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In emerging service-oriented systems, such as computational clouds or grids, software
agents are able to automatically procure distributed services to complete computational
tasks. However, service execution times are often highly uncertain and service providers
may have incentives to lie strategically about this uncertainty to win more customers. In
this paper, we argue that techniques from the field of artificial intelligence are instrumental
to addressing these challenges.
To this end, we first propose a new decision-theoretic algorithm that allows a single
service consumer agent to procure services for a computational task with a strict deadline.
Crucially, this algorithm uses redundancy in a principled manner to mitigate uncertain
execution times and maximise the consumer’s expected utility. We present both an
optimal variant that uses a novel branch-and-bound formulation, and a fast heuristic that
achieves near-optimal performance. Using simulations, we demonstrate that our algorithms
outperform approaches that do not employ redundancy by up to 130% in some settings.
Next, as the algorithms require private information about the providers’ capabilities, we
show how techniques from mechanism design can be used to incentivise truthfulness.
As no existing work in this area deals with uncertain execution times and redundant
invocations, we extend the state of the art by proposing a number of payment schemes
for these settings. In a detailed analysis, we prove that our mechanisms fulfil a range
of desirable economic properties, including incentive compatibility, and we discuss
suboptimal variants that scale to realistic settings with hundreds of providers. We show
experimentally that our mechanisms extract a high surplus and that even our suboptimal
variants typically achieve a high efficiency (95% or more in a wide range of settings).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Increasingly, participants in large distributed systems are able to discover and automatically procure the services of
others. This allows service consumers to complete complex computational tasks on demand, but without the need to invest
in and maintain expensive hardware. Already, such a service-oriented approach is gaining popularity in a large range of
application areas, including grids, peer-to-peer systems, and cloud and utility computing [12,48,21].

Despite its benefits, flexible service procurement poses new challenges that have not been addressed satisfactorily by
current research. In particular, as they are offered by external providers that are beyond the consumer’s direct control,
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services may display significant uncertainty in their behaviour. Thus, the execution time of services can be highly uncertain,
due to concurrent access by other consumers, hardware or network problems and the provider’s scheduling policies. This
is particularly problematic when services take a long time to complete, as is common for many computationally intensive
tasks, and when consumers need to obtain their results by a certain deadline.

Furthermore, in large systems, many different providers may offer functionally equivalent services that are heterogeneous
in their quality and costs. This requires consumers to make appropriate decisions about which services to procure, balancing
the probability of success with the overall cost. In particular, instead of only procuring a single provider, the consumer may
benefit by redundantly procuring multiple service providers that will attempt the same task. For example, when faced
with a high-priority task but with a long deadline, a consumer may at first invoke an unreliable service at a low cost.
However, as the time approaches the deadline and the task is still not completed, it may invoke another, more costly but
also more reliable service to ensure that the task is completed in time. Alternatively, when a critical task has to be completed
urgently, the consumer may be better off (both in terms of costs and probability of success) by selecting multiple cheap
services immediately instead of a single premium service. This creates a challenge for the consumer, who has to make these
decisions and wants to maximise its profit.

However, even when a consumer can make optimal decisions about which services to procure and whether to employ
redundancy, it is faced with a second, highly related challenge. This is the fact that service providers are inherently self-
interested agents and, thus, they may choose to misrepresent their capabilities if this promises to increase their profits. For
instance, a provider may exaggerate its speed, in order to entice potential customers to procure its service, or it may inflate
its costs to elicit higher payments. In these cases, consumers may end up procuring unsuitable services that are unable
to complete the task in a timely or effective manner. Put differently, the consumer’s decisions may be based on wrong
information and therefore lead to suboptimal procurement strategies.

Clearly, both the problems of dealing with uncertain execution times and the providers’ possible strategic behaviours
are closely interrelated. More specifically, in order to address the first challenge satisfactorily, we also have to ensure that
providers truthfully reveal their capabilities to the consumer. However, as we will see later, ensuring truthfulness, in turn,
requires us to solve the service procurement problem optimally. For this reason, we address both of these intertwined
challenges in this paper.

Now, there is an array of existing techniques that apply to our setting. In particular, decision theory and computational
search techniques have been used to design agents that can take optimal actions in uncertain environments, while mech-
anism design has been employed successfully to incentivise truthfulness in multi-agent systems. Unfortunately, however,
none of the existing approaches are readily applicable to the scenario we consider here (see Section 2 for details). For this
reason, we combine and extend the current state of the art from multiple sub-fields of artificial intelligence and demonstrate
how the resulting techniques can be applied to a realistic large-scale problem.

In more detail, to address the first problem of uncertain execution times, we make the following contributions in our
work:

• We are the first to characterise the optimal solution to a generic service procurement problem where a service consumer
can procure multiple service providers dynamically and redundantly over time, in order to complete a task by a given
deadline. To find this efficiently, we combine analytical optimisation with computational search techniques. In more
detail, we present a novel branch-and-bound algorithm that exploits specific characteristics of the procurement scenario
and that we empirically show to reduce the search for the optimal solution, on average, by over 99.9%. As this algorithm
relies on finding optimal procurement times from a continuous domain, we derive efficient closed-form solutions for
both settings with (i) independent execution durations and with (ii) perfectly correlated durations.

• While our branch-and-bound algorithm quickly finds a solution in settings with dozens of providers, it does not scale
to significantly larger systems. Hence, we also present a suboptimal heuristic algorithm to the service procurement
problem. This combines some of our analytical results from the optimal algorithm with a greedy local search in a novel
manner. As a result, it is capable of scaling to settings with hundreds or even thousands of providers.

• We evaluate both algorithms extensively using simulations. In doing this, we show empirically that they achieve an
up to 130% improvement over techniques that do not use redundancy, that they also consistently outperform existing
ad hoc techniques that are used in practice and finally that our heuristic solution achieves near-optimal performance.
We also note that although our algorithms perform particularly well in environments where service durations are
independently distributed, redundancy can still be beneficial in settings with perfect correlation, resulting in an average
improvement of over 27% in certain scenarios.

As the first part of our work relies on having full information about the providers’ capabilities, we also address the
second interrelated problem of strategic behaviour with the following contributions:

• To apply our algorithms in settings with private information, we extend the state of the art in mechanism design and
propose a number of novel incentive compatible mechanisms to deal with our service procurement problem. Unlike
existing approaches, which have so far concentrated on services with a deterministic runtime and which allocate a task
only to a single provider agent, our mechanisms can deal specifically with uncertain execution durations and multiple
providers that execute the same task in parallel. We propose several mechanisms here, in order to effectively address a
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wide range of settings with varying information and computational requirements. This is needed because a mechanism
that implements the optimal procurement schedule is infeasible in settings with hundreds of potential providers and so
we present a range of suboptimal alternatives for large-scale problems, some of which can use arbitrary heuristics to
select an outcome if some information about the providers is known.1

In more detail, we first consider settings where only the cost is private information and then where both the cost and
service duration distribution are private and need to be elicited. For the former case, we present several mechanisms
that vary in their information requirements about the types of providers.
– A uniform pricing mechanism that is incentive compatible in dominant strategies and individually rational. Further-

more, these properties continue to hold when a suboptimal heuristic is used to find an allocation. However, to achieve
a high efficiency (around 94%), this requires some prior knowledge about the distributions of provider types.

– Two types of discriminatory pricing mechanisms that have the same economic properties as the uniform pricing mech-
anism. In contrast, however, these require no specific knowledge about the provider types and still achieve a good
efficiency (87–88% on average).

For settings where both costs and service duration distributions are private information, we present two further mech-
anisms:
– An Execution-Contingent Vickrey–Clarke–Groves (EC-VCG) mechanism that conditions payments on the earliest comple-

tion time of the task. This mechanism is ex-post incentive compatible and individually rational, but it requires an
optimal solution to the service procurement problem.

– An approximate EC-VCG mechanism that retains the same economic properties as the EC-VCG, but that uses a subop-
timal allocation function with a polynomial run-time (in the number of providers). We show experimentally that the
loss of utility in using this approximation is typically small (less than 10% or better) and can be balanced explicitly
with the computational effort required to find a solution.

We stress that our contributions are not limited to applications in service-oriented systems, but we believe this domain
constitutes a compelling and timely motivation for our work. More generally, our techniques can be applied in many settings
where a project or task of uncertain duration is outsourced. As an example of this, a critical product may need to be
procured in a dynamic supply chain application — here, the consumer may be able to choose between different producers
with uncertain production and delivery times, and the optimal strategy may include obtaining the product from multiple
providers. In another application, a government may need to urgently find a vaccine for an epidemic and can contract
different laboratories to work on this in parallel. Finally, another key application of our work is the emerging fields of
crowdsourcing and human computation [47], where our work can be used to elicit uncertain completion times of a given
task from a large pool of workers and even contract several workers in parallel when this is beneficial.

The remainder of this paper is structured as follows. In Section 2, we start by discussing related work, followed, in
Section 3, by a formal summary of the problem we are addressing. In Section 4, we describe a generic approach for finding
an optimal procurement strategy when the consumer has full information about the performance of services, and consider
various models of uncertainty. Then, we extend this in Section 5 and present mechanisms to address settings with private
information. In Section 6, we evaluate our strategy and mechanisms empirically and then conclude in Section 7.

2. Related work

The problem of allocating computational tasks to providers with uncertain execution is not new, and several researchers
have addressed specific aspects of this problem in the past. This research has been carried out in a wide range of fields —
some work has looked specifically at robustness in service-oriented systems, but other highly-relevant research has been
conducted in the more general areas of scheduling and planning under uncertainty. Finally, the literature on mechanism
design in multi-agent systems has considered settings where service provider agents need to be incentivised to reveal their
capabilities truthfully, and has also considered settings with uncertainty. In the following, we discuss each of these strands
of research in turn.

2.1. Robust service procurement

There is already a considerable body of work that suggests the use of redundancy to address uncertainty. This is based
on techniques used in reliability engineering, where critical components are duplicated in order to increase the reliability
of a system [54,8]. Now, while there are many analytical and heuristic tools in this area, they concentrate mainly on ei-
ther minimising cost or failure probability, subject to constraints. We believe that this is insufficient and will concentrate
instead on the expected utility of the service consumer, which implicitly balances the cost and failure probability of a task.
Nevertheless, the work in reliability engineering has given rise to similar techniques in the context of services. In this vein,
a critical task can be delegated to several unreliable service providers at once, which increases the overall success probabil-
ity. Such parallel redundancy has been used successfully in a number of application examples, from deployed peer-to-peer
systems [1], to highly dependable Web services [24] and multi-agent systems or software engineering in general [23,59].

1 For a full overview of our novel mechanisms and their specific theoretical properties, see Table 2 in Section 5.1.
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Instead of invoking service providers in parallel, other work has considered the serial invocation of services. Here, a par-
ticular provider may be contacted first, but if it fails or takes too long, the task is then delegated to another provider.
A prolific example of this includes Google’s MapReduce system, which uses this technique to execute large collections of
data-processing tasks robustly on computational clusters [9], but this approach has also been suggested in the context of
peer-to-peer systems [13]. Similarly, existing service frameworks often use pre-defined timeout values to determine when
to switch to alternative service providers [38,10].

A major shortcoming with most work discussed so far, however, is its reliance on ad hoc techniques for choosing an
appropriate number of redundant services and timeout values. A more principled approach is taken by work on restarting
Web queries, which examines when such queries should be timed out and re-issued (possibly to a different provider)
to ensure timely completion [6,32]. Similar work also exists in the domain of grid services [18]. However, such research
typically assumes that only one query is active at any time and the costs of multiple queries are not explicitly balanced
with the resulting benefit.

This shortcoming is addressed by Stein et al. [52], who use decision theory in this context to combine both parallel
and serial redundancy to maximise the service consumer’s expected utility. They show that this approach allows the con-
sumer to successfully complete its tasks within strict deadlines even when dealing with providers that are failure-prone and
display high duration uncertainty. In related work, they apply similar techniques to dynamic markets where service-level
agreements can be negotiated in advance [51]. Our approach will be similar to theirs, but there are a number of key dif-
ferences. First, they concentrate on large workflows of interdependent tasks, necessitating the use of suboptimal heuristics.
In contrast, we will consider optimal algorithms for single tasks and present an analytical solution for a particular family
of distributions. Second, their work assumes that probabilistic performance information about the service providers is avail-
able to the consumer. A key contribution of this paper is a number of mechanisms that incentivise providers to reveal this
information truthfully to the consumer.

2.2. Stochastic scheduling and planning

Research on stochastic scheduling also bears some similarities to our work. Here, the goal is to find optimal schedules
or policies for completing tasks with stochastic durations or random failures on one or more processors [42,3]. Most of
this research does not consider redundant execution of tasks on multiple processors, and even when it is considered, the
model and objective functions are typically very different from our problem [37,44]. In particular, such work usually aims
to maximise the total number of failures that can be tolerated by a scheduling algorithm. Often there are restrictions on the
level of redundancy (typically it is limited to one primary and one backup processor) and it is assumed that the scheduling
mechanism has complete control and free access to all processors. None of these considerations and assumptions apply to
our service procurement scenario.

Somewhat closer to our work is the research on algorithm portfolios [22,19,27], where multiple instances of stochastic
search algorithms are combined to produce faster and more dependable results. This is achieved by running the instances on
independent processors or by interleaving and restarting them on a single processor. However, there are several important
differences to our work. First, it is typically assumed that the use of processing resources is inherently free and the main
objective is to minimise the run-time (or variance) over these resources. This is unrealistic in our settings, where resources
are offered by self-interested agents. One exception to this is the work by Finkelstein et al. [11], which is closer to ours
and explicitly considers the cost of running resources. However, like most other work on algorithm portfolios, they also
assume that processes can be stopped and restarted at will. Such fine-grained control is often impractical in service-oriented
systems, where providers may be unwilling to surrender control over their own scheduling policies. Furthermore, they
consider only two parallel processors and even in this case, their problem is difficult to solve optimally in practice.

