefers gambling with �2 as opposed to 
the deterministic prospect �1.

One can also consider the intermediate case where agents are expected 
utility maximizers. The value of prospect �1 to that agent is equal to 
1 × V(150) = 1500.88 = 82.2167 , whereas the value of prospect �2 is equal to 
V(10) × 0.6 + V(100) × 0.3 + V(1000) × 0.1 = 65.4662 . Hence, a risk-averse agent 
prefers prospect �1 over prospect �2.

This example illustrates some interesting points. First, it shows how different 
decision models might imply that the underlying agents prefer different prospects. 
Second, it highlights that risk aversion in the CPT model is defined by both weight-
ing functions and value functions, whereas the risk attitude of expected utility maxi-
mizers is driven exclusively by the value function.

5  Proper scoring rules under cumulative prospect theory

We note that the scores resulting from a comonotonic proper scoring rule R can be 
stated in terms of a prospect, i.e., [R(�, �1) ∶ p1,… , R(�, �n) ∶ pn] . In other words, 
when reporting a belief � , an agent is essentially defining the payoffs of a prospect, 
where the associated probabilities are subjective probabilities. Reporting a belief � 
is then equivalent to making a decision under uncertainty by choosing a prospect 
among a potentially infinite number of prospects. Consequently, an agent’s reporting 
behavior can be analyzed from the perspective of different decision theories, includ-
ing cumulative prospect theory.

In general, the utility derived by an agent who behaves according to cumulative 
prospect theory from a prospect is only equal to the utility derived by a risk neutral 
agent when: (1) the weighting functions are identity functions; (2) the utility function 
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is linear; and (3) the loss aversion parameter is equal to 1. Hence, cumulative pros-
pect theory subsumes risk neutrality and, more broadly, expected utility theory. As 
discussed before, common findings suggest that the weighting functions are nonlinear 
functions, the utility function is concave for gains and convex for losses, and the loss 
aversion parameter is greater than 1. Thus, risk neutral agents and CPT agents found in 
practice are expected to value prospects in different ways and, consequently, to behave 
differently when reporting their beliefs under a proper scoring rule.

Later in this paper, we characterize how CPT agents report their beliefs under 
positive, negative, and mixed proper scoring rules. Moreover, we discuss how to 
solve the resulting systems of equations to obtain an agent’s true belief from his 
reported belief. Naturally, we start by assuming that an agent is rational, meaning 
that he reports his belief so as to maximize his CPT utility. In other words, each 
agent is solving the following optimization problem:

One might argue that cumulative prospect theory is a descriptive theory, as opposed 
to a prescriptive, objective-maximizing theory. We note, however, that our approach 
is in agreement with relevant literature, e.g., see the work by Offerman et al. (2009), 
Kothiyal et al. (2011), and Offerman and Palley (2016). We abuse notation by drop-
ping the underlying proper scoring rule R and by writing CPT(�) , instead of CPT(�) , 
for � = [R(�, �1) ∶ p1, … , R(�, �n) ∶ pn] . Given that the CPT functional is continu-
ous and that the domain of every qk is compact, an optimal � always exists. There 
may exist several optima, in which case one optimum is arbitrarily selected to be the 
reported probability vector � . We note that, since all the constraints are linear, it must 
be the case that the reported probability vector � satisfies the Karush–Kuhn–Tucker 
(KKT) conditions, i.e., it satisfies first-order necessary conditions for a solution in a 
nonlinear optimization problem to be optimal. The Lagrangian associated with the 
above problem is:

One can think of the above Lagrangian as a reformulation of the optimization prob-
lem in (13) that penalizes violations of its inequality constraints. In our upcoming 
analyses, we heavily use the Lagrangian in a reverse-engineering fashion, i.e., know-
ing what the optimal solution to the above optimization problem is (namely, � ), we 
will find the reported belief � that leads to that solution. The dual feasibility and the 
complementary slackness associated with (14) are:

(13)

maximize
�

CPT(�)

subject to

n∑
k=1

qk = 1

qk ≥ 0, k ∈ {1,… , n}

(14)L(�, �,�) = CPT(�) − �

(
n∑

k=1

qk − 1

)
+

n∑
k=1

�kqk
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The dual feasibility and complementary slackness are part of the KKT conditions, 
meaning that they must be satisfied for a reported belief � to be an optimal solu-
tion to the problem in (13). Let �∗ = (q∗

1
,… , q∗

n
), �∗,�∗ = (�∗

1
,… ,�∗

n
) be the opti-

mal points for the Lagrangian. Henceforth, we assume that the constraint qk ≥ 0 is 
not binding at the optimal, i.e., q∗

k
> 0 , for k ∈ {1,… , n} . Consequently, due to the 

complementary slackness, �∗
k
= 0 , for k ∈ {1,… , n} . This assumption allows us 

to remove � from the Lagrangian. We note that without such an assumption, we 
might run into technical problems whenever the underlying proper scoring rule is 
not bounded, e.g., the resulting CPT utility is undefined when the proper scoring 
rule is the logarithmic scoring rule and q∗

k
= 0 , for some k ∈ {1,… , n} . We allow, 

however, q∗
k
 to be arbitrarily close to 0.

5.1  Why comonotonicity matters

A question that might arise from the above discussion is: why does the proper 
scoring rule have to satisfy comonotonicity? Under a non-comonotonic proper 
scoring rule, agents with cumulative prospect theory utilities and different true 
beliefs might end up reporting a similar belief, which means that the reported 
belief cannot be used to uniquely identify an agent’s true belief. This point was 
first noted by Offerman et  al. (2009) for a positive version of the quadratic scor-
ing rule and binary outcomes. For illustration’s sake, consider an agent with belief 
� = (p1, p2) = (p1, 1 − p1) , who reports � = (q1, q2) = (q1, 1 − q1) under the proper 
scoring rule R(�, �x) = 2qx −

�∑n

k=1
q2
k

�
+ 1 , which is positive and has the range 

[0, 2]. Figure 3a illustrates the findings by Offerman et al. (2009), i.e., how an agent 
with the CPT utility in (10) reports q1 in terms of p1 when W+ is equal to the weight-
ing function in (9) with parameter � = 0.61 , and the value function is equal to the 
function in (6) with parameter � = 0.88.