Another body of work that is relevant to the problem addressed in this paper is concerned with planning under uncer-
tainty, especially when this explicitly considers continuous-time domains [31,33]. This research uses variations of Markov
decision problems (MDPs), but such formalisms have a number of drawbacks. First, they are very general and require a num-
ber of adaptations to handle our scenario, including concurrently running and interruptible actions (i.e., to represent parallel
and serial redundancy), which quickly leads to an infeasibly large state space as the number of providers increases. This is
further exacerbated by the need to discretise action duration functions, which again increases the state space considerably
and also results in suboptimal policies.

2.3. Mechanism design

So far, the work discussed in this section has concentrated on designing agent strategies to deal with uncertainty. When
this uncertainty was explicitly modelled, it was typically assumed that some probabilistic information about the providers’
behaviour was available from past interactions or through an appropriate trust and reputation system [45,53,20]. However,
this might be unrealistic in settings where interactions are very costly, where no appropriate reputation system is in place,
or where new providers routinely enter the system.

For such cases, some existing research has concentrated on designing appropriate mechanisms that incentivise providers
to reveal private information about their cost and probabilistic performance estimates to the consumer. In particular, Porter
et al. [43] suggest a mechanism that incentivises providers to report a truthful estimate of their success probability for
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a given task. This is achieved by conditioning the payment to providers on whether they successfully complete the task.
Ramchurn et al. [46] extend this by considering scenarios where providers also report on their perceived reliability of
other providers. While they consider potential failures, these approaches do not use redundancy to increase the consumer’s
success probability and they also do not consider uncertain service durations.

Witwicki and Durfee [58] do investigate uncertain durations and propose a negotiation mechanism by which providers
agree to provide a service by a given time with a certain probability. But their approach assumes that providers are cooper-
ative (i.e., report their success probabilities truthfully), which is unrealistic in the open distributed systems we consider, and
they also do not employ redundancy. Gerding et al. [15] present mechanisms for incentivising non-cooperative providers to
invest costly resources in order to increase the probability of success of a task, and they also use redundancy to increase
the utility of the consumer. Similarly, Babaioff et al. [2] consider a general principal-agent setting where multiple service
providers need to be incentivised to exert some effort to complete a common task, but their individual actions cannot be
verified and can have probabilistic outcomes. As a special case, their model covers the setting where multiple providers
work on the same task redundantly. However, they assume that success probabilities and costs are publicly known. Further-
more, as in Gerding et al. [15], a service invocation either fails or succeeds, and they do not consider time-critical tasks.
Therefore, the issue of when to invoke a certain provider is not investigated. A slightly different problem is investigated by
Papakonstantinou et al. [40], who use scoring rules to incentivise agents to provide costly estimates of some probabilistic
parameter. However, their setting is different in that the time to find a solution is not considered and in that multiple
estimates can be merged to improve the overall quality.

Several mechanisms have been proposed specifically for the domain of computational services [5]. For example, Garg et
al. [14] describe how a continuous double auction can be used to allocate resources in a computational grid, while Narahari
et al. [35] discuss incentive-compatible mechanisms for a similar application. These approaches do not directly apply to the
problem we consider, because they do not deal with uncertain execution times. Now, a mechanism that is closer to our
work is used by Stein et al. [49]. Here, the authors investigate how service providers can be incentivised to reveal costs and
processor speeds truthfully, but their work only considers uncertainty in the computational requirements of a task and not
in the execution times of each provider. Their model is also fundamentally different to ours in that they allow tasks to be
suspended and migrated from one provider to the next.

In our work, we address several of the above shortcomings. First, we design an optimal agent strategy that explicitly
balances the benefit and associated cost of redundancy using a decision-theoretic approach, and we allow several providers
to be invoked dynamically over time. Then, we develop a number of mechanisms that incentivise providers to reveal their
private performance information to the consumer, so that a good procurement strategy with redundancy can be found.

3. Problem specification

In this section, we begin by introducing the problem in formal terms, and then present the utility functions that describe
the preferences of the agents in the system and the social welfare that represents the utility of the system as a whole. We
then consider various scenarios in which execution uncertainty occurs in practice, and generate a number of more specific
models based on different assumptions about the nature of this uncertainty.

3.1. General setting

We consider a single service consumer A, who would like to complete a task T . The consumer derives a value V ∈ R
+

if the task is successfully completed within a given deadline D ∈ R
+ , and 0 otherwise. The problem faced by the agent is

that it is unable to execute the task on its own, and must procure the services of a third party. We assume that there are m
service providers, given by the set M = {1, . . . ,m}, which can complete the task on the consumer’s behalf. The consumer can
invoke a provider i ∈ M at any time in the interval [0, D]. In particular, the consumer may have multiple services running
concurrently for the same task. In this case, the value V is obtained if at least one of the invoked services completes
within the required time (and no additional value is obtained if multiple services complete the task). We assume that, once
invoked, the provider remains committed to the task until it is completed (possibly beyond the deadline). Thus, a service
cannot be interrupted.

As service completion times are generally uncertain, we let Xi be a random variable describing the execution time of
provider i, where we assume that Prob(Xi � 0) = 0. This is the time from invocation to completion and includes any time
needed for pre- and post-processing, queueing and data transfers. The random variables Xi for i ∈ M are distributed accord-
ing to the cumulative distribution functions Fi(t), where Fi(t) = Prob(Xi � t) is the probability that the task is successfully
completed at most t time units after invocation. Furthermore, we let f i(t) = dFi(t)/dt be the corresponding probability
density function. In the following, we also refer to Fi as provider i’s duration function. We assume, in general, that neither
the consumer nor the providers can actively influence the running time. However, we do not necessarily assume that the
running times of different providers are independently distributed. In Section 3.3, we will elaborate on how this uncertainty
may arise in practice and how this affects the modelling assumptions.

While executing, provider i incurs a cost ci , where this cost may represent both the running costs of its computational
resources and opportunity costs from not being able to use these resources for other tasks. In the case that the cost is
uncertain, because opportunities may or may not arise and because it typically depends on the execution time, ci can
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also be interpreted as the expected cost. For simplicity, however, we refer to ci as a deterministic value. To compensate
a provider for this cost, each provider i ∈ M receives a payment, which is given by transfer functions τi . In the case that
the provider costs ci are publicly known, these transfers are simply equal to the costs when a provider has been invoked,
and zero otherwise, regardless of whether the task succeeded in time.2 While such a setting, where providers are only
paid their costs, is unrealistic in many settings, we will investigate it in detail in Section 4. This allows us to compute the
optimal procurement schedule with known costs and it will form the basis for private information settings. Formally, when
ci is known:

τi =
{

ci if provider i is invoked
0 otherwise

(1)

On the other hand, if the costs are private, the transfers are determined by a procurement mechanism, as discussed in Sec-
tion 5, and they are typically not equal to the provider’s costs. In this section we make no particular assumption regarding
the transfer functions, only that these are calculated ex-post and can depend on all available information, including whether
or not the task succeeded within the deadline. Note that transfers can also be negative, in which case the provider incurs a
penalty. Finally, we assume that all participants are expected utility maximisers.

At this point, it should be noted that the described model has a number of possible extensions. First, in many applica-
tions, a consumer will often face workflows of several interdependent tasks rather than just a single task. Furthermore, we
make the assumption that service costs stay constant throughout the active period of a task (i.e., between when it first be-
comes available and its deadline). However, in practice, varying demand and capacity constraints may lead to more dynamic
costs3 and there may even be uncertainty about future costs. Similarly, we assume a fixed deadline and that a successful
service result can be easily verified by the consumer, but potential future extensions of our work could examine soft or
uncertain deadlines and settings where there can be uncertainty about whether a task was completed successfully or not.

3.2. Procurement strategy and agent utility functions

Given the above setting, we are interested in finding a procurement strategy ρ , which specifies a plan that determines
which providers should be invoked and when. We denote P to be the set of all valid procurement strategies, and compactly
represent an element of this set as follows:

Definition 1 (Procurement strategy). A procurement strategy is a vector ρ = 〈(s1, t1), . . . , (sn, tn)〉 ∈ P with n � m, where each
element represents the invocation time ti ∈ [0, D] of a provider si ∈ M . Importantly, a provider si is only invoked at time ti
(and incurs cost csi ) if no provider has so far completed the task. Without loss of generality, we assume that ti � ti+1 (i.e.,
elements of the vector are ordered by their invocation time), and si �= s j if i �= j. We use ρ = ∅ to denote the case where
no provider is invoked.

For example, assume there are four providers, M = {1,2,3,4}, and ρ = 〈(2,0), (3,0), (1,2.5)〉. Here, providers 2 and 3
are invoked immediately. Then, if the task has not been completed by t = 2.5, provider 1 is also invoked, causing the three
providers to run concurrently. Provider 4 is never invoked.

Given a strategy ρ and the random variables describing the duration distributions, we would like to derive the probability
that task T is completed by a certain time. This is given by:

Definition 2 (Completion probability). Denote by Xρ = mini∈{1,...,n}(ti + Xsi ) the random variable describing the completion
time of the task. Then, the probability that the task T is completed by a certain time t is given by (recalling that Prob(Xsi �
0) = 0):

Prob(Xρ � t) = Prob

(
n⋃

i=1

Xsi � t − ti

)
(2)

We are now ready to specify the utility functions of the consumer and the providers. In what follows, we specify the
utility after execution of the procurement schedule, as well as the expected utility for a given procurement strategy prior to
its execution.

Definition 3 (Consumer’s utility). The consumer’s utility is:

u A(ρ) =
{

V − ∑
i∈M τi if Xρ � D

−∑
i∈M τi if Xρ > D

(3)

2 Note that we have assumed that a task is always completed by a provider, even if this is after the deadline. To prevent a service provider from not
investing any resources and thus not incurring costs, the payment can be made after completion.

3 This has partly been addressed in related work [49].
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and the consumer’s expected utility prior to execution is:

u A(ρ) = V · Prob(Xρ � D) −
∑
i∈M

τ̄i(ρ) (4)

Here, τ̄i(ρ) is the expected transfer to providers i given schedule ρ prior to its execution. The transfers depend on the
details of the procurement mechanism that is used, but for the setting where costs are publicly known, the expected transfer
to provider i is simply its cost multiplied by the probability that it is invoked (which is equal to the probability that no
other provider has completed the task by the time that provider i is scheduled to be invoked). In more detail, let tρ(i)
indicate the invocation time of provider i in the procurement strategy ρ , where we define tρ(i) = ∞ if provider i is not
part of the schedule. Given this, τ̄i for the full information setting is calculated by4:

τ̄i(ρ) = ci · [1 − Prob
(

Xρ � tρ(i)
)]

(5)

Furthermore, a service provider’s utility is defined by:

Definition 4 (Service provider’s utility). Let Iρ = {si: ti � Xρ} be the set of providers that are invoked for the task. The utility
of service provider i is:

ui(ρ) =
{

τi − ci if i ∈ Iρ

τi otherwise
(6)

and provider i’s expected utility prior to execution of strategy ρ is:

ui(ρ) = τ̄i(ρ) − ci · [1 − Prob
(

Xρ � tρ(i)
)]

(7)

In general, we are interested in choosing a strategy which maximises the social welfare, which is the sum of all utilities
that agents derive in the system. This is a natural metric for how efficiently the agents work together in achieving the
task, as it explicitly balances the benefit of successful task completion with the overall costs that are incurred. Now, since
the actual completion time is unknown until execution, we need to consider the expected social welfare when selecting a
strategy ρ . As such, this explicitly models the uncertainty in service execution times, which is a key consideration in our
work, as described in Section 1. In what follows, we provide the equations for both the welfare and the expected welfare
in turn. Note that these equations no longer contain the transfers, because these simply re-distribute utility between the
agents.

Definition 5 (Social welfare). The social welfare is given by:

w(ρ) = u A(ρ) +
∑
i∈M

ui(ρ) =
{

V − ∑
i∈I(ρ) ci if Xρ � D

−∑
i∈I(ρ) ci if Xρ > D

(8)

The expected social welfare prior to execution is given by:

w(ρ) = ū A(ρ) +
∑
i∈M

ūi(ρ) = V · Prob(Xρ � D) −
n∑

i=1

csi · (1 − Prob(Xρ � ti)
)

(9)

So far, we have not detailed how to calculate the probabilities in the above equations, in order to avoid making any
assumptions about the duration probabilities (e.g., whether service durations of different providers are independent or
whether they are correlated). We explore this issue further in the following section, where we instantiate Eq. (2) (comple-
tion probability) for particular environments. This will then allow us to analytically derive the optimal invocation times of
providers under certain conditions in Section 4.

3.3. Models of uncertainty

As a fundamental part of our model, we assume that the execution time of a service is uncertain, but so far we have
not been explicit about the nature of this uncertainty. In the following, we explore this issue in more detail and identify
three possible levels of correlation that occur in practice: environments with no correlation between the probability distri-
butions of the execution time, with perfect correlation, and with imperfect correlation. Furthermore, we describe a number
of example scenarios where these different modelling assumptions are likely to apply in practice (or at least provide a
good approximation) and for the first two settings we re-write Eqs. (2) and (9). This will then help us derive the optimal
procurement strategy for these settings in Section 4.

4 Note that in the special case where ρ = ∅, the transfers are always 0, i.e., τ̄i(∅) = 0.
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3.3.1. Independent distributions
Most of the research on task allocation with execution uncertainty assumes that the execution durations of different

providers are independently distributed. This is a reasonable assumption in a setting where, for example, the computational
requirements for the task are known (in terms of the number of computational cycles), but there is uncertainty about the
load on the service provider’s resources at the time of execution. This may occur when the task is submitted to a queue
on a computational cluster or mainframe, and there is uncertainty about the completion time of other tasks. Alternatively,
the resource may be shared and concurrently running tasks, submitted by other users, may affect the duration of the
consumer’s task. As a result of this local, provider-specific uncertainty, it is reasonable to assume that service durations are
independently distributed, i.e., that there is no correlation between the execution times of different providers.5

For a setting where independence can be assumed, Eq. (2) can be re-written as follows:

Prob(Xρ � t) = Prob

(
n⋃

i=1

Xsi � t − ti

)
= 1 − Prob

(
n⋂

i=1

Xsi > t − ti

)

= 1 −
n∏

i=1

(
1 − Fsi (t − ti)

)
(10)

As a result, and given that Fi(x) = 0 for x � 0, Eq. (9) for the expected social welfare becomes:

w(ρ) = V

(
1 −

n∏
i=1

(
1 − Fsi (D − ti)

)) −
n∑

i=1

csi

i−1∏
j=1

(
1 − Fs j (ti − t j)

)
(11)

3.3.2. Perfect correlation
In contrast to the provider-specific uncertainty, in other settings, the uncertainty may be associated with the task itself.

That is, the task difficulty (e.g., in terms of the number of computational cycles required to solve it) is unknown a priori
and only given by a probability distribution. For example, it is generally unknown how difficult specific instances of NP-hard
optimisation problems are to solve, and techniques to estimate the empirical hardness [30] can be used to obtain a probability
distribution of this difficulty. Assuming that resources are immediately available and not influenced by concurrent tasks, the
duration of a service can then be modelled by a deterministic function of this difficulty. Generally, however, as providers may
use different hardware, the processing speeds and costs between providers can vary considerably for a particular difficulty.
Given this, in such a setting, the execution times of different providers are perfectly correlated.

We will now use an example scenario to describe this setting more formally. Let Y denote a continuous random variable
describing the task difficulty, which is distributed according to the cumulative function G(y) and corresponding density
function g(y) with support [0,∞]. The task difficulty is defined by some commonly agreed metric (the details of which
are not important for the purpose of our model). Each provider i has a quality of service function qi : R

+
0 → R

+
0 , where

qi(t) denotes the maximum difficulty that provider i can solve within t time units. We assume that qi is increasing and
differentiable, and qi(0) = 0. Furthermore, we define Fi(t) = G(qi(t)) as the probability that provider i completes the task
within t time units (which corresponds exactly to the duration function introduced at the beginning of Section 3).

Given this formalisation, we can re-write Eqs. (2) and (9) for this setting (as we show later, in Section 4, these equations
can be simplified further for the optimal solution). In doing so, as a result of the perfect correlation, note that the union
operator can be replaced by a maximisation, because only the provider that solves the highest difficulty in its allocated time
(as given by qi(t)) influences the overall success probability:

Prob(Xρ � t) = Prob

(
n⋃

i=1

Xsi � t − ti

)
= Prob

(
Y � max

1�i�n
qsi (t − ti)

)

= G
(

max
1�i�n

qsi (t − ti)
)

= max
1�i�n

Fsi (t − ti) (12)

And Eq. (9) becomes:

w(ρ) = V · max
1�i�n

Fsi (D − ti) − cs1 −
n∑

i=2

csi ·
[

1 − max
1� j�i−1

Fs j (ti − t j)
]

(13)

5 Even in such a setting, however, this assumption may not be valid. It could be the case, for example, that all the providers are highly loaded in busy
periods, and the opposite holds in quiet periods. In this case, conditional independence may still be obtained, based, for example, on the time of day.
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3.3.3. Imperfect correlation
While the previous two settings considered either perfect correlation between service durations or none at all, many

scenarios will contain correlation to a limited extent. For example, the computational difficulty of a problem may still
be uncertain, as described before, but different providers may use different algorithms to solve this problem. This could
lead to imperfectly correlated execution times, as a generally hard problem will take longer to solve for all providers,
but some providers may be faster on certain problems, but slower on others. Furthermore, the algorithm itself may be
nondeterministic or the factors mentioned in Section 3.3.1 could contribute to the duration uncertainty of a particular
provider.

Although such settings with imperfect correlation are very common, they typically require a much more domain-specific
model that describes the nature of the correlation between service durations. As a result, we do not analyse imperfectly
correlated settings in this paper, and instead concentrate on the former two settings. However, many of our results can be
extended to settings with imperfect correlation. In particular, the mechanisms presented in Section 5, which incentivise the
providers to truthfully report their costs and duration functions, also apply to the imperfect correlation case. However, this
does require that the problem can be solved optimally within the range of allowable outputs (this is described in more detail
in Section 5). Since imperfect correlation settings are unlikely to admit an analytical solution, the time space may need to
be discretised.

This concludes our discussion of the problem that we address in the paper, the utility functions that motivate agents in
the systems we consider, and the various types of execution uncertainty that may occur in practice. In the next section, we
describe how an optimal procurement strategy can be found by the service consumer.

4. Optimal service procurement

Finding an optimal procurement strategy, i.e., deciding which providers to invoke at what times, is a fundamental part
of this paper. First, it is of interest in current service markets, where providers typically offer their resources at fixed prices
that are publicly listed (i.e., where transfers are not determined by a mechanism, but where they are set by providers,
depending on the balance of supply and demand). Second, it will allow us to design efficient mechanisms in Section 5.
In this context, we are mostly interested in maximising the expected social welfare, because this represents how well the
available providers are used to complete the task and explicitly balances the combined costs of the providers with the value
of successful execution.

Throughout this section, we will assume that both the providers’ costs ci and duration functions Fi are public information
and that the consumer simply compensates providers for their incurred costs when they are invoked (i.e., τi = ci if provider i
is invoked and τi = 0 otherwise). In Section 5, we will describe settings where this assumption does not hold. For now, it
means that the social welfare and the consumer’s utility are equal, i.e., w(ρ) = ū A(ρ), and we are seeking an optimal
strategy ρ∗ = argmaxρ∈P w(ρ) that maximises these.

Before we show how ρ∗ can be found, we first outline an example scenario. This highlights the potential benefit of
redundancy by showing that appropriate procurement of multiple service providers can lead to a significant improvement
in utility compared to relying only on a single service provider.

4.1. Motivating example

In this example, a graphic designer needs to render a high-resolution image for an advertising campaign. As she needs
to present her work to senior managers at a board meeting later that day, she has a strict deadline of 60 minutes (D = 60)
and values the task at $100 (V = 100).

Now, to complete the rendering task, she has several computational resources at her disposal. As her first option, she
can submit the task to one of several desktop PCs within her company, which are set up to use idle processing cycles to
run background tasks. These are cheap (her department is billed $0.60 each time a task is submitted, i.e., cPC = 0.6), but
the completion time is highly uncertain, as the desktop may be in use by its regular owner and other concurrent tasks.
Here, we assume that this uncertainty is described by an exponential distribution with a mean duration of 2 hours, i.e.,
FPC(t) = 1 − e− t

120 .
As her second option, she can outsource the task to a powerful mainframe computer, which is maintained by an external

company. This is significantly faster, due to its powerful hardware and its generally lower congestion. Hence, we here assume

the distribution FMF(t) = 1 − e− 2t
3 , with a mean duration of only 1.5 minutes. However, as the mainframe is expensive to

run, the cost is higher, with the provider charging $60 for an invocation (cMF = 60).
As is common in related work, the designer may now choose the service provider that promises the highest expected

utility. Using one of the desktop PCs would result in w = V · FPC(D)− cPC = 38.75, while submitting the task to the external
mainframe would yield a slightly higher utility of w = V · FMF(D) − cMF = 40. Hence, she would be best off choosing the
latter option, which will virtually guarantee successful execution by the deadline, but also incur a large cost.

However, instead of choosing one provider, we now demonstrate how she could exploit redundancy to complete the
task. Here, we assume that there are three identical desktop PCs within her company (i ∈ {1,2,3}), as well as the external
mainframe (i = 4). For now, let us assume that durations are independently distributed, as described in Section 3.3.1. Given
this, she can submit the job to several PCs and then later to the mainframe, to ensure that the task is completed in time. In
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Fig. 1. Success probability over time for ρ∗ (combined) and its constituent services (desktop PC and mainframe) when durations are uncorrelated.

Fig. 2. Success probability over time for ρ∗ (combined) and its constituent services (desktop PC and mainframe) when durations are perfectly correlated.

fact, in this setting, the optimal strategy for her is ρ∗ = 〈(1,0), (2,0), (3,0), (4,54.51)〉, which results in an expected utility
of w = V · (1 − (1 − FPC(D))3 · (1 − FMF(D − 54.51)))− 3cPC − cMF · (1 − FPC(54.51))3 = 82.27. This strategy is shown in Fig. 1,
which plots the success probability over time for ρ∗ , as well as for the constituent services that are invoked as part of ρ∗ .
Overall, ρ∗ results in more than a 100% improvement over the best single provider strategy.

Next, we examine the setting where service durations are perfectly correlated, as described in Section 3.3.2. To this end,
we use the same parameters as given above (D = 60 and V = 100), but now assume that all uncertainty lies in the difficulty
of the rendering task. More specifically, the designer now knows that all potential machines are idle, but she is unsure about
the number of processing cycles needed to complete the task. Thus, we assume that the difficulty of the task is distributed
according to G(y) = 1 − e−y . Furthermore, we assume that the same local PCs and an external mainframe are available
and that their service durations are given, respectively, by the functions PC(y) = 120y (where y is the task difficulty) and
qMF(t) = 2

3 t . This results in exactly the same distribution functions as above, but the durations are now perfectly correlated.
If only one provider is invoked in this setting, the best expected utility is again gained by invoking only the expensive

mainframe, resulting in w = 40. When employing redundancy, we first note that, in this setting, the designer cannot gain
anything by invoking more than one of the cheap desktop PCs, as their durations are always identical. However, she can still
benefit from first invoking a cheap PC and then later a mainframe. This is because the mainframe may never be needed,
but if the task is still not completed just before the deadline, it can be invoked to increase the probability of success. More
specifically, the optimal strategy in this case is ρ∗ = 〈(1,0), (4,52.01)〉, which results in an expected utility of w = 60.02
(see Fig. 2). While this is not as large as in the uncorrelated case, it still constitutes a 50% improvement over the single
provider approach.

These examples highlight the potential benefit of using redundancy for task procurement scenarios, both in the cases
where durations are independent and when they are perfectly correlated. In the following, we discuss how an optimal
procurement strategy can be found in both cases. More specifically, we split the problem into two distinct parts and start
in Section 4.2 by looking at the problem of computing the optimal invocation times, given that we already know which
providers should be invoked and in what order. In Section 4.3, we then describe how this ordering of providers can be
found.

4.2. Optimal invocation times

We are now interested in finding an optimal procurement strategy ρ∗ , but we note here that this is a computationally
hard problem, due to its combinatorial nature and the nonlinear objective function. We also make the observation that it
a specific case of the restless bandit problem [57]. The restless bandit problem is an extension of the multi-armed bandit



S. Stein et al. / Artificial Intelligence 175 (2011) 2021–2060 2031
problem where there are n arms and at any time t , some number M of those arms can be chosen to be activated. When an
arm in state i is activated, a cost ci is incurred and it transitions to state j with probability pij . If an arm is not activated,
then no cost is incurred and it transitions to state j with probability qij . The goal is to find a policy or schedule for
activating the arms so as to maximise average rewards. In Appendix A, we describe how the optimal procurement problem
can be modelled as a restless bandit problem. Classic multi-armed bandit problems are a special case of the restless bandit
problem where qii = 1 and qij = 0 for all i �= j, but while the multi-armed bandit problem has an optimal solution by
using the Gittins priority-index rule [17] for which there are polynomial time algorithms, this is not the case for the restless
bandit problem. In particular, it has been shown that even in the case where only one arm is activated at a time (M = 1) and
all transitions are deterministic, the problem of computing an approximately optimal schedule is PSPACE-hard [39].6 Since
the optimal procurement problem is an instance of a restless bandit problem, where M = 1 but allowing for probabilistic
transitions, we can make the following observation:

Observation 1. The optimal procurement problem can be modelled as a restless bandit problem and it is PSPACE-hard to
compute an approximately optimal schedule.

To solve the problem, we initially assume that the optimal subset of providers and their ordering is given. That is, we
are given an ordered set of providers ρ∗

s = 〈s1, . . . , sn〉 where si is invoked before si+1. To compute the optimal procurement
schedule, we must determine ρ∗

t = 〈t1, . . . , tn〉, where ti is the invocation time of si . To this end, we compute the gradient
of the expected welfare, ∇w(ρ∗

t ), and find its root, i.e., ∇w(ρ∗
t ) = 0 (if it exists). This results in a system of n simultaneous

equations, with one equation for each ti , with constraints, ∀i: 0 � ti � D , and ∀i, j : i � j ↔ ti � t j . Solving these equations,
checking the appropriate second order conditions and identifying the global maximum depend on the family of duration
distributions and can be done either analytically or numerically using standard optimisation software (as available, e.g., in
Matlab, Mathematica or Maple).

In what follows, we will make a number of assumptions about the duration distributions, in order to derive closed-form
analytical solutions. Specifically:

• We will focus on the exponential distribution, as this is commonly used for modelling uncertain service durations [55].7

• As discussed in Section 3.3.3, we will concentrate on the two scenarios of independent and perfectly correlated dura-
tions. We will cover these separately, as the objective functions are fundamentally different.

We stress that these two assumptions do not limit the generality of our approach and the mechanisms outlined in
Section 5. They simply allow us to derive simple closed-form solutions for the optimal invocation times in this section. To
this end, in the following we start by looking at the setting with independent durations.