The most striking feature of Fig. 3a is that the curve is flat around p1 = 0.5 . As 
suggested by Offerman et  al. (2009), the risk aversion generated by the CPT util-
ity is so strong for a subjective probability around 0.5 that an agent makes the safe 
choice of reporting 0.5. Putting it in different words, Fig. 3a shows that the underly-
ing non-comonotonic proper scoring rule may be insensitive to small changes in the 
neighborhood of 0.5 for binary outcomes. As a consequence, a reported probability 
of q1 = 0.5 relates to many degrees of true belief and, thus, it cannot be used to 
uniquely determine the correct true belief. As Kothiyal et al. (2011) mentioned, if 
properness is to be taken to mean that all degrees of belief can be identified, then 
traditional, non-comonotonic proper scoring rules are no longer proper under cumu-
lative prospect theory.

When discussing the flat-region issue, previous work focused on the quadratic 
scoring rule, the specific probability value of 0.5, and binary outcomes (Offerman 
et al. 2009; Kothiyal et al. 2011; Offerman and Palley 2016). We argue, however, 
that this narrow focus is not exhaustive, and that the flat-region issue has nothing 

�k ≥0, for k ∈ {1,… , n}

�kqk =0, for k ∈ {1,… , n}
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to do with the specific probability value of 0.5 per se. This is just an artifact of 
the underlying proper scoring rule, namely the quadratic scoring rule. Instead, we 
argue that this issue arises at the crossing point when R(�, �1) = R(�, �2) , for a 
non-comonotonic proper scoring rule R. It is well known that for binary outcomes, 
R(�, �1) is increasing in q1 , whereas R(�, �2) must be decreasing. This implies that, 
for the quadratic scoring rule, R(�, �1) and R(�, �2) cross once. In the above example, 
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(a) The reported probability of q1 = 0.5 relates to
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(f) No crossing point in the range of q1 ∈ [0,1].

Fig. 3  Example of the impact of comonotonicity on how reported beliefs associate with true beliefs
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this happens when q1 = 0.5 (see Fig. 3b). To understand the consequences of such 
a crossing point, consider the case where a CPT agent contemplates reporting the 
belief �� = (0.5, 0.5) . The CPT utility value assigned to the underlying prospect is 
then:

Note that the CPT value does not depend on the agent’s true belief � , and the rea-
son for this is that R(��, �1) = R(��, �2) . Now, let’s contrast the above to the case 
where the agent contemplates reporting �′′ , which has q1 > 0.5 . This implies that 
R(���, 𝜃1) > R(��, 𝜃1) = R(��, 𝜃2) > R(���, 𝜃2) . The CPT value assigned to the under-
lying prospect is then:

Let us momentarily disregard the case where a CPT agent’s true belief con-
tains p1 < 0.5 (i.e., the leftmost part of Fig.  3a). The question that arises is then: 
should that agent report the belief �′ or another belief �′′ ? Clearly, the answer 
to this question depends on the value of �1 in (16), which in turn depends on the 
agent’s true belief � = (p1, 1 − p1) . Recall that R(���, 𝜃2) < R(��, 𝜃2) and, con-
sequently, V(R(���, 𝜃2)) < V(R(��, 𝜃2)) . Equations (15) and (16) then imply that 
for some values of p1 and, consequently, �1 , a CPT agent might be better off by 
reporting �′ as opposed to �′′ . In the scenario described in Fig. 3a, this is true for 
p1 ∈ [0.5, 0.646] , i.e., it is in the best interest of a CPT agent to report �� = (0.5, 0.5) 
when p1 ∈ [0.5, 0.646] , and to report �′′ having q1 > 0.5 when p1 ∈ (0.646, 1] . One 
can see the resulting CPT values for different reporting strategies in Fig. 4a.

Let’s now contrast (15) to the case where the agent contemplates reporting �′′′ , 
which has q1 < 0.5 . This implies that R(����, 𝜃1) < R(��, 𝜃1) = R(��, 𝜃2) < R(����, 𝜃2) . 
The CPT utility value assigned to the underlying prospect is then:

This time, we momentarily disregard the case where a CPT agent’s true belief 
contains p1 > 0.5 (i.e., the rightmost part of Fig.  3a). Whether an agent reports 
the belief �′ or another belief �′′′ depends on the value of �2 in (17), which in turn 
depends on the agent’s true belief � = (p1, 1 − p1) . Recall that R(����, 𝜃1) < R(��, 𝜃1) 
and, consequently, V(R(����, 𝜃1)) < V(R(��, 𝜃1)) . Equations (15) and (17) then imply 
that for some values of p1 and, consequently, �2 , a CPT agent might be better off by 
reporting �′ as opposed to �′′′ . In the scenario described in Fig. 3a, this is true for 
p1 ∈ [0.354, 0.5] , i.e., it is in the best interest of a CPT agent to report �� = (0.5, 0.5) 

(15)
CPT(��) = W+(p1)V(R(�

�, �1)) +
(
1 −W+(p1)

)
V(R(��, �2)) = V(R(��, �1)) = V(R(��, �2))

(16)

CPT(���) = W+(p1)V
(
R(���, �1)

)
+
(
1 −W+(p1)

)
V
(
R(���, �2)

)

= W+(p1)
(
V(R(���, �1)) − V(R(���, �2))

)
+ V(R(���, �2))

= �1 + V(R(���, �2))

(17)

CPT(����) =
(
1 −W+(1 − p1)

)
V
(
R(����, �1)

)
+W+(1 − p1)V

(
R(����, �2)

)

= W+(1 − p1)(V(R(�
���, �2)) − V(R(����, �1))) + V(R(����, �1))

= �2 + V(R(����, �1))
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when p1 ∈ [0.354, 0.5] , and to report �′′′ having q1 < 0.5 when p1 ∈ [0, 0.354) . One 
can see the resulting CPT values for different reporting strategies in Fig. 4b.