4.2.1. Independent durations
We now derive analytical expressions for the invocation times ρ∗

t , given ρ∗
s and given that the duration distributions

of providers i ∈ M are described by Fi(t) = 1 − e−λi t , where λi > 0 is a rate parameter. Re-writing Eq. (11) with these
distributions, and computing the gradient now yield:

∂ w(ρ)

∂ti
= −V · λsi

n∏
j=1

e−λs j (D−t j) + csi

i−1∑
j=1

λsi

i∏
k=1

e−λsk (ti−tk)

− λsi

n∑
j=i+1

(
cs j

j−1∏
k=1

e−λsk (t j−tk)

)
(14)

To find the maximum, we set this to zero and divide both sides by
∏i

k=1 eλsk tk :

0 = −V · λsi

n∏
j=1

e−λs j D
n∏

j=i+1

eλs j t j + csi

i−1∑
j=1

λs j

i∏
k=1

e−λsk ti

− λsi

n∑
j=i+1

(
cs j

j−1∏
k=1

e−λsk t j

j−1∏
k=i+1

eλsk tk

)
(15)

6 This is in terms of the number of arms.
7 The exponential distribution is also a memoryless distribution, which leads to a compact solution. However, similar approaches can be applied to other

distributions, or, when an analytical solution is intractable or impossible, time can be discretised and a solution can be found for arbitrary distributions.
We will return to this in Section 5.3.3 and also perform experiments with other distributions in Section 6.1.2.
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Here, we note that ti is independent of any t j , j < i, i.e., the invocation time of a provider does not depend on the
invocation time of those already running. This is a result of the exponential function being memoryless, i.e., the probability
of completing the task within the next time interval �t is independent of when it was invoked. Hence, we can calculate
each ti by backward induction, starting with the last provider, n. The invocation time of this can be obtained directly by
taking the derivative with respect to tn (as in Eq. (15)):

tn = D + ln(csn · ∑n−1
j=1 λs j ) − ln(V · λsn )∑n

j=1 λs j

(16)

Furthermore, we can obtain a simpler closed-form solution for the remaining invocation times by combining and manip-
ulating the partial derivatives for ti and ti+1, resulting in:

csi

λsi

i−1∑
j=1

λs j

i−1∏
k=1

e−λsk (ti−tk) −
n∑

j=i+1

(
cs j

j−1∏
k=1

e−λsk (t j−tk)

)

= csi+1

λsi+1

i∑
j=1

λs j

i∏
k=1

e−λsk (ti+1−tk) −
n∑

j=i+2

(
cs j

j−1∏
k=1

e−λsk (t j−tk)

)
(17)

Then, using algebraic manipulations, we isolate ti , and derive an expression that is based solely on ti+1:

ti = ti+1 − 1∑i
j=1 λs j

ln

( csi+1λsi

∑i+1
j=1 λs j

csi λsi+1

∑i−1
j=1 λs j

)
(18)

Note that Eq. (18) is not well defined for t1, but the optimal here is to set t1 = 0. This is because the cost will be
incurred in any case and any delays would only reduce its probability of success by the deadline. Furthermore, we note
that the equations can yield negative values for some ti , indicating that the optimal values lie outside the constraints of the
problem (i.e., before the task can be started). In this case, as ti does not influence the procurement times of later providers,
the optimal choice is to set ti = 0, i.e., the provider is invoked at the earliest possible time. Furthermore, the equations
can sometimes yield inconsistent values, i.e., ti > D or ti > ti+1 for some i, but this only occurs when the ordering and/or
the set of providers was non-optimal in the first place. Finally, we also note that the partial second derivatives are always
negative, and since each variable is found uniquely one at a time using backward induction, the final result is optimal.

In the next section, we show how the optimal invocation times ρ∗
t can be found when service durations are perfectly

correlated.

4.2.2. Perfectly correlated durations
We now consider optimal procurement strategies for scenarios where the only uncertainty stems from the difficulty

of the task itself. As a result, the duration distributions are perfectly correlated and, as discussed in Section 3.3.2, when
calculating the social welfare, this allows us to replace the union operator with a maximisation operator (see Eq. (13)). In
this section, we will simplify the equation even further in the case of an optimal procurement strategy. For convenience, we
will restate the equation in slightly different terms:

w(ρ) = V · G
(

max
1�i�n

qsi (D − ti)
)

− cs1 −
n∑

i=2

csi ·
[

1 − G
(

max
1� j�i−1

qs j (ti − t j)
)]

(19)

Now, the following properties enable us to considerably simplify the above equation:

Lemma 1. Any optimal procurement strategy (in perfectly correlated settings), ρ∗ , either has the following properties or can be con-
verted into an equivalent (in terms of the expected social welfare) strategy having these properties:

1. The overall success probability only depends on the provider which is invoked last. Formally:

argmax
1�i�n

qsi (D − ti) = n

2. The probability that provider si is invoked only depends on the provider which is invoked just before it, si−1 . Formally, for any
i ∈ {2, . . . ,n}:

argmax
1� j�i−1

qs j (ti − t j) = i − 1

Proof. We prove both properties in turn. Suppose the first property does not hold, and there exists another provider sk
at position k in the schedule, so that argmax1�i�n qsi (D − ti) = k, where k < n. In that case, we can remove all providers
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Fig. 3. Example showing the probability of success for each provider over time for a procurement strategy with 3 service providers, where t1 = 0, t2 = 20,
and t3 = 30. This procurement schedule satisfies the first property from Lemma 1, but not the second.

s j, j > k from the procurement strategy without adversely affecting the expected social welfare. To see this, note that
removing these providers does not affect the first term in Eq. (19) (since this value is determined by provider sk), nor does
it affect the probability of invoking any of the providers up to and including the kth provider in the schedule. As a result of
this manipulation, property (1) holds, since provider sk will be the last provider in the schedule.

Now, assuming property (1) holds, we prove the second property using an inductive argument. Suppose this time that
property (2) holds for all s j , j > i (i.e., all providers invoked after si), but not for provider si , i � n. That is, there exists
a provider sk , k < i − 1, such that argmax1� j�i−1 qs j (ti − t j) = k. In this case, we can remove provider si−1 from the
procurement schedule without negatively affecting Eq. (19). To see this, note that provider si−1 does not affect the overall
probability of success since this is determined by provider sn (as per property (1)). Furthermore, si−1 does not affect the
invocation probability of any provider preceding it. Crucially, however, provider si−1 also does not affect the invocation
probability of provider si (since this is determined by provider sk), nor does it affect any provider s j with j > i (since,
by assumption, the invocation probability is determined by provider s j−1). Now, by starting from the last provider, sn , this
elimination process can be repeated until property (2) holds. �

A graphical example to clarify these properties is depicted in Fig. 3. In this example, s3 is invoked last and can also
achieve the maximum overall probability of success by the deadline. Therefore, this example satisfies property (1) of
Lemma 1. On the other hand, note that, at t = 30 when s3 is invoked, the highest probability of success is determined
by provider s1 instead of s2. This violates property (2) of Lemma 1. We can do better, therefore, by removing provider s2
from the schedule, since it does not affect the overall probability of success, nor the invocation probability of any of the
other providers. However, by removing provider s2, we reduce the expected costs (hence, the strategy in Fig. 3 cannot be
optimal).

Although there may exist multiple optimal strategies, due to Lemma 1 we can restrict our attention to those which
satisfy properties (1) and (2). This way we can simplify Eq. (19) by removing the max operators, which results in:

w
(
ρ∗) = V · Fsn (D − tn) − cs1 −

n∑
i=2

csi · [1 − Fsi−1(ti − ti−1)
]

(20)

In what follows, we will use the simplified equation to find the optimal strategy. As in Section 4.2.1, we can state a
number of necessary conditions for finding the optimal invocation times, given an appropriate ordering. We do this by
setting ∂ w(ρ∗)/∂ti = 0, which results in:

0 = csi · f si−1(ti − ti−1) − csi+1 · f si (ti+1 − ti), where 1 < i < n (21)

0 = csn · f sn−1(tn − tn−1) − V · f sn(D − tn) (22)

where f si (x) = dFsi (x)/dx. As before, we note that it is always optimal to invoke the first provider at the earliest possible
time and so t1 = 0.

This gives us a system of simultaneous equations that can be solved for all ti to yield the optimal invocation times.
As in Section 4.2.1, we use the exponential distribution in the following to demonstrate how this can be done in prac-
tice. In more detail, we assume that Fsi (t) = 1 − e−λsi t and f si (t) = λsi e

−λsi t . This arises, for example, if the problem
difficulty Y is distributed according to an exponential distribution G(y) = 1 − e−y , and each provider has a quality
of service function qsi (t) = λsi t (i.e., for each provider, the execution time depends linearly on the difficulty). Hence,
Fsi (t) = G(qsi (t)) = 1 − e−λsi t . Moreover, for ease of notation, we let �ti = ti − ti−1 be the waiting time between invok-
ing provider si−1 and si (with �t1 = 0), allowing us to re-write Eqs. (21) and (22) as follows:

0 = csi λsi−1 e−λsi−1 �ti − csi+1λie
−λsi �ti+1 , where 1 < i < n (23)

0 = csnλsn−1 e−λsn−1 �tn − V λsn e−λsn (D−tn) (24)
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Rearranging this, we see that the following equalities hold:

csi λsi−1 e−λsi−1 �ti = cs j λs j−1 e−λs j−1 �t j , where 1 < i, j � n (25)

csi λsi−1 e−λsi−1 �ti = V λsn e−λsn (D−tn), where 1 < i � n (26)

Using Eq. (25), we can thus easily calculate any �ti , given another �t j (with 1 < j):

�ti =
ln(

csi λi−1

cs j λs j−1
) + λs j−1�t j

λsi−1

(27)

Given this, we note tn = ∑n
i=2 �ti and use this to replace tn in Eq. (26). This allows us to calculate �tn directly8:

csnλsn−1 e−λsn−1 �tn = V λsn e
−λsn (D−∑n−1

i=2

ln(
csi λsi−1
csn λsn−1

)+λsn−1 �tn

λsi−1
−�tn)

(28)

Solving this for �tn , we obtain:

�tn =
ln(

csn λsn−1
V λsn

) + λsn D − λsn

∑n−1
i=2

1
λsi−1

ln(
csi λsi−1
csn λsn−1

)

λsn + λsn−1 + λsnλsn−1

∑n−1
i=2

1
λsi−1

(29)

This allows us to calculate the waiting time for the last provider �tn , which we can then use to calculate all other waiting
times using Eq. (27). Deriving the actual invocation time ti of each provider is then trivial, i.e., t1 = 0 and ti = ∑i

j=1 �t j .
We now move on to the problem of finding the optimal ordering and subset of providers.

4.3. Optimal provider sequence

So far, the equations developed in Sections 4.2.1 and 4.2.2 allow us to efficiently calculate the optimal procurement
times for a given sequence of service providers ρ∗

s . However, it is not obvious how to find this optimal set and ordering
of providers. Related work on economic search that orders alternatives using reservation values or allocation indices, such
as [56] or [17], does not directly apply to this case, due to the overlap of concurrently invoked providers. Furthermore,
our problem includes a fixed time constraint, by which the task has to be completed. Other greedy approaches that order
services by increasing costs, decreasing rate parameters, the ratio of these, or approaches that first select providers who
individually yield a higher expected utility, also do not always find optimal solutions. This is because it is often best to
select cheaper, slower providers first and only invoke the more expensive and faster ones later, to ensure that the task
is completed successfully. However, when the deadline of the task is particularly short, the consumer may be forced to
immediately invoke the faster, expensive providers.

As a simple example of this, we consider a set of two providers, M = {1,2}. The first is cheap and slow with c1 = 0.2 and
λ1 = 0.1, while the second is expensive and fast with c2 = 5 and λ2 = 10. For the sake of this example, their durations are
here independent. If we now assume that a consumer has a task T with deadline D = 1.5 and utility V = 100, the optimal
procurement strategy is ρ∗ = 〈(1,0), (2,0.75)〉. However, if we decrease the deadline slightly to D = 1, the optimal strategy
becomes ρ∗ = 〈(2,0), (1,0.84)〉, thereby reversing the order of invoked providers. This observation suggests that a simple
greedy search for the optimal strategy is insufficient. However, using a brute-force search over all possible subsets and
orderings is clearly infeasible when the number of providers rises beyond a handful, as the number of possible orderings
for m providers is

∑m
i=0

(m
i

) · i! = ∑m
i=0 m!/(m − i)!.

Fortunately, it is possible to quickly obtain an optimal order of providers when we make certain realistic assumptions
about the quality of service functions in the perfectly correlated setting. We describe these assumptions in more detail in
Section 4.3.1. Then, we develop a generic optimal branch-and-bound algorithm in Section 4.3.2, describing specific adjust-
ments for both scenarios with independent and perfectly correlated durations. As this algorithm significantly reduces the
space of solutions that have to be searched, it copes well with larger problems with up to ten or twenty service providers.
For situations where even this becomes infeasible (when there are dozens of providers or more), we also develop a fast
greedy algorithm in Section 4.3.3.

4.3.1. Optimal order in perfectly correlated setting
In the perfectly correlated setting, it is often reasonable to make certain assumptions about the quality of service func-

tions qi of the providers. In particular, we note that in these settings, some providers will always be able to complete a
more difficult task than others within the same time period. For example, if we consider two otherwise identical PCs with
clock speeds of 2 GHz (provider 1) and 3 GHz (provider 2), then it can safely be assumed that, if both run for the same

8 The same procedure can be used to calculate an arbitrary �t j . We pick �tn here, as it leads to a simpler expression.
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amount of time, the maximum task difficulty that provider 2 will be able to complete will always be higher. We formalise
this in the following.

Assumption 1. There exists a total (strict) ordering of providers <d , where i <d j implies that qi(x) < q j(x) for all x ∈ R
+ .9

We note that a wide range of functions satisfy this assumption, including linear and, more generally, any polynomial or
exponential function, where, for each of the constants, the providers have the same order. It also applies to the functions
we assumed in Section 4.2.2. This assumption now gives us an unambiguous ordering over the providers that must be
preserved by an optimal sequence:

Lemma 2. Given Assumption 1, for any two providers i and j in the optimal sequence ρ∗
s , if i <d j, then i is invoked before j, i.e.,

t∗
i < t∗

j .