Putting the above results together, CPT agents with beliefs containing 
p1 ∈ [0.354, 0.646] are better off by reporting q1 = 0.5 than any other probability 
value. This explains the flat region in Fig. 3a. In different words, when q1 = 0.5 , the 
ordering of the scores from the quadratic scoring rule for the two outcomes changes 
and, as a consequence, the objective function changes due to the fact that decision 
weights change in a drastic non-smooth manner. Mathematically, the abovementioned 
problem occurs when a proper scoring rule R allows for R(�, �x) = R(�, �y) , for some 
probability vector � , and x, y ∈ {1,… , n} , i.e., when the proper scoring rule is non-
comonotonic. To illustrate that this flat-region problem is not specific to the probability 
value of 0.5, consider now a non-comonotonic proper scoring rule defined as follows:

that is, the above proper scoring rule is equal to the quadratic scoring rule, but with 
an extra unit added to the score when outcome �2 occurs. When R(�, �1) = R(�, �2) , 
the crossing point becomes q1 = 0.75 . (see Fig.  3d). Consequently, the reported 
belief of q1 = 0.75 relates to many true beliefs inside the range [0.816, 0.926] (see 

R(�, �1) = 2q1 − q2
1
− (1 − q1)

2 + 1

R(�, �2) = 2 ⋅ (1 − q1) − q2
1
− (1 − q1)

2 + 2

Fig. 4  CPT values for different true and reported beliefs
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Fig. 3c). An interesting follow-up question is then: what happens when using the fol-
lowing proper scoring rule:

The above proper scoring rule is equal to the quadratic scoring rule, but with 2.1 extra 
units added to the score when outcome �2 occurs. Consequently, no matter the reported 
belief, an agent will always receive a score when outcome �2 occurs greater than the 
score when �1 occurs. i.e., comonotonicity is satisfied. In this case, there is no longer 
a crossing point in the range of q1 ∈ [0, 1] (see Fig. 3f) and, thus, all reported beliefs 
correspond to a single true belief, i.e., there is no longer a flat region (see Fig. 3e).

Focusing on positive proper scoring rules and binary outcomes, Kothiyal et  al. 
(2011) suggested that one can avoid the flat region around 0.5 using a comonotonic 
proper scoring rule. In the following propositions, we provide a more formal and 
complete explanation on why comonotonicity eliminates any flat region by mapping 
each reported belief to a single true belief. In particular, we show that this happens 
not only for binary outcomes and positive proper scoring rules, but for any number 
of outcomes as well as positive, negative, and mixed proper scoring rules. In other 
words, we provide a sufficient condition under which proper scoring rules might 
indeed become proper under cumulative prospect theory.

In the following proposition, recall that a reported belief � is optimal, in a sense 
that it is a solution to the optimization problem in (13). Clearly, that belief has an 
associated CPT utility value, which is a maximum given � , W, and V. We then inves-
tigate which true belief � results in that maximum value. Our result below says that 
the maximum value relates to a single true belief � , which in turn implies that the 
associated reported belief � also relates to a single true belief �.

Proposition 1 If a mixed proper scoring rule R satisfies comonotonicity, then one 
can relate each reported belief � to a single true belief �.

Proof Consider a mixed proper scoring rule R that satisfies comonotonicity, i.e., 
R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, 𝜃i) ≥ 0 > R(�, 𝜃i−1) > ⋯ > R(�, 𝜃1) . An agent’s 
CPT utility in (12) can then be written as:

(18)
R(�, �1) =2q1 − q2

1
− (1 − q1)

2 + 1

R(�, �2) =2 ⋅ (1 − q1) − q2
1
− (1 − q1)

2 + 3.1

CPT(�) = W+(pn)[V(R(�, �n)) − V(R(�, �n−1))]

+⋯ +W+

(
n∑

x=i+1

px

)
[V(R(�, �i+1)) − V(R(�, �i))]

+W+

(
n∑
x=i

px

)
V(R(�, �i)) +W−

(
i−1∑
x=1

px

)
V(R(�, �i−1))

+W−

(
i−2∑
x=1

px

)
[V(R(�, �i−2)) − V(R(�, �i−1))]

+⋯ +W−(p1)[V(R(�, �1)) − V(R(�, �2))]
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Note that � is known since it is the agent’s reported belief. Moreover, CPT(�) is 
the maximum CPT utility value given W, V, and � . We now turn ourselves to the 
question: which true beliefs � can produce CPT(�) ? To answer this question, we 
differentiate the above function with respect to a probability value pk , first for some 
k ∈ {i,… , n} , to obtain:

Since W+ is strictly increasing, �W
+(⋅)

�pk
 is greater than zero. Moreover, due to comono-

tonicity, R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, 𝜃i) ≥ 0 . Since V is strictly increasing, 
then V(R(�, 𝜃x)) − V(R(�, 𝜃x−1)) > 0 , for any x ∈ {i,… , n} . Hence, the first deriva-
tive shown above is greater than zero, which implies that the CPT utility is strictly 
increasing in pk when the other probabilities as well as the reported belief � are 
fixed. If, on the other hand, k ∈ {1,… , i − 1} , we obtain:

Since W− is strictly increasing, �W−(⋅)

�pk
 is greater than zero. Moreover, since 

0 > R(�, 𝜃i−1) > R(�, 𝜃i−2) > ⋯ > R(�, 𝜃1) because of comonotonicity and V is 
strictly increasing, then V(R(�, 𝜃x)) − V(R(�, 𝜃x+1)) < 0 , for any x ∈ {1,… , i − 1} . 
Hence, the first derivative shown above is strictly less than zero.

As a consequence of the first derivatives never being equal to zero, an agent’s 
CPT utility either increases or decreases with each individual pk given a fixed � , 

(19)

�W+
�∑n

x=k
px
�

�pk
[V(R(�, �k)) − V(R(�, �k−1))]

+⋯ +
�W+

�∑n

x=i+1
px
�

�pk
[V(R(�, �i+1)) − V(R(�, �i))]

+
�W+

�∑n

x=i
px
�

�pk
V(R(�, �i))
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�pk
V(R(�, �i−1))

+

�W−

�∑i−2

x=1
px
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�pk
[V(R(�, �i−2)) − V(R(�, �i−1))]

+⋯ +
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�pk
[V(R(�, �k)) − V(R(�, �k+1))]
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for all k ∈ {1,… , n} . This means that the optimal CPT utility value is associated 
with a specific pk value, and this is true for all k ∈ {1,… , n} . As a consequence, 
the reported belief � , which produces the optimal CPT utility value, relates to a 
single � . Recall that we previously mentioned in this section that there may exist 
several optima to the optimization problem, in which case one optimum is arbitrar-
ily selected to be the reported probability vector � . Since all these potential optima 
result in the same maximum CPT utility value, they are all then related to the same 
true belief � .   □

Proposition 1 shows that for any given value of � , there is only one value of � , 
thus eliminating any CPT confounds that may exist in the observed � values. Note 
that if comonotonicity was not true in the above proof, then all the subtractions 
inside the square brackets in (19) and (20) could potentially be equal to zero. This 
would result in the first derivatives being equal to zero and, consequently, the exist-
ence of stationary points, i.e., a single CPT utility value and the underlying reported 
belief being associated with many true beliefs. This is precisely the case described 
in Figs. 3a, c.

Corollary 1 If a positive proper scoring rule R satisfies comonotonicity, then one 
can relate each reported belief � to a single true belief �.

Corollary 2 If a negative proper scoring rule R satisfies comonotonicity, then one 
can relate each reported belief � to a single true belief �.

The proofs of Corollaries 1 and 2 follow immediately from the proof of Proposi-
tion 1 by considering only the positive and negative scores.

6  Obtaining true beliefs from reported beliefs

In the previous section, we have established that comonotonicity is a crucial prop-
erty to map each reported belief back to a single true belief. However, we have not 
discussed so far how to obtain a CPT agent’s true belief from his reported belief 
when the elicitation is performed by means of a comonotonic proper scoring rule. 
In this section, we suggest procedures to calibrate reported beliefs by removing the 
influence of value functions and weighting functions to obtain an agent’s true belief.

In particular, we derive systems of equations in terms of an agent’s value func-
tion, weighting functions, true belief, and reported belief that, by construction, must 
be valid. We further discuss how to solve these systems of equations to obtain an 
agent’s true belief. In our upcoming analysis, we implicitly assume that the compo-
nents of the CPT utility are known, i.e., the utility function, the loss aversion param-
eter, and the weighting functions were previously elicited through some elicitation 
procedure [e.g., see the work by Abdellaoui (2000), Abdellaoui et al. (2008), Hines 
and Larson (2010), Perny et al. (2016), Wakker and Deneffe (1996)]. We elaborate 
on why this assumption is necessary in Sect. 7.
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6.1  Positive and comonotonic proper scoring rules

Suppose that an agent’s belief is elicited through a positive, comonotonic proper scor-
ing rule R, for R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, 𝜃1) ≥ 0 . In this context, the agent’s 
CPT utility is:

Consider the Lagrangian in (14). Given that �∗ = (q∗
1
,… , q∗

n
) , �∗ , and �∗ = (0,… , 0) 

are optimal points, the KKT stationarity conditions are:

For illustration’s sake, consider the partial derivative of L with respect to q∗
n
:

By considering all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1,… , n} , we end up with 

the following system of equations:

Given the definition of �+

k
 in (7), the system of equations in (21) can then be written 

as:

CPT(�) =

n∑
k=1

�+

k
V(R(�, �k))

�L(�∗, �∗,�∗)

�q∗
k

= 0, for k ∈ {1,… , n}

�L(�∗, �∗,�∗)

�q∗
n

=

(
n∑

k=1

�+

k

�V(R(�∗, �k))

�q∗
n

)
− �∗ = 0

(21)
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+ �+
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�q∗
2

+⋯ + �+
n

�V(R(�∗, �n))

�q∗
2

= �∗

⋮ ⋮ ⋮ ⋮
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�q∗
n

+ �+
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�V(R(�∗, �2))

�q∗
n

+⋯ + �+
n

�V(R(�∗, �n))

�q∗
n

= �∗

(22)

⎡⎢⎢⎢⎣

−1 a1,2 ⋯ a1,n
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⋮ ⋮ ⋱ ⋮

−1 an,2 ⋯ an,n
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⎡⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎦
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where ax,k =
�V(R(�,�k))

�q∗
x

−
�V(R(�,�k−1))

�q∗
x

 . Hence, the system of equations in (21) becomes 
a system of linear equations with n equations and n unknowns when one considers 
all the W+(⋅) as well as �∗ as variables. If the leftmost matrix is full rank, then this 
system admits a single solution. We have shown in Corollary 1 that comonotonicity 
guarantees that any reported belief is associated with a single true belief. This 
ensures that the above system has a single solution since the relevant variables are 
the subjective probabilities.

Let (y1,… , yn) be the solution to the system of linear equations in 
(22), where W+(pn) = yn . Recall that W+ is strictly increasing, hence it 
admits an inverse function. Consequently, pn = W+−1

(yn) . Similarly, let 
W+(pn + pn−1) = yn−1 ⟹ pn−1 = W+−1

(yn−1) − pn = W+−1(
yn−1

)
−W+−1(

yn
)

 . 
More generally, for all k ∈ {2,… , n − 1} , we obtain pk using backward substitution, 
i.e., by solving the equation pk = W+−1(

yk
)
−W+−1(

yk+1
)
 . Lastly, p1 = 1 −

∑n

k=2
pk 

and, thus, we obtain an agent’s true belief.

6.1.1  Numerical example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and let R(�, �x) 
be the following positive, comonotonic proper scoring rule based on the quadratic 
scoring rule:

where R(�, 𝜃3) > R(�, 𝜃2) > R(�, 𝜃1) ≥ 0 . Suppose that an agent reports the belief 
�∗ = (0.1, 0.3, 0.6) . For illustration’s sake, consider the last equation in (21):

Let V be the value function in (6) with parameter � = 0.88 . Consequently, the above 
equation can be written as follows:

Repeating the same procedure for all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1, 2, 3} , 

we end up with the following system of linear equations:

R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
+ 1

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
+ 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
+ 5.2

[
1 −W+

(
p2 + p3

)]�V(R(�, �1))
�q∗

3

+
[
W+(p2 + p3) −W+(p3)

]�V(R(�, �2))
�q∗

3

+W+(p3)
�V(R(�, �3))

�q∗
3

= �∗

1.4855 ⋅W+(p3) + 0.1778 ⋅W+(p2 + p3) − �∗ = 1.0949
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The above system of linear equations is equivalent to the system in (22). After solving 
the above system of equations, we obtain: W+(p3) ≈ 0.6271 and W+(p2 + p3) ≈ 0.9186 . 
Let W+ be the weighting function proposed by Tversky and Kahneman (1992) shown 
in (9) with parameter � = 0.61 . We then obtain p3 = W+−1

(0.6271) ≈ 0.8224 , 
p2 = W+−1

(0.9186) − p3 ≈ 0.169 , and p1 = 1 − p3 − p2 = 0.0086 . Thus, the agent’s 
true belief is equal to � = (0.0086, 0.169, 0.8224).