Proof. The proof is fairly straightforward and can be demonstrated by contradiction. Suppose that, in the optimal schedule,
t∗

i > t∗
j (i is invoked after j). By assumption, qi(x) < q j(x) for all x � 0. Because q j is increasing (see Section 3.3.1), qi(x) <

q j(y) for any 0 � x � y. Let x = t − t∗
i , y = t − t∗

j , where t is the current time, then qi(t − t∗i) < q j(t − t∗
j ) for any t � t∗

i . This
means that, at any point in time, any task that can be completed by provider i at time t can also be completed by provider
j at time t′ < t . Therefore, provider i is superfluous, and cannot be part of ρ∗

s , which contradicts the assumption. �
The above observation is useful since it considerably reduces the search space. We can further prune this by noting that

it is never beneficial to invoke a slower, more expensive provider before a faster, cheaper provider. Intuitively, this holds
because we can simply invoke the second provider immediately and completely discard the first. This leads to a higher
overall success probability and reduces the expected cost, thereby increasing the social welfare. Hence, we can remove any
providers that are dominated in this way, resulting in a sequence of providers ordered both by increasing speed (i.e., by <d)
and by increasing costs.

Although this now gives us an ordering for the optimal sequence, we are still left with the problem of finding the
optimal subset of providers to invoke. Thus, in the following section, we describe a generic branch-and-bound algorithm
that applies to all settings considered so far. In particular, this works for general settings with independent or perfectly
correlated durations. In addition, when Assumption 1 applies, it uses the results from this section to speed up the search.

4.3.2. Generic branch-and-bound algorithm
In this section we introduce a branch-and-bound algorithm that can be used for settings with correlated as well as

independent durations, in order to reduce the space of subsets and orderings that have to be searched. This algorithm
iteratively partitions the set of solutions into smaller subsets. Each time this happens, the algorithm computes a lower and
an upper bound for all solutions in a given subset, allowing it to quickly prune those subsets that cannot contain an optimal
solution (i.e., those with an upper bound that is less than some lower bound found so far).

More specifically, our branch-and-bound algorithm is based on a number of general observations:

• Some providers are inherently unsuitable for a given problem and therefore many orderings containing these providers
can be discarded. For example, if the consumer immediately invokes provider 1 with c1 = 9 for a task with value
V = 10, its profit will be at most 1 (no matter what other providers are invoked later). If it knows that using a different
provider already promises a better utility than this, it can immediately discard all orderings that begin with provider 1.

• As more providers are added to the end of a given ordering, their addition often has increasingly diminishing returns,
allowing us to discard some solutions with many providers. For example, if the ordering 〈1,2,3〉 already promises a
success probability close to 1, it may not be necessary to consider all solutions that start with these three providers
(such as 〈1,2,3,4〉, 〈1,2,3,5〉, 〈1,2,3,4,5〉, 〈1,2,3,5,4〉). This is because adding further providers to the end only
increases the cost, but will not significantly improve the success probability.

• Some providers clearly dominate others. For example, if provider i is cheaper and faster than j, then j will never be
invoked before i.10 Hence, we can remove all orderings where j is before i.

• In the correlated case, the assumption described in Section 4.3.1 may allow us to find a unique ordering over all
providers (by increasing cost and quality) that must hold in the optimal solution and it may also enable us to further
discard a number of dominated providers. However, note that this only applies in the correlated case and not when
durations are independent. Hence, in the following, we will sometimes consider the independent and correlated settings
separately where applicable.

9 For simplicity here we assume the ordering to be strict at all points in time, but this requirement can be weakened.
10 Note that provider i is faster than j if ∀x: Fi(x) � F j(x).
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Algorithm 1 Branch-and-bound algorithm.
1: ρ∗

s ← 〈〉 � Best ordering found so far
2: ulower ← 0 � Best current lower bound
3: Q ← {ρ∗

s } � Unexpanded orderings
4: while Q �= ∅ do � More unexpanded?
5: ρs ← argmaxρs∈Q Lower(ρs) � Pick best
6: Q ← Q \ {ρs} � Remove ρs from Q
7: P ′

s ← Expand(ρs) � Expand ρs

8: for all ρs
′ ∈ P ′

s do
9: ǔ ← Lower(ρs

′) � Find lower bound
10: û ← Upper(ρs

′) � Find upper bound
11: if û > ulower then � Sufficient upper bound?
12: Q ← Q ∪ {ρs

′} � Keep for future expansion
13: if ǔ > ulower then � Better lower bound?
14: ρ∗

s ← ρs
′ � Keep as current best

15: ulower ← ǔ
16: end if
17: end if
18: end for
19: Q ← {x ∈ Q | Upper(x) > ulower} � Filter orderings
20: end while
21: return FindTimes(ρ∗

s ) � Return best strategy

Fig. 4. Search tree that is explored by branch-and-bound algorithm (for M = {1,2,3}).

These intuitions are captured by the branch-and-bound technique used in Algorithm 1. In more detail, we begin with an
empty ordering ρ∗

s = 〈〉 (line 1), and then repeatedly consider any new ordering that can be created by appending a single
provider to the end of an existing ordering, thus exploring a search tree as exemplified by Fig. 4 (for M = {1,2,3}). We do
this by keeping a queue of unexpanded orderings (Q in line 3). Then, at each iteration of the main loop (lines 4–20), we
first select for expansion and remove from Q the ordering (lines 5 and 6) that promises the highest lower bound. Here, the
function Lower(ρs) is simply the utility of the ordering ρs , i.e., Lower(ρs) = w(FindTimes(ρs)), where FindTimes returns
the optimal procurement strategy using the equations from Sections 4.2.1 and 4.2.2. This trivially represents a strict lower
bound for any ordering that starts with the providers given by ρs (i.e., in the search tree, this corresponds to ρs and all of
its children).

Now, given the ordering to be expanded, ρs , we use the function Expand(ρs) in line 7 to give us a new set of orderings,
P ′

s , each of which is created by adding a single unused provider to the end of ρs . In the search tree, this corresponds to
generating the children of a particular ordering. For example, in Fig. 4, Expand(〈1〉) = {〈1,2〉, 〈1,3〉}. As part of this function,
we also immediately remove any orderings that are clearly infeasible. This depends on the setting as follows:

• When durations are independent, we remove all orderings where the last provider is dominated by any providers that
are not part of that ordering. Here, provider j is dominated by provider i if the latter is faster and costs at most as
much as j or if i is cheaper and as fast or faster than j.

• When durations are perfectly correlated and can be ordered (i.e., Assumption 1 holds), we remove all orderings where
j >d i holds for the last provider i and another provider j that is already part of the ordering (where >d is defined
as in Assumption 1). We also remove all orderings where j >d i ∧ ci > c j or i �d j ∧ j >d i ∧ ci � c j holds for the last
provider i and another provider j that is not part of the ordering. In other words, we always add providers that are
faster than any previously invoked providers and never any providers where a better uninvoked alternative exists (i.e.,
cheaper and as least as fast, or faster and at most as expensive).11 We can safely ignore the orderings that are removed

11 As mentioned earlier, note that this filtering can be efficiently implemented by precomputing a list of all providers, ordered according to <d , and then
removing all providers where another provider is as expensive or cheaper later in the list. When running the Expand(ρs) function, we then simply only
add those providers that come later in the list than the last provider in ρs .



S. Stein et al. / Artificial Intelligence 175 (2011) 2021–2060 2037
in this manner, because they, and any of their children in the search tree, are bound to be sub-optimal, as described in
Section 4.3.1.

• When durations are perfectly correlated and cannot be ordered (i.e., Assumption 1 does not hold), we remove the
same orderings as in the independent case.

For each of the new candidate solutions ρ ′
s generated by the Expand(ρs) function, the algorithm then considers a lower

bound, ǔ, and an upper bound, û, on the utility of ρ ′
s and any of its children. As discussed above, the lower bound is simply

the expected utility of ρ ′
s when using the optimal invocation times. However, calculating an upper bound on the utility

that could be achieved by adding any additional providers to the end of ρ ′
s is not immediately obvious. Depending on the

scenario, we do this in the following:

• If durations are independent, we let M ′ be the remaining service providers that are not in ρ ′
s . If M ′ = ∅, then the

upper bound is equal to the lower bound discussed above. Otherwise, we create a virtual service provider sρ with
csρ = mini∈M′ ci and Fsρ (x) = 1 − ∏

i∈M′ (1 − Fi(x)).12 This is based on the rationale that if any providers from M ′ are
invoked in any order, their cost is bound to be at least csρ and their combined probability of success within any given
time interval after invocation will never be higher than when immediately invoking all in parallel. With this reasoning,
we obtain a new ordering ρ ′′

s by appending sρ to ρ ′
s and then calculate the upper bound as w(FindTimes(ρ ′′

s )). If that is
less than the lower bound, this indicates that it is not possible to achieve a higher utility by invoking further providers,
and we can set the upper bound equal to the lower bound.
We note here that occasionally the technique described in Section 4.2.1 will return inconsistent results when using
these virtual providers. More specifically, it may be the case that tn < ti for some i < n, which violates the ordering
prescribed by ρ ′′

s . Briefly, this can occur when csρ is very small compared to the previously invoked providers, causing
the second term in Eq. (18) to be negative. Normally, this would indicate that the ordering tested is suboptimal (clearly,
we would want to invoke this provider as soon as possible, rather than at the end). However, in this case, sρ does not
exist and we still need an upper bound without changing the initial ordering ρ ′

s . Hence, when the result is inconsistent,
we use a more conservative approach for calculating an upper bound. In more detail, we relax the problem and now
assume that each provider is invoked in isolation and given the full D time units to complete the task. Furthermore, all
selected providers are invoked in series until one is successful within its allocated time. Given that the order of the first
invoked providers is already fixed by ρ ′

s , we then select the order of the remaining providers optimally by framing this
relaxed problem as a simple economic search instance [56]. The expected utility of this is then a valid upper bound.

• If durations are perfectly correlated and can be ordered, we take a similar approach to calculating an upper bound by
again creating a virtual service provider sρ that is guaranteed to perform better than any combination of the remaining
providers. To do this, we let M ′ be the set of remaining service providers and set the cost of sρ to be the lowest cost in
this set, i.e., csρ = mini∈M′ ci , and we set the duration function to be the best available in M ′ , i.e., we set Fsρ (x) = Fi(x),
such that i ∈ M ′ and ∀ j ∈ M ′ \ {i}: j <d i.13 As before, in the special case where M ′ = ∅ or when the ordering with sρ
yields a lower utility, we set the upper bound equal to the lower bound.

• If durations are perfectly correlated and cannot be ordered, we again have to take a slightly more conservative
approach. Here we create a virtual service provider sρ that has the lowest cost in the set of remaining service
providers, i.e., csρ = mini∈M′ ci . Since there may not be a single best duration function in that set, we then select
Fsρ (x) = mini∈M′ Fi(x).

Now, given the lower and upper bounds for a particular candidate solution ρ ′
s and all its children, we first compare its

upper bound to the utility of the best ordering found so far (line 11). If it is not greater, then we cannot improve on the
best solution so far by continuing to expand ρ ′

s . Hence, we discard it from our search, thereby pruning a subset of the
search-space. Otherwise, we add ρ ′

s to Q for further expansion (line 12) and, if its utility is higher than the best ordering
found so far, we update ρ∗

s and ulower (lines 14 and 15).
At the end of each iteration, only unexpanded orderings with an upper bound that is higher than the currently highest

lower bound are retained (line 19). This limits the size of Q (which we implemented using a priority queue), and also
ensures that it is empty when all necessary orderings have been searched. When this happens, the best ordering and
associated optimal times are returned (line 21). This final procurement strategy is optimal, because the algorithm searches
all orderings, except for those that are known not to have a better expected utility than those already considered. Hence,
the optimal ordering will never be discarded from the search.

In the following, we briefly illustrate the run-time behaviour of Algorithm 1 using an example problem instance. For
this, we assume a task T with deadline D = 2 and value V = 1. There are three providers that can complete the task, as
shown in Table 1, and we assume that their durations are independent. It is not obvious here whether the optimal strategy
is to invoke the cheap provider 1 first, or immediately pick a more expensive and faster provider. To answer this, Fig. 5
illustrates how our algorithm explores the search space. More specifically, the figure shows all candidate solutions that are

12 When exponential distributions are assumed, this is equivalent to creating a new provider with λsρ = ∑
i∈M ′ λi .

13 When providers follow the exponential distribution, this is equivalent to setting λsρ = maxi∈M ′ λi .
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Table 1
Example service providers.

Provider (i) Cost (ci ) Rate (λi )

1 0.05 0.5
2 0.7 2.1
3 0.2 2

Fig. 5. Contents of Q during example run of Algorithm 1.

considered at each iteration of the main loop (lines 4–20). Here, the search nodes in bold signify orderings that are still
members of Q at the end of the loop (after executing line 19), while the crossed-out nodes were considered during that
iteration, but then subsequently removed, because their children do not offer improvements over the best solution found so
far.

In more detail, the algorithm starts by considering the empty ordering ρs = 〈〉 (step 1), which is then expanded by
appending each of the available providers to the end (step 2). This results in three new candidate solutions, for which
the algorithm computes a lower (ǔ) and an upper bound (û), using the approaches described earlier in this section. As the
ordering ρs = 〈2〉 has an upper bound that is less than the lower bound of another solution, it is immediately discarded from
the search (i.e., any ordering starting with provider 2 is subsequently ignored). As the other two orderings have overlapping
bounds, they are both kept in Q for future expansion.