6.1.2  Understanding how value functions and weighting functions distort reported 
beliefs

To build intuition and to better understand how value functions and weighting functions 
might distort reported beliefs, consider the simple case with two outcomes ( n = 2 ), 
where the proper scoring rule is the comonotonic scoring rule in (18):

Recall that R(�, 𝜃2) > R(�, 𝜃1) ≥ 0 . Assume agents have the value function defined 
in (6). The system of equations in (21) then implies that:

Combining the above equations, we obtain that:

Since R(�, 𝜃2) > R(�, 𝜃1) ≥ 0 , the fraction R(�,�1)
R(�,�2)

 is positive and always less than or 
equal to 1. Let c = R(�,�1)

R(�,�2)
 . Solving the above equation for q2 , we obtain that:

0.0107 ⋅W+(p3) − 1.7951 ⋅W+(p2 + p3) − �∗ = −1.6423

− 1.4963 ⋅W+(p3) + 1.6173 ⋅W+(p2 + p3) − �∗ = 0.5474

1.4855 ⋅W+(p3) + 0.1778 ⋅W+(p2 + p3) − �∗ = 1.0949

R(�, �1) = 2q1 − q2
1
− q2

2
+ 1

R(�, �2) = 2q2 − q2
1
− q2

2
+ 3.1

(
1 −W+(p2)

)
⋅ � ⋅

(
2 − 2q1

)
⋅ R(�, �1)

�−1 +W+(p2) ⋅ � ⋅
(
−2q1

)
⋅ R(�, �2)

�−1 = �∗(
1 −W+(p2)

)
⋅ � ⋅

(
−2q2

)
⋅ R(�, �1)

�−1 +W+(p2) ⋅ � ⋅
(
2 − 2q2

)
⋅ R(�, �2)

�−1 = �∗

W+(p2)

1 −W+(p2)
=

q2

1 − q2
⋅

(
R(�, �1)

R(�, �2)

)�−1

q2 =
W+(p2)

W+(p2) +
(
1 −W+(p2)

)
⋅ c�−1
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When � = 1 , i.e., when the utility function is linear, the reported belief is then 
q2 = W+(p2) . That is, an agent reports his subjective probability distorted by the 
weighting function W+ . When 𝛼 < 1 , which implies risk aversion under the expected 
utility theory framework, the agent reports q2 < W+(p2) . Intuitively, when increas-
ing risk aversion, the difference between the rewards in the two underlying outcomes 
becomes more important, which leads the agent to report less extreme probability 
values, i.e., the agent reports more uniform probabilities to reduce the variability of 
his payoff. Finally, when 𝛼 > 1 , we have the opposite effect, i.e., the agent reports 
a more extreme (closer to 1) probability value q2 > W+

(p2) . Note that in all cases, 
the value function must be known a priori so that c�−1 becomes a numerical value. 
Moreover, the inverse of the weighting function must be known so as to obtain the 
agent’s true belief. For example, when � = 1 , p2 = W+−1

(q2) . Since weighting func-
tions are continuous and strictly increasing, they always admit inverse functions 
which are also continuous and strictly increasing. In the following subsections, we 
generalize the above case by considering any finite number of outcomes and nega-
tive and mixed comonotonic proper scoring rules.

6.2  Negative and comonotonic proper scoring rules

Now, suppose that an agent’s belief is elicited through a negative, comonotonic proper 
scoring rule R, for 0 ≥ R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, 𝜃2) > R(�, 𝜃1) . The CPT 
utility of that agent is:

By considering all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1,… , n} , we end up with 

the following system of equations:

Given the definition of �−
k
 in (8), the system of equations in (23) can then be written 

as:

CPT(�) =

n∑
k=1

�−
k
V(R(�, �k))

(23)

�−
1

�V(R(�∗, �1))

�q∗
1

+ �−
2

�V(R(�∗, �2))

�q∗
1

+⋯ + �−
n

�V(R(�∗, �n))

�q∗
1

= �∗

�−
1

�V(R(�∗, �1))

�q∗
2

+ �−
2

�V(R(�∗, �2))

�q∗
2

+⋯ + �−
n

�V(R(�∗, �n))

�q∗
2

= �∗

⋮ ⋮ ⋮ ⋮

�−
1

�V(R(�∗, �1))

�q∗
n

+ �−
2

�V(R(�∗, �2))

�q∗
n

+⋯ + �−
n

�V(R(�∗, �n))

�q∗
n

= �∗
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where bx,k =
�V(R(�,�k))

�q∗
x

−
�V(R(�,�k+1))

�q∗
x

 . Hence, the system of equations in (23) becomes 

a system of linear equations with n equations and n unknowns when one considers 
all the the W−(⋅) as well as �∗ as variables. Let (y1,… , yn) be the solution to such a 
system of linear equations, where W−(p1) = y1 . The uniqueness of such a solution is 
guaranteed by the comonotonicity property (see Corollary 2). Since W− is strictly 
increasing, it admits an inverse function. Consequently, p1 = W−−1

(y1) . Similarly, let 
W−(p1 + p2) = y2 ⟹ p2 = W−−1

(y2) − p1 = W−−1(
y2
)
−W−−1(

y1
)
 . More gener-

ally, for all k ∈ {2,… , n − 1} , we obtain pk using forward substitution, i.e., by solv-
ing the equation pk = W−−1(

yk
)
−W−−1(

yk−1
)
 . Lastly, pn = 1 −

∑n−1

k=1
pk and, thus, 

we obtain a CPT agent’s true belief.