Next, the ordering ρs = 〈3〉 is expanded, because it promises a higher lower bound than ρs = 〈1〉 (step 3). One of its
children, ρs = 〈3,1〉, is now the best ordering with ǔ = 0.783, but neither of the two children can be further improved upon
through expansion, so both are discarded. The only remaining node in Q , ρs = 〈1〉, is then expanded (step 4), but neither
child offers any possible improvement over 0.783, so both are discarded. As Q is now empty, the algorithm returns the best
ordering found during its search, ρ∗

s = 〈3,1〉, which is the optimal.
However, while significantly reducing the search space in most realistic settings, this algorithm still searches for the

optimal solution and may sometimes consider a large proportion of the entire search space. This may be the case, for
example, when there are large numbers of highly similar providers and when the value of the task is very large in relation
to the service costs. To address such scenarios, we introduce a fast heuristic approach in the following section.

4.3.3. Fast heuristic algorithm
Although we argued in the beginning of Section 4.3 that a greedy approach does not generally result in an optimal strat-

egy, it can still achieve good results in practice and is more scalable than exhaustive approaches. Hence, we present such an
algorithm that starts with an empty ordering and then greedily adds, removes or switches providers until a local optimum
is reached (Algorithm 2). Intuitively, this algorithm benefits from selecting providers that offer a good trade-off between
performance and cost. By also allowing providers to be removed or switched, it has some backtracking capabilities — thus
an expensive but reliable provider can eventually be replaced by many cheap and unreliable providers that individually do
not yield a high expected utility, but in combination result in a better strategy. Also, while the invocation order is generated
greedily, the algorithm uses the results from Section 4.2 to efficiently calculate the optimal invocation times for a given
ordering, thereby combining a greedy heuristic approach with optimal solution techniques.
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Algorithm 2 Fast heuristic algorithm.
1: ρ∗

s ← 〈〉 � Best ordering found so far
2: u∗ ← 0 � Best current utility
3: done ← false � Reached local optimum?
4: while done = false do
5: P ′

s ← GenerateNeighbours(ρ∗
s ) � Generate neighbours of ρ∗

s
6: ρ ′

s ← argmaxρs∈P ′
s

w(FindTimes(ρs)) � Select best neighbour
7: if w(FindTimes(ρ ′

s)) > u∗ then � If neighbour is better than ρ∗
s ...

8: ρ∗
s ← ρ ′

s � ...use as next candidate
9: u∗ ← w(FindTimes(ρ ′

s))

10: else
11: done ← true � ...otherwise stop search
12: end if
13: end while
14: return FindTimes(ρ∗

s ) � Return best strategy

In more detail, the algorithm uses a function, GenerateNeighbours(ρ∗
s ) in line 5, which, given a current ordering ρ∗

s ,
returns all possible orderings that can be obtained by the following three actions: (1) selecting a provider x which is
currently not in ρ∗

s and adding it to ρ∗
s at position i ∈ {1,2, . . . ,n + 1} (shifting other providers as necessary), (2) selecting a

provider si in ρs and removing it, or (3) selecting two providers si and s j in ρs and swapping their positions. Out of these,
the best neighbour is chosen and this continues until the algorithm cannot find another better ordering. In this case, the
current best is returned.

While we have so far assumed that the consumer has complete information about the costs and duration functions of
the providers, this is rarely available to the consumer in practice. Clearly, this is a significant obstacle, because our approach
requires this information to make informed procurement decisions. For this reason, we show in the following section how
it can be extended for settings where providers have private information about their services.

5. Using mechanism design to incentivise truthfulness in providers

So far, we have assumed that the consumer is provided with all the information it requires in order to compute the
optimal procurement strategy. In practice, however, information about a provider’s duration functions and its cost of execut-
ing a task may not be publicly available, and instead may be closely guarded private information. When asked, a provider
may refuse to reveal this information, or may lie about it, for example, by claiming a higher cost or by misrepresenting its
duration function in order to manipulate the final procurement strategy in its own favour. Since costs may be idiosyncratic
and the duration functions are probabilistic, it can be very difficult for the consumer to verify whether the information
revealed by a service provider is reliable.

To address this problem, we describe a number of procurement mechanisms, which, by introducing direct competition
between the providers, provide incentives for them to truthfully reveal their private information to the consumer, allowing
the consumer to be confident that it really has the best procurement strategy. We consider several mechanisms here, in
order to cover a range of realistic scenarios, including where only some of the information about providers is private, and
we also present alternative mechanisms that allow the consumer to trade-off computational and information requirements
with the solution quality (see Table 2 at the end of Section 5.1 for a full summary of our proposed mechanisms and their
specific properties).

We start this section by introducing key concepts from the field of mechanism design and by clarifying our notation.
We then look at designing mechanisms which are suitable for settings where the duration probabilities of all providers is
public knowledge, but the cost of each provider must be elicited. We end the section by investigating what is possible if
both duration and cost information is privately held by the consumers.

5.1. Preliminaries

Mechanism design, a sub-field of game theory, studies how to design protocols for self-interested agents, so as to ensure
that certain desirable properties are achieved. A mechanism specifies three aspects of a protocol: (1) the possible actions
that the self-interested agents may take, (2) an outcome function which selects a particular outcome given what actions
agents have taken, and (3) a transfer function that determines a payment to each of the agents, conditional on their actions.
Ideally, a desirable outcome from the perspective of the mechanism designer will arise when agents are taking actions
which are in equilibrium. While in general there need be no restrictions on the mechanism, in this paper, we will restrict
our focus to direct mechanisms. A direct mechanism is one where the possible actions of the agents are restricted so that
they are only allowed to reveal their private information, instead of taking arbitrary actions. This restriction is often made
in the literature, since the Revelation Principle states that if a mechanism results in a desired outcome, then there exists a
direct mechanism which will also result in the same outcome [34].

In our proposed mechanisms, the service providers are asked to reveal their private information, but we make no as-
sumption that the information that they reveal is their true information. In particular, we let ci and Fi be the cost and
duration functions of provider i, and denote the cost and duration function revealed to the mechanism by ĉi and F̂ i . We
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let ĉ = 〈ĉ1, . . . , ĉm〉 be the reported costs of all service providers, and define F̂ = 〈 F̂1, . . . , F̂m〉 analogously. As is standard,
we use the notation ĉ−i = 〈ĉ1, . . . , ĉi−1, ĉi+1, . . . , ĉm〉 to denote all cost reports except from provider i (and F̂−i is, again,
defined in a similar manner). Thus, we sometimes write ĉ = 〈ĉi, ĉ−i〉 and F̂ = 〈 F̂ i, F̂−i〉.

Given the information announced by the service providers, ĉ and F̂ , it is possible to evaluate different procurement
strategies. For example, we let w(ρ|ĉ, F̂ ) denote the expected social welfare of procurement strategy ρ given the re-
ports of the providers, and w(ρ|c, F ) is the true expected social welfare. Similarly, w(ρ|ĉ−i, F̂−i) is the expected social
welfare of procurement strategy ρ if service provider i had never existed (and thus could not be part of the pro-
curement strategy). The optimal procurement strategy, given ĉ and F̂ , is ρ∗(ĉ, F̂ ) = argmaxρ∈P w(ρ|ĉ, F̂ ), and we use

ρ∗(ĉ−i, F̂−i) = argmaxρ∈P w(ρ|ĉ−i, F̂−i) to denote the optimal procurement strategy without the presence of agent i. When
the expected welfare and optimal procurement strategy are computed based on the same information, we will typically
use the abbreviated notation w(ρ∗(ĉ, F̂ )) = w(ρ∗(ĉ, F̂ )|ĉ, F̂ ). Similarly, w(ρ∗(c, F )) = w(ρ∗(c, F )|c, F ). Once the service
providers report ĉ and F̂ , the mechanism selects an outcome. In particular, in the rest of this section, we assume that the
mechanism selects ρ∗(ĉ, F̂ ) and then specifies transfer functions, τi , for each service provider. We currently do not specify
τi , but will instantiate them later in this section, depending on what properties we wish to achieve.

There are several properties we desire for our mechanisms. First, the service providers cannot be forced to participate,
and instead our mechanisms must be designed so that the service providers voluntarily participate. That is, we are interested
in mechanisms that are individually rational.

Definition 6 (Individual rationality). A mechanism is (ex-post) individually rational, if, for any realisation of costs and duration
distributions c and F , and for all i ∈ M , the following holds:

ui
(
ρ∗(c, F )

)
� 0.

If the utility of the providers is furthermore non-negative for any realisation of the completion time, Xρ∗(c,F ) (i.e., even after
execution of the procurement strategy), then the mechanism is called post-execution individually rational.

Second, we wish to design mechanisms which provide incentives so that the service providers are made best off when
they reveal their costs and duration probabilities truthfully. In particular, when possible, we are interested in designing
mechanisms where providers are best off revealing their true information, no matter what information the other providers
reveal.

Definition 7 (Incentive compatibility in dominant strategies). A mechanism is incentive compatible in dominant strategies, if, for
each provider i with ci and Fi , and for all possible declarations by others, ĉ−i and F̂−i , and for all ĉi �= ci and F̂ i �= Fi ,

ui
(
ρ∗(〈ci, ĉ−i〉, 〈Fi, F̂−i〉

))
� ui

(
ρ∗(〈ĉi, ĉ−i〉, 〈 F̂ i, F̂−i〉

))
Incentive compatibility in dominant strategies is sometimes called strategy-proofness and we will use these terms inter-

changeably. If a mechanism is strategy-proof, then all service providers maximise their own expected utility by truthfully
announcing their costs and duration functions. That is, ĉi = ci and F̂ i = Fi for all i. Since the mechanism selects the pro-
curement strategy which maximises the social welfare given the reports of the service providers, by using an incentive
compatible mechanism, the consumer can ensure that it is being provided with appropriate information from the providers,
and is thus selecting the best procurement strategy.

Now, one prominent example of a mechanism that is incentive compatible in many settings is the well-known Vickrey–
Clarke–Groves (VCG) mechanism [34]. This mechanism selects the outcome that maximises the social welfare and pays
every agent its marginal contribution to the overall system. This leads to several desirable properties. Specifically, in private
information settings, where the utility of an outcome to a particular agent is only determined by its own type, the VCG
mechanism is incentive compatible in dominant strategies and it is individually rational. Furthermore, in certain settings,
VCG is in fact the only incentive compatible mechanism possible [29].14 As VCG is of key importance in the mechanism
design literature and as it fulfills incentive compatibility, we base some of our mechanisms on it.

In the rest of this section, we study different scenarios and determine what the appropriate mechanisms are for these
settings. We first assume that the duration probability information is publicly known and study what incentives must exist
in order to ensure that the service providers willingly reveal their costs. We then investigate what happens if both the cost
and duration probabilities are privately held. Table 2 provides a comprehensive summary of our results and can be used as
an aid to choose the most appropriate mechanism for a given setting. The table indicates whether the mechanism handles
only private information about costs, or both about costs and distributions, what properties distinguish each mechanism15

14 This result does not directly apply here, as it assumes agents may have arbitrary utilities for outcomes (while our work assumes a restricted domain
that arises from the service procurement scenario).
15 Note that some concepts, such as ex-post incentive compatibility or the poly-time approximation algorithm are introduced and discussed later in the

relevant sections.
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Table 2
Summary of procurement mechanisms. Here, IC stands for incentive compatible, in DS means that it holds in dominant strategies and IR abbreviates individ-
ually rational.

Mechanism Private Properties Solution
algorithmsCosts ci Dist. Fi

Marginal contribution � × IC (in DS)
IR (in expectation)
Optimal welfare
Incentive to de-commit

Optimal

Uniform pricing � × IC (in DS)
IR (post-execution)
Suboptimal welfare
Requires parameter k

Optimal or greedy

Discriminatory pricing � × IC (in DS)
IR (post-execution)
Suboptimal welfare
No parameter required

Optimal or greedy

Execution-Contingent VCG � � IC (ex-post)
IR (in expectation)
Optimal welfare

Optimal

Approximate
Execution-Contingent VCG

� � IC (ex-post)
IR (in expectation)
Suboptimal welfare

Poly-time
approximation

and whether the mechanism requires an optimal solution algorithm (that scales to at most dozens of providers) or can be
solved using a greedy heuristic or approximation (that scales to thousands).

5.2. Known duration probabilities, unknown costs

We initially assume that the duration probability functions, Fi , are publicly known, but that the cost functions of each
service provider, ci , are private.16 While each provider is free to report any cost, ĉi , it wishes, we show that it is possible to
design mechanisms for this setting, such that each provider maximises its expected utility by truthfully reporting its costs,
that is ĉi = ci .