6.2.1  Numerical example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and and let R(�, �x) 
be the following negative, comonotonic proper scoring rule based on the quadratic 
scoring rule:

where 0 ≥ R(�, 𝜃3) > R(�, 𝜃2) > R(�, 𝜃1) . Suppose that an agent reports the belief 
�∗ = (0.1, 0.3, 0.6) . For illustration’s sake, consider the last equation in (23):

Let V be equal to the value function in (6) with parameters � = 0.88 and � = 2.25 . 
Consequently, the above equation can be written as follows:

(24)

⎡
⎢⎢⎢⎣

b1,1 ⋯ b1,n−1 − 1

b2,1 ⋯ b2,n−1 − 1

⋮ ⋱ ⋮ ⋮

bn,1 ⋯ bn,n−1 − 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

W−(p1)

W−(p1 + p2)

⋮

W−

�∑n−1

k=1
pk

�

�∗

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

−
�V(R(�,�n))

�q∗
1

−
�V(R(�,�n))

�q∗
2

⋮

−
�V(R(�,�n))

�q∗
n

⎤
⎥⎥⎥⎥⎥⎦

R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
− 5.2

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
− 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
− 1

W−(p1)
�V(R(�, �1))

�q∗
3

+
[
W−(p1 + p2) −W−(p1)

]�V(R(�, �2))
�q∗

3

+
[
1 −W−

(
p1 + p2

)]�V(R(�, �3))
�q∗

3

= �∗

0.1478 ⋅W−(p1) − 3.9478 ⋅W−(p1 + p2) − �∗ = −1.8619
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Repeating the same procedure for all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1, 2, 3} , 
we end up with the following system of linear equations:

The above system of linear equations is equivalent to the system in (24). 
After solving the above system of equations, we obtain: W−(p1) ≈ 0.1258 and 
W−(p1 + p2) ≈ 0.4763 . Let W− be the weighting function proposed by Tver-
sky and Kahneman (1992) shown in (9) with parameter � = 0.69 . We then 
obtain p1 = W−−1

(0.1258) ≈ 0.0608 , p2 = W−−1

(0.4763) − p1 ≈ 0.4746 , 
and  p3 = 1 − p1 − p2 = 0.4646. Thus, the agent’s true belief is equal to 
� = (0.0608, 0.4746, 0.4646).

6.3  Mixed and comonotonic proper scoring rules

Finally, suppose that an agent’s belief is elicited through a mixed, comonotonic proper scor-
ing rule R, for R(�, 𝜃n) > R(�, 𝜃n−1) > ⋯ > R(�, ) . The CPT utility of that agent is then:

By considering all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1,… , n} , we end up with 

the following system of equations:

For a mixed proper scoring rule, the system of equations in (25) can be written as:

3.2548 ⋅W−(p1) + 0.1178 ⋅W−(p1 + p2) − �∗ = 0.4655

− 3.4026 ⋅W−(p1) + 3.83 ⋅W−(p1 + p2) − �∗ = 1.3964

0.1478 ⋅W−(p1) − 3.9478 ⋅W−(p1 + p2) − �∗ = −1.8619

CPT(�) =

i−1∑
k=1

�−
k
V(R(�, �k)) +

n∑
k=i

�+

k
V(R(�, �k))

(25)

i−1∑
k=1

�−
k

�V(R(�, �k))

�q∗
1

+

n∑
k=i

�+

k

�V(R(�, �k))

�q∗
1

= �∗

i−1∑
k=1

�−
k

�V(R(�, �k))

�q∗
2

+

n∑
k=i

�+

k

�V(R(�, �k))

�q∗
2

= �∗

⋮ ⋮ ⋮

i−1∑
k=1

�−
k

�V(R(�, �k))

�q∗
n

+

n∑
k=i

�+

k

�V(R(�, �k))

�q∗
n

= �∗
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where ax,k =
�V(R(�,�k))

�q∗
x

−
�V(R(�,�k−1))

�q∗
x

 , and bx,k =
�V(R(�,�k))

�q∗
x

−
�V(R(�,�k+1))

�q∗
x

 . By consider-

ing all the W(⋅) as well as �∗ as variables, the above system of equations becomes a 
system of linear equations with n + 1 variables and n equations. Consequently, a pri-
ori, this system has no solution. In what follows, we describe a procedure to obtain 
the value of �∗ and, thus, to reduce the number of unknowns by one. The procedure 
consists of three steps:

(1) Solve (26) for W−

�∑i−1

k=1
pk

�
 in terms of �∗ , i.e., W−

�∑i−1

k=1
pk

�
= yi−1 ⋅ �

∗

⟹
∑i−1

k=1
pk = W−−1

(yi−1 ⋅ �
∗) , where yi−1 ∈ ℜ+ is a known numerical value;

(2) Solve (26) for W+
�∑n

k=i
pk
�
 in terms of �∗ , i.e., W+(

∑n

k=i
pk) = yi ⋅ �

∗

⟹
∑n

k=i
pk = W+−1

(yi ⋅ �
∗) , where yi ∈ ℜ+ is a known numerical value;

(3) Combine the results from the first and second steps to obtain �∗ , i.e., ∑i−1

k=1
pk +

∑n

k=i
pk = W−−1

(yi−1 ⋅ �
∗) +W+−1

(yi ⋅ �
∗) ⟹ 1 = W−−1

(yi−1 ⋅ �
∗)

+W+−1

(yi ⋅ �
∗).

Given that W+,W−, yi , and yi−1 are all known, the value of �∗ can be computed 
numerically after the third step. We discuss an approach to do so in the numerical 
example below. The value of �∗ always exists due to the Intermediate Value Theo-
rem. In particular, let H(�∗) = W−1(yi−1 ⋅ �

∗) +W−1(yi−1 ⋅ �
∗) . Note that H is con-

tinuous, H(0) = 0 , and H
(
min

(
1

yi−1
,
1

yi

))
> 1 . Hence, H(0) < 1 < H(min(

1

yi−1
,
1

yi
)) , 

which according to the Intermediate Value Theorem implies that there exists a �∗ 
such that H(�∗) = 1 . After finding �∗ , the system of equations in (26) becomes a sys-
tem of linear equations with n variables and n equations. The true belief � can then 
be obtained by following the four extra steps described below:

(4) Let W−(p1) = y1 ⋅ �
∗ . Consequently, p1 = W−−1

(y1 ⋅ �
∗);

(5) Let W+(pn) = yn ⋅ �
∗ . Consequently, pn = W+−1

(yn ⋅ �
∗);

(6) For all k ∈ {2,… , i − 1} , we obtain pk as described in Sect. 6.2, i.e., by solving 
the equation pk = W−−1(

yk ⋅ �
∗
)
−W−−1(

yk−1 ⋅ �
∗
)
;

(26)

⎡
⎢⎢⎢⎣

b1,1 b1,2 ⋯ b1,i−1 a1,i ⋯ a1,n
b2,1 b2,2 ⋯ b2,i−1 a2,i ⋯ a2,n
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

bn,1 bn,2 ⋯ bn,i−1 an,i ⋯ an,n

⎤
⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W−(p1)

W−(p1 + p2)

⋮

W−

�∑i−1

k=1
pk

�

W+
�∑n

k=i
pk
�

⋮

W+
�
pn + pn−1

�
W+

�
pn
�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

�∗

�∗

⋮

�∗

⎤
⎥⎥⎥⎦
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(7) For all k ∈ {i,… , n − 1} , we obtain pk as described in Sect. 6.1, i.e., by solving 
the equation pk = W+−1(

yk ⋅ �
∗
)
−W+−1(

yk+1 ⋅ �
∗
)
.

The above solution relies on the resulting leftmost matrix in (26) being full rank. 
In other words, it relies on each reported belief being associated with a single true 
belief, which is guaranteed by the comonotonicity property we proved in Proposi-
tion 1.

6.3.1  Numerical example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and let 
R(�, �x) be the following mixed, comonotonic proper scoring rule based on the 
quadratic scoring rule:

where R(�, 𝜃3) > R(�, 𝜃2) > 0 ≥ R(�, 𝜃1) . Suppose that an agent reports the belief 
�∗ = (0.1, 0.3, 0.6) . For illustration’s sake, consider the last equation in (25):

Let V be equal to the value function in (6) with parameters � = � = 0.88 and 
� = 2.25 . Consequently, the above equation can be written as follows:

Repeating the same procedure for all partial derivatives �L(�
∗,�∗,�∗)

�q∗
k

 , for k ∈ {1, 2, 3} , 

we end up with the following system of linear equations:

The above system of linear equations is equivalent to the system in (26) for 
i = 2 . After solving the above system of equations, we obtain: W−(p1) =

−1844.259 ⋅ �∗,W+(p2 + p3) = −43947.14 ⋅ �∗ , and W+(p3) = −30000 ⋅ �∗ . 
Thus, p1 = W−−1

(−1844.259 ⋅ �∗), p2 + p3 = W+−1

(−43947.14 ⋅ �∗) , and then 
1 = W−−1

(−1844.259 ⋅ �∗) +W+−1

(−43947.14 ⋅ �∗).

R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
− 1

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
+ 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
+ 5.2

W−(p1)
�V(R(�, �1))

�q∗
3

+
[
W+

(
p2 + p3

)
−W+

(
p3
)]�V(R(�, �2))

�q∗
3

+W+(p3)
�V(R(�, �3))

�q∗
3

= �∗

−2.311 ⋅W−(p1) − 0.9171 ⋅W+(p2 + p3) + 1.4855 ⋅W+(p3) = �∗

3.4665 ⋅W−(p1) − 0.1528 ⋅W+(p2 + p3) + 0.0107 ⋅W+(p3) = �∗

− 1.1555 ⋅W−(p1) + 1.0699 ⋅W+(p2 + p3) − 1.4963 ⋅W+(p3) = �∗

− 2.311 ⋅W−(p1) − 0.9171 ⋅W+(p2 + p3) + 1.4855 ⋅W+(p3) = �∗
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For ease of exposition, let � = −1844.259 ⋅ �∗ , and � = −43947.14 ⋅ �∗ . By 
construction, � ,� ∈ [0, 1] . Moreover, � =

43947.14

1844.259
⋅ � . Thus, to find the value of 

�∗ , we just need to find the value of � ∈ [0, 1] such that 
1 = W−−1

(�) +W+−1
(

43947.14

1844.259
⋅ �

)
 . Let W+ and W− be the weighting functions pro-

posed by Tversky and Kahneman (1992) shown in (9) with parameters � = 0.61 
and � = 0.69 . We find numerically that � ≈ 0.0384 and, consequently, 
�∗ = −0.00002082 . Finally, we obtain that p1 = W−−1

(−1844.259 ⋅ �∗) ≈ 0.0095 , 
p3 = W+−1

(−30000 ⋅ �∗) ≈ 0.8197 , and p2 = W+−1

(−43947.14 ⋅ �∗) − p3 ≈ 0.1708 . 
Thus, the agent’s true belief is equal to � = (0.0095, 0.1708, 0.8197).

6.4  A comment on the numerical examples in Sects. 6.1, 6.2, and 6.3

Table 1 summarizes the results from our numerical examples in Sects. 6.1, 6.2, and 
6.3. In particular, it highlights how cumulative prospect theory agents with different 
beliefs end up reporting the same belief under different comonotonic proper scor-
ing rules. The same would not be true if agents behaved to maximize their expected 
scores. This highlights the risk of assuming a wrong decision model when eliciting 
beliefs.

7  Discussion

Proper scoring rules have been widely used to induce honest reporting of subjective 
probabilities. The main assumption behind proper scoring rules is that agents are 
risk neutral, which is often an unrealistic assumption when the underlying agents 
are humans. In this paper, we adapted proper scoring rules to cumulative prospect 
theory (Tversky and Kahneman 1992), a more modern model of decision making 

Table 1  True beliefs of cumulative prospect theory agents reporting (0.1, 0.3, 0.6) under positive, nega-
tive, and mixed comonotonic proper scoring rules

Comonotonic proper scoring rule True belief (p)

Positive R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
+ 1 (0.0086, 0.169, 0.8224)

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
+ 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
+ 5.2

Negative R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
− 5.2 (0.0608, 0.4746, 0.4646)

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
− 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
− 1

Mixed R(�, �1) = 2q1 − q2
1
− q2

2
− q2

3
− 1 (0.0095, 0.1708, 0.8197)

R(�, �2) = 2q2 − q2
1
− q2

2
− q2

3
+ 3.1

R(�, �3) = 2q3 − q2
1
− q2

2
− q2

3
+ 5.2
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under uncertainty. In particular, we started by showing how traditional proper scor-
ing rules are naturally incompatible with cumulative prospect theory. This happens 
because multiple true beliefs might be associated with a single reported belief when 
agents report under traditional proper scoring rules and behave according to cumula-
tive prospect theory. This implies that the reported belief cannot always be used to 
uniquely determine the correct true belief. We also explain that this problem does 
not only happen around the probability value of 0.5. As illustrated in the paper, this 
problem is dependent on the underlying proper scoring rule.