5.2.1. Marginal contribution mechanism
Since we assume that Fi is already known, each provider is only asked to report a cost, ĉi . Given this, it is possible

to adapt the standard VCG mechanism, discussed earlier, to this setting. More formally, using the reported costs and the
known duration functions, the consumer finds the optimal procurement strategy, ρ∗(ĉ, F ). Then, before executing ρ∗(ĉ, F ),
the consumer computes and pays each service provider i ∈ M a transfer

τi = w−i
(
ρ∗(ĉ, F )

) − w
(
ρ∗(ĉ−i, F−i)

)
. (30)

The second term of the transfer, w(ρ∗(ĉ−i, F−i)), is the expected social welfare of the optimal procurement strategy if
provider i did not exist. The first term of the transfer, w−i(ρ

∗(ĉ, F )), is the expected social welfare obtained by the optimal
procurement strategy ρ∗(ĉ, F ), excluding the reported cost of provider i. That is

w−i
(
ρ∗(ĉ, F )

) = V · Prob(Xρ∗(ĉ,F ) � D) −
n∑

j=1, j �=i

ĉs j · (1 − Prob(Xρ∗(ĉ,F ) � t j)
)

(31)

We emphasise that when computing w−i(ρ
∗(ĉ, F )), only provider i’s cost is ignored, but it is not removed completely from

the social welfare. In particular, provider i’s existence in the procurement strategy may affect the probability of success and
therefore the consumer’s utility, as well as that of other providers, since it may influence whether or not they are asked to
attempt a task or not. However, if provider i was never a candidate for procurement in ρ∗(ĉ, F ), then its existence has no
impact on the social welfare, and therefore w(ρ∗(ĉ−i, F−i)) = w−i(ρ

∗(ĉ, F )).
By defining the transfers for each service provider i as was done in Eq. (30), it is straightforward to show that service

provider i maximises its expected utility by truthfully reporting ĉi = ci . Let ui(ρ
∗(〈ĉi, ĉ−i〉, F )|ci) be service provider i’s

expected utility when all other service providers report ĉ−i , provider i reports ĉi and its actual cost is ci . Then:

16 The duration functions may be obtained from past or shared experiences, for example from using a trust or reputation system, or simply given by the
provider.
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ui
(
ρ∗(〈ĉi, ĉ−i〉, F

)∣∣ci
) = τi − ci · (1 − Prob(Xρ∗(〈ĉi ,ĉ−i〉,F ) � ti)

)
= w−i

(
ρ∗(〈ĉi, ĉ−i〉, F

)∣∣ĉ−i, F
) − w

(
ρ∗(ĉ−i, F−i)

) − ci · (1 − Prob(Xρ∗(〈ĉi ,ĉ−i〉,F ) � ti)
)

= w
(
ρ∗(〈ĉi, ĉ−i〉, F

)∣∣〈ci, ĉ−i〉, F
) − w

(
ρ∗(ĉ−i, F−i)

)
(32)

Since ρ∗(ĉ, F ) is, by definition, the procurement strategy which maximises w given reports ĉ, provider i can optimise
the first term from its perspective by reporting ĉi = ci . As for the second term in the utility function, w(ρ∗(ĉ−i, F−i)),
provider i has no influence on this term, no matter what the revealed cost, since this is based on a procurement strategy
where provider i is excluded. Therefore, the service provider is best off revealing its true cost if it wishes to maximise its
expected utility. That is, the mechanism is incentive-compatible in dominant strategies (i.e., strategy-proof).

This is not surprising, as the mechanism just presented is simply an application of the VCG mechanism to our procure-
ment setting and therefore inherits its desirable properties. However, while this marginal contribution mechanism is both
strategy-proof and (ex-post) individually rational, it has two weaknesses. First, the mechanism is individually rational in
expectation only, and not post-execution individually rational. Thus, for particular instances, upon executing the procurement
strategy, a provider may end up with negative utility, as illustrated in Example 1 below.

Example 1. Let V = 10, and assume there are two providers with costs c1 = c2 = 5. For simplicity, assume that there are
two time steps of interest before the deadline, t1 = 0 and t2. Furthermore, let F1(D) = F1(D − t2) = 0.9 and F2(D) =
F2(D − t2) = 0.8. In other words, the providers each have a 90% and 80% probability of succeeding, respectively, no matter
at which time step they are invoked. In this case, it is optimal to invoke provider 1 on the first time step, and, if this fails,
to invoke provider 2 on the second time step. The expected social welfare functions for different configurations are given
by:

w
(
ρ∗(c, F )

) = V · (1 − (1 − 0.9) · (1 − 0.8)
) − c1 − (1 − 0.9) · c2 = 4.3

w−1
(
ρ∗(c, F )

) = V · (1 − (1 − 0.9) · (1 − 0.8)
) − (1 − 0.9) · c2 = 9.3

w−2
(
ρ∗(c, F )

) = V · (1 − (1 − 0.9) · (1 − 0.8)
) − c1 = 4.8

w
(
ρ∗(c−1, F−1)

) = V · 0.8 − c2 = 3

w
(
ρ∗(c−2, F−2)

) = V · 0.9 − c1 = 4

And the transfers and expected utilities of the providers are:

τ1 = w−1
(
ρ∗(c, F )

) − w
(
ρ∗(c−1, F−1)

) = 6.3

τ2 = w−2
(
ρ∗(c, F )

) − w
(
ρ∗(c−2, F−2)

) = 0.8

u1 = τ1 − c1 = 1.3

u2 = τ2 − (1 − 0.9) · c2 = 0.3

Note that if provider 2 is never invoked, then its post-execution utility is 0.8. If, however, provider 2 is invoked, then its
post-execution utility is −4.2.

In this example, note that, once the procurement strategy is executed, if provider 2 is invoked, then it has an incentive
to de-commit, that is, to refuse to execute the task and to forego the transfers from the consumer. This holds because, even
though the transfers are positive and exceed the expected costs, they are less than the actual costs incurred upon execu-
tion. Therefore, unless the consumer can otherwise enforce the schedule, for example through the use of de-commitment
penalties, the marginal contribution mechanism may fail in practice.17

The second weakness which arises with respect to the marginal contribution mechanism is the computational burden
it places on the consumer. The consumer must compute the optimal procurement strategy when considering all providers
as candidates, and then the optimal procurement strategy as each provider is removed from consideration. This problem
is further exacerbated by the fact that the consumer has limited computational power to start with; that is why it is
procuring services from the providers. While a heuristic algorithm was proposed for handling settings with large number
of providers (Section 4.3.3), it has been well established that many mechanisms, including VCG mechanisms like ours, may
not be incentive compatible if the outcome selected is sub-optimal and does not maximise social welfare [36].18 Therefore,
heuristics and approximation algorithms must be carefully designed in order to ensure that the mechanism maintains the
desired strategic properties. To this end, in the rest of this section, we investigate alternative mechanisms which address
both the computational overhead and post-execution individual rationality, while maintaining incentive compatibility. These

17 Another approach is to require providers to place a deposit, which should be at least as high as the highest cost, but this may not be desirable, since
this may discourage providers from participating.
18 Intuitively, this is because an agent can misreport its information in order to try and manipulate the approximation in its favour.



S. Stein et al. / Artificial Intelligence 175 (2011) 2021–2060 2043
mechanisms vary in their information requirements and are therefore applicable in different settings, which we will examine
in more detail in Section 6.

5.2.2. Uniform pricing mechanism
In the uniform pricing mechanism, the consumer first publicly announces an integer k, where 1 � k < m. Then, as before,

each provider i ∈ M reports a cost, ĉi . Without loss of generality, we assume that ĉi � ĉi+1. We define K = {i: i ∈ M and
ĉi < ĉk+1} to be the set of k providers with the k lowest reported costs. This set determines the candidate providers and
any provider in M \ K will not be considered when computing the procurement strategy. Let F K = 〈F1, . . . , Fk〉 be a vector
which specifies the duration functions of each provider in K, ĉK = 〈ĉ1, . . . , ĉk〉 be a vector which specifies the reported
costs for each provider in K and ĉu

K = 〈ĉk+1, . . . , ĉk+1〉 be a vector which, for each provider in K, replaces their announced
cost, ĉi , with the lowest cost amongst all providers not in K, that is, ĉk+1 .

Given the providers in K and their reported costs and publicly known duration functions, the consumer finds the pro-
curement strategy which maximises social welfare while using only providers in K and assuming that their costs are
all ĉk+1. That is,

ρ∗(ĉu
K, F K

) = argmax
ρ∈P : si∈K

w
(
ρ|ĉu

K, F K
)
.

Once the procurement strategy, ρ∗(ĉu
K, F K), is found, the consumer executes the strategy and records a set I K ⊆ K which

comprises the providers in K that are actually invoked when using procurement strategy ρ∗(ĉu
K, F K) (see also Definition 4

in Section 3.2). Only after the procurement strategy has been executed are the transfers to the providers determined as
follows:

τi =
{

ĉk+1 if i ∈ IK
0 if i ∈ M \ IK

(33)

We emphasise that the transfer τi is conditional on the outcome of ρ∗(ĉu
K, F K). That is, a non-zero transfer to provider i only

occurs if i ∈ K and i is actually invoked by the procurement strategy. Otherwise, a provider receives no transfer (but also
incurs no cost).

There are several computational advantages of the uniform pricing mechanism, compared to the marginal contribution
mechanism described in the previous section. First, depending on the k chosen by the consumer, the set of candidate
providers may be significantly smaller than the entire pool of possible service providers. Secondly, the transfers of the
providers are straightforward to compute, since they merely require that the consumer is able to sort the service providers
by the reported costs. Thirdly, in some settings, such as when the duration probability distributions can be ordered (e.g.,
as described in Section 4.3.1), the problem of finding the optimal procurement strategy reduces down to selecting the best
provider with the highest probability of completing the task within the deadline.

Next, we show formally that the uniform pricing mechanism is both post-execution individually rational and incentive
compatible in dominant strategies.

Theorem 1. Let M be the set of service providers, |M| = m. For any k such that 1 � k < m, the uniform pricing mechanism is:

• Incentive compatible in dominant strategies, and
• Post-execution individually rational.

Proof. We start by proving that the mechanism is incentive compatible. Assume all other providers report ĉ−i and that
provider i’s true cost is ci . Assume that ci � ĉk+1. Now, if provider i truthfully revealed ci , then it would not belong to K.
Thus, it would not be part of the procurement strategy and thus it would incur no cost and receive no transfer. That is, its
expected utility would be 0. If ĉi > ĉk+1, then provider i would still have zero utility since it would still not be a member
of K. If ĉi < ĉk+1 � ci , then i ∈ K. If i is invoked, then it would incur cost ci but only receive transfer ĉk+1, resulting in
utility ĉk+1 − ci � 0. Thus, if provider i’s true cost is greater than ĉk+1, then it cannot improve its utility by misreporting
its cost. Now assume that ci < ĉk+1. If invoked, then provider i would receive transfer ĉk+1 and incur cost ci , resulting in
utility ĉk+1 − ci � 0. If provider i reports any cost ĉi which is less than ĉk+1, then it will receive the same utility as if it told
the truth about its cost. If the provider reports ĉi > ĉk+1, then it would no longer be a candidate provider and would have
utility equal to zero. Thus, again, provider i cannot improve its utility by misreporting its cost. This holds for any provider
and thus the mechanism is incentive compatible in dominant strategies, or strategy-proof.

We now show that the mechanism is post-execution individually rational. Assume that provider i was not invoked
during execution of the procurement strategy. Then τi = 0, but it also incurred no cost. Therefore, ui = 0. Now assume that
provider i, with true cost ci , was invoked. The transfer it receives is τi = ĉk+1, but since i was invoked, then it must have
been a member of K, which means that ci � ĉk+1 by definition of K. Therefore

ui = τi − ci = ĉk+1 − ci � 0. �
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While our uniform pricing mechanism overcomes the problems we highlighted with respect to the marginal contribution
mechanism, it still has some key limitations. First, the initial stage, where K is chosen, depends only on the reported costs of
the providers and ignores the duration probabilities, possibly leading to a situation where expensive, but very fast, providers
are excluded. Second, the parameter k is a key part of the mechanism, and must be announced before any provider reveals
cost information. To set k optimally requires a priori information about the distribution of the costs, which might be difficult
to obtain.19 To address this last problem, we introduce two variations of this mechanism.

5.2.3. Discriminatory pricing mechanisms
As mentioned in the previous section, one possible problem with our uniform pricing mechanism is that its effectiveness

relies heavily on the choice of an appropriate value of k. In this section, we describe two mechanisms which no longer rely
on the consumer setting the parameter appropriately, and are also discriminatory in that different providers may receive
different transfers when invoked. These two mechanisms vary slightly in the way candidate providers are chosen and how
transfers are determined, and, as we will note later, we have selected them here as two representative examples of a more
general class of mechanisms.

In the Pairing mechanism, each provider i ∈ M reports a cost ĉi . Then, all providers are randomly paired with another
provider (and if |M| = m is odd, then a single triplet is formed). For each pair, (i, j), if ĉi < ĉ j then i is put into candidate
set K and its paired cost, ĉ p

i , is set so that ĉ p
i = ĉ j . This procedure results in a set K such that |K| = �m/2� and we

let ĉ p
K denote the vector specifying the paired cost of each provider in K. Given K, the consumer computes the optimal

procurement strategy, ρ∗(ĉ p
K, F K), restricting itself to providers in K and using the costs from ĉ p

K :

ρ∗(ĉ p
K, F K

) = argmax
ρ∈P : si∈K

w
(
ρ
∣∣ĉ p

K, F K
)
.

After ρ∗(ĉ p
K, F K) is executed, transfers are determined for each provider. As in the previous section, let I K ⊆ K denote the

set of providers in K actually invoked when ρ∗(ĉ p
K, F K ) was executed. Then

τi =
{

ĉ p
i if i ∈ IK

0 if i ∈ M \ IK
(34)

Our Halving mechanism only differs from the Pairing mechanism in the way that it selects candidate service providers
for K. As before, all service providers are asked to report a cost, ĉi . Then �m/2� providers are randomly selected and put
into a set G . All providers in M \ G are paired together at random and the set K is created as described in the Pairing
mechanism, with each provider i ∈ K having paired cost ĉ p

i , determined as described in the Pairing mechanism. From G ,
service provider g , such that ĉg = mini∈G [ĉi], is selected and is added to K. Its paired cost is ĉ p

g = mini∈G\{g}[ĉi]. Then, as in
the Paired mechanism, the consumer computes the optimal procurement strategy using only providers in K and their paired
costs, and the transfers are defined similarly. While in the Halving mechanism the size of the set of candidate providers is
smaller than that of the Pairing mechanism (|K| = �m/4� + 1 as opposed to |K| = �m/2�), using the larger set G increases
the likelihood that a provider with a low paired cost will be placed in K.

Theorem 2. The Pairing and Halving mechanisms are incentive compatible in dominant strategies and post-execution individually
rational.

Proof. Since the pairs and G are formed independently of the providers’ reports, the proof follows from Theorem 1. �
We note that there are many possible variations of these mechanisms since different ways to group providers could be

used. All the mechanisms, however, share some key features. First, the size of K is solely determined by the number of
providers and thus does not rely on the consumer choosing an appropriate value. Second, the mechanisms do not require
a priori information about the costs of the providers, since all transfers are determined by the costs of providers who
are not members of K. Finally, they implement discriminatory pricing (i.e., different providers receive different payments),
information which is then used to form the optimal procurement strategy (given K). In order to ascertain whether these
variations offer any real benefit, compared to the uniform pricing mechanism, in practice, we experimentally evaluate them
in Section 6.2.