Next, we proved that comonotonicity is a sufficient condition to fix the above 
problem. We covered all possible scenarios regarding the underlying comonotonic 
proper scoring rule, i.e., when the proper scoring rule is positive, negative, and 
mixed. Moreover, our discussion is valid for any finite number of outcomes. We also 
suggested how to construct a comonotonic proper scoring rule from any bounded 
proper scoring rule. When combined, our results generalize previous work by Offer-
man et al. (2009) and Kothiyal et al. (2011) when it comes to the use of proper scor-
ing rules for eliciting beliefs of CPT agents.

Finally, we proposed procedures to obtain a CPT agent’s true belief from his 
reported belief, when beliefs are elicited by means of comonotonic proper scoring 
rules. Our suggested procedures involve solving systems of linear equations when 
all the components that drive the agent’s attitude towards uncertainty are known. 
Hence, an assumption we made was that the components that drive an agent’s atti-
tude towards uncertainty are known a priori, i.e., one must elicit an agent’s value 
function and weighting functions before eliciting the agent’s subjective probabilities. 
A question that arises is: is the elicitation of value/weighting functions really neces-
sary? If one wants to make deterministic payments, then the answer to this question 
is “yes”. In particular, Schlag and van der Weele (2013) proved that if agents are not 
risk neutral, then it is not possible to elicit subjective probabilities or the mean of a 
subjective probability distribution truthfully using deterministic payment schemes. 
Clearly, after eliciting value/weighting functions, the requester interested in the elic-
itation of beliefs could very well incorporate the obtained value/weighting functions 
into a scoring rule so as to tailor the same to a certain agent’s risk attitudes. In spirit, 
this is what Winkler and Murphy (1970) suggested for expected utility maximiz-
ers. In that case, no calibration of reported beliefs is required a posteriori since the 
tailored proper scoring rule will already induce an agent to report his true belief. In 
this paper, we decided to follow the calibration approach because it better highlights 
the importance of comonotonicity when eliciting beliefs from CPT agents.

The results from the experiments by Armantier and Treich (2013) demonstrate 
why a mechanism such as the one we propose in this paper is desirable when elicit-
ing beliefs using proper scoring rules. Specifically, using a positive variant of the 
quadratic scoring rule, Armantier and Treich (2013) empirically found that risk aver-
sion leads agents to report more uniform probabilities. This is a rather safe strategy 
because the reporting agent will always receive some monetary payment no matter 
which outcome occurs. In this case, the marginal utility of the monetary payment to 
the agent confounds the effect of his belief. This shows why it is important to know 
and remove the influence of all the components that drive risk attitudes on agents’ 
reported beliefs, which is precisely what our proposed mechanism does.
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An alternative to using deterministic payments is to make payments in lottery 
tickets. There have been some suggestions on how probabilistic payments based on 
proper scoring rules can elicit an agent’s belief when the components that drive the 
agent’s attitude towards uncertainty are unknown (Allen 1987; Karni 2009; Hossain 
and Okui 2013; Schlag and van der Weele 2013; Sandroni and Shmaya 2013; Car-
valho 2016a). There are, however, doubts as to the effectiveness of this approach 
since it relies on the assumption of expected value maximization in tickets. Selten 
et al. (1999) showed that significantly more violations of expected value maximiza-
tion occur when payments were issued in lottery tickets as opposed to direct money 
payoffs. The authors further observed that anomalies such as the common ratio 
effect, the preference reversal effect, and violations of stochastic dominance are fur-
ther exacerbated when agents receive payments in lottery tickets.

The results by Hossain and Okui (2013) differ from the results by Selten et al. 
(1999) in that, on the aggregate level, their lottery-based payment scheme induced 
agents to report beliefs closer to their true beliefs than the quadratic scoring rule. We 
note, however, that the effectiveness of the approach by Hossain and Okui (2013) in 
inducing honest reporting is, to a certain degree, dependent on agents’ risk attitudes. 
For example, the authors found no significant difference between their approach and 
the quadratic scoring rule when agents are risk neutral and, surprisingly, the quad-
ratic scoring rule outperformed their proposed method when agents are risk seeking 
[see the last column of Table 4 in the paper by Hossain and Okui (2013)]. All in all, 
it is still unclear whether probabilistic payments are actually effective in inducing 
honest reporting.

Another alternative to obtain an off-the-shelf method to elicit beliefs is to assume 
certain functionals, such as Tversky and Kahneman’s value and weighting functions, 
and to instantiate their parameters based on averages of previous empirical findings. 
Offerman and Palley (2016) obtained remarkably accurate results (on the aggregate 
level) by following this approach, in a sense that average calibrated beliefs closely 
matched objective probabilities. We believe that when aggregate beliefs are of more 
interest than single beliefs, then a similar approach can be successfully used in con-
junction with our proposed methods as well, thus eliminating the need of eliciting 
individual weighting functions and value functions.

An interesting open question involves investigating the most appropriate decision 
model one should assume when eliciting beliefs using proper scoring rules since the 
implications of choosing an inappropriate model can be rather drastic. For exam-
ple, Chambers (2008) showed that when an agent who behaves according to the 
max–min expected utility model is confronted with a proper scoring rule, that agent 
will report a belief corresponding to some probability measure in his set of priors. 
Furthermore, for any prior in that set, there is a different scoring rule that induces 
the agent to announce such a prior. One can interpret this result as proper scoring 
rules not being an effective technique to elicit beliefs from max-min expected utility 
agents.

Despite some well-known problems, such as not accounting for coalescing and 
violations of stochastic dominance (Birnbaum 2008), cumulative prospect theory 
has been very successful at describing how humans make decisions under uncer-
tainty (Camerer 2004). Although reporting beliefs under proper scoring rules is 
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theoretically equivalent to making decisions under uncertainty, we note, however, 
that previous experimental results from decision theory/analysis do not necessarily 
translate into equivalent results in this elicitation setting. The reason for this is that, 
as opposed to choosing amongst a finite set of fixed prospects, agents have some 
control over their potential payoffs under proper scoring rules, which are defined by 
the reported beliefs. This fact might affect how agents reason under uncertainty, and 
it asks for a new set of experiments so as to determine the most appropriate decision 
theory one should assume.
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