5.3. Unknown costs and duration probabilities

In this section, we relax the assumption that the duration distributions are known, and consider mechanisms which need
to elicit both the distributions as well as the costs. To this end, we first show that the marginal contribution mechanism,
an example of a VCG mechanism, from Section 5.2.1 no longer exhibits our desired properties and, in particular, providers

19 Simulations, for example, or knowledge based on past experience may be ways to help determine k.
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have an incentive to misreport their duration distributions. We then introduce a modified mechanism, which we refer to as
the Execution-Contingent VCG mechanism, where the transfers are contingent on the actual execution of the schedule and on
whether or not the task succeeded.

5.3.1. Failure of the standard VCG mechanism
Consider the marginal contribution mechanism, introduced in Section 5.2.1, with the modification that each provider, i, is

asked to report both its cost, ĉi , and its duration probability, F̂ i . The transfers for this mechanism are calculated as follows:

τi = w−i
(
ρ∗(ĉ, F̂ )

) − w
(
ρ∗(ĉ−i, F̂−i)

)
As in the previous section where providers only reported their costs, provider i has no influence on the second term of the
transfer function, w(ρ∗(ĉ−i, F̂−i)), since this is the expected social welfare that would have been achieved if provider i had
not participated in the mechanism in the first place. However, we now show, by example, that a provider can improve its
transfer by misreporting Fi in such a way that the first term of the transfer is increased, thus resulting in higher expected
utility for the provider.

Example 2. For the sake of simplicity, suppose that provider i only misreports its duration distribution and that all
other providers report truthfully. Also suppose that ρ∗(c, F ) = 〈(i,0)〉. That is, given the true Fi , the optimal schedule
is to only invoke provider i and to do so without delay. Now, suppose there exists an alternative distribution, F ′

i , such
that ρ∗(c, (F ′

i , F−i)) = ρ∗(c, F ) = 〈(i,0)〉 (i.e., the schedule remains unchanged) and F ′
i (D) > Fi(D) (i.e., the probability of

success by the deadline is higher).20 Clearly, since an increasing probability of success increases the consumer’s utility,
w(ρ∗(c, (F ′

i , F−i))) > w(ρ∗(c, F )), but also w−i(ρ
∗(c, (F ′

i , F−i))) > w−i(ρ
∗(c, F )), resulting in an increase of transfers τi

when reporting F ′
i instead of Fi . Since reporting F ′

i has no impact on the probability of being invoked (i.e., the allocation
remains unchanged), provider i is better off doing so.

In the above example, the providers have an incentive to misreport their distributions as this will increase the perceived
expected utility of other agents in the system, and thereby increase the perceived expected social welfare. This, in turn,
leads to an increase in the transfers. In this particular case, the provider was able to increase the perceived expected utility
of the consumer agent by increasing the probability of success. However, it is equally possible to construct examples that
increase the expected utility of other providers.

Technically, the marginal contribution mechanism fails here because the expected utility of an agent (either the consumer
or one of the providers) depends not only on the schedule, but also on the private information of other agents in the system
(i.e., in this case the information about the duration distributions). Such settings are known as settings with interdependent
types [28], and it has been shown that, in general, in situations where agents have interdependent types, it is impossible
to design a mechanism which ensures that the chosen outcome maximises social welfare and is incentive compatible in
dominant strategies (see, for example, Jehiel and Moldovanu [26]). Therefore, we need to make a concession on one of these
properties and so, to this end, we introduce a mechanism that still maximises social welfare, but in which the information
revealed by the service providers may depend on the actions taken by others. We make this particular choice, because we
are still interested in using redundancy optimally to complete the task despite the execution uncertainty and because it
turns out that we can obtain a slightly weaker notion of incentive compatibility, where truthtelling is a Nash equilibrium
for all participants, regardless of their particular types and without the need for prior distributions over these.

5.3.2. Execution-Contingent VCG
In this section, we introduce a modification of our marginal contribution mechanism, where the transfers made to

the service providers are contingent on the outcome of the execution of the procurement strategy. We show that this
modification results in a mechanism which is able to elicit both the costs and the duration distributions from the service
providers.

As before, each service provider, i, is asked to report its cost, ĉi , and its duration distribution, F̂ i . Using the reported costs
and duration functions, the consumer finds the optimal procurement strategy ρ∗(ĉ, F̂ ) = argmaxρ∈P ρ(ĉ, F̂ ). This strategy is
then executed, and upon completion of execution and once the outcome is known (i.e., whether or not the task was completed
successfully before the deadline), the transfers of the providers are determined. Recall, from Section 3 that Xρ denotes the
actual completion time of the task, and Iρ denotes the set of invoked providers. Then

τi =
⎧⎨
⎩

V − ∑
j∈Iρ∗(ĉ, F̂ )

\{i} c j − w(ρ∗(ĉ−i, F̂−i)) if Xρ∗(ĉ, F̂ )
� D

−∑
j∈Iρ∗(ĉ, F̂ )

\{i} c j − w(ρ∗(ĉ−i, F̂−i)) otherwise
(35)

Now, as we will show in the remainder of this section, the Execution-Contingent VCG mechanism has a number of desir-
able properties, but these properties hold under slightly weaker solution concepts compared to the mechanisms described

20 As a concrete example, assume that Fi(D) = 0.9 and F ′
i (D) = 0.99, and that Fi(x) = F ′

i (x) = 0, for all x < D .
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in Section 5.2 for known duration distributions. In particular, it is not always desirable for a provider to reveal its own cost
and duration distribution truthfully if others are not truthful. To illustrate this, we describe a simple example:

Example 3. As in Example 1, assume that V = 10 and there are two providers with c1 = c2 = 5. Again, there are two
time steps of interest before the deadline, t1 = 0 and t2, but we now assume that provider 1 can never complete the task
in time, i.e., F1(D) = F1(D − t2) = 0, while provider 2 remains unchanged, i.e., F2(D) = F2(D − t2) = 0.8. Assume that
provider 1 reports its cost truthfully, but lies about its duration distribution, reporting F̂1(D) = F̂1(D − t2) = 0.9. Given this,
if provider 2 truthfully reports its cost and duration distribution, the mechanism will select ρ∗(ĉ, F̂ ) = 〈(1,0), (2, t2)〉. In
this case, the expected utility of provider 2 after learning the allocation, and assuming that it knows the true distribution
F1, is as follows:

u2
(
ρ∗(〈ĉ1, c2〉, 〈 F̂1, F2〉

)∣∣F1
) = F2(D − t2) · V − ĉ1 − c2 − w

(
ρ∗(ĉ1, F̂1)

)
= 0.8 · 10 − 5 − 5 − 4

= −6

Clearly, provider 2 now has a negative expected utility and therefore an incentive to change the allocation so that it is no
longer included, thus deriving a utility of zero. It could do this, for example, by reporting ĉ2 = 10 or F̂2(D) = F̂2(D − t2) = 0.

Since the mechanism is not incentive compatible in dominant strategies, as we just illustrated in the example, we will,
instead, try to achieve a weaker notion of incentive compatibility.

Definition 8 (Ex-post incentive compatibility). A mechanism is ex-post incentive compatible, if, for each provider i with ci and
Fi , and for all possible cost functions and duration distributions of other providers, c−i and F−i , and for all ĉi �= ci and
F̂ i �= Fi ,

ui
(
ρ∗(〈ci, c−i〉, 〈Fi, F−i〉

))
� ui

(
ρ∗(〈ĉi, c−i〉, 〈 F̂ i, F−i〉

))
In words, a mechanism is ex-post incentive compatible, if, when all service providers but i report their cost and dura-

tion distributions truthfully, then no matter what this revealed information is, provider i maximises its expected utility by
truthfully reporting its own cost and duration distributions. This is a weaker notion of incentive compatibility than incen-
tive compatibility in dominant strategies, since truthtelling by provider i relies on all other providers also reporting their
information truthfully. However, it is stronger than Bayesian incentive compatibility, because it does not depend on prior
knowledge of the other providers’ private information and because truthtelling is a Nash equilibrium, even when types are
revealed after the allocation. Hence, it is often regarded as a realistic solution concept in the mechanism design literature
(see, for example, Bergemann and Morris [4] for a detailed discussion).

Theorem 3. The Execution-Contingent VCG mechanism is:

• Ex-post incentive compatible, and
• Individually rational.

Proof. Assume that all service providers but i truthfully report their costs and duration distributions. That is, they report
c−i and F−i . Then, if provider i reports ĉi and F̂ i , its expected utility is

ui
(
ρ∗(〈ĉi, c−i〉, 〈 F̂ i, F−i〉

)) = w−i
(
ρ∗(〈ĉi, c−i〉, 〈 F̂ i, F−i〉

)∣∣c−i, F
) − w

(
ρ∗(c−i, F−i)

)
− ci · (1 − Prob(Xρ∗(〈ĉi ,c−i〉,〈 F̂ i ,F−i〉) � ti)

)
= w

(
ρ∗(〈ĉi, c−i〉, 〈 F̂ i, F−i〉

)∣∣c, F
) − w

(
ρ∗(c−i, F−i)

)
(36)

First, we note that the second term on the RHS is independent of provider i’s reported cost and duration distribution.
Thus, there is nothing that provider i can do to change this value, given the reports of the other providers. Secondly, the
first term of the RHS is computed after the execution of procurement strategy ρ∗ . While the selection of ρ∗ depends on the
reported cost and duration probabilities, the actual outcome upon execution depends on the true distribution durations. As
a result, note that:

w
(
ρ∗(〈ci, c−i〉, 〈Fi, F−i〉

)∣∣c, F
)
� w

(
ρ∗(〈ĉi, c−i〉, 〈 F̂ i, F−i〉

)∣∣c, F
)

by definition of ρ∗ . Thus, if all other providers truthfully report their costs and duration distributions, provider i is also best
off revealing its information truthfully, since this will result in the mechanism selecting the procurement strategy which
optimises the social welfare in expectation, which leads to the expected utility maximisation of provider i.
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The Execution-Contingent VCG mechanism is also individually rational, since

w
(
ρ∗(c, F )

)
� w

(
ρ∗(c−i, F−i)

)
implying that ui(ρ

∗(c, F )) � 0. �
In Section 5.2.1, we identified two main drawbacks of the marginal contribution mechanism: the computational re-

quirements to calculate the optimal schedule, and the fact that service providers may have an incentive to de-commit.
Interestingly, the latter is no longer a problem when using Execution-Contingent VCG, despite the possibility that the post-
execution utility of the provider may become negative. This is because the utility is calculated based on what actually
happened, and any increase in the post-execution social welfare results in the same increase in transfers. Therefore, there
is no need to impose additional penalties or a deposit to enforce the schedule. The first issue relating to the computational
overheard of the marginal contribution mechanism still arises with the Execution-Contingent VCG. To address this problem,
in the next part, we investigate how we can approximate the solution to the optimal schedule, while maintaining the prop-
erties of the mechanism. Contrary to Section 5.2, however, we do so using the same mechanism and instead restrict the set
of possible outcomes.

5.3.3. Approximating the optimal procurement strategy
As mentioned in Section 4.3.2, computing the optimal procurement strategy becomes intractable as the number of avail-

able providers increases, and this is of particular importance in our domain, as the consumer has limited computational
resources. However, as discussed in Section 5.2.1, replacing the optimal procurement strategy with a sub-optimal one
obtained through use of a heuristic or approximation algorithm, can destroy the incentive properties of the underlying
mechanism [36]. In Section 5.2, we chose to address the computational problem by considering alternative, simpler, mecha-
nisms which required less computation on the part of the consumer. However, these mechanisms are not directly applicable
in the current setting, because computing the optimal procurement strategy is an intrinsic part of the mechanism. For this
reason, we now propose an alternative approach for reducing the computational burden on the consumer.

Nisan and Ronen showed that it is sometimes possible to have mechanisms which knowingly used sub-optimal out-
comes [36]. They proposed that instead of changing the algorithm for finding the optimal outcome (in our case, the optimal
procurement strategy), one could restrict the set of possible outcomes, and then run the optimal algorithm on this restricted
set.21

In what follows, we apply this approach to our procurement problem, and show that the Execution-Contingent VCG
mechanism is incentive compatible for appropriately restricted outcome spaces. Furthermore, we show that this approxi-
mation admits a polynomial-time algorithm to calculate the optimal (within the space of allowable outcomes) procurement
strategy. We will also show, however, that the approximation can (in the worst case) be arbitrarily far from the optimal out-
come. Nevertheless, in practice we find that the outcomes are often close to optimal, as we will show in Section 6 where
we analyse the approximation empirically.

We start by showing that the EC-VCG mechanism is still incentive compatible when certain approximation schemes are
used. For this, we let η denote the maximum number of service providers that can be selected as part of a procurement
strategy, and let Pη = {ρ ∈ P : |ρ| � η) represent the reduced set of strategies. When η = 1, then the reduced set of strategies
contains only procurement strategies with no redundancy, while if η = m then Pη is the full procurement strategy space. We
propose applying the Execution-Contingent VCG mechanism, but selecting only procurement strategies from the set Pη . We
can show that this restricted version of the Execution-Contingent VCG mechanism is incentive compatible and individually
rational under the assumption that η is using no information about the service providers (i.e. before the mechanism starts).

Theorem 4. For any 1 � η � m, if the allocation is given by argmaxρ∈Pη
w(ρ|ĉ, F̂ ), the Execution-Contingent VCG mechanism with

the reduced set of procurement strategies, Pη , is incentive compatible and individually rational.

Proof. Since η is independent of any of the providers’ reports, no provider can increase the social welfare, and hence its
transfers, by misreporting. Therefore, the proof follows directly from Theorem 3. �

Given this, we now show that, once the parameter η is set, then finding the optimal procurement strategy in Pη becomes
polynomial in the number of possible service providers, m. We illustrate this by considering two different scenarios. First, we
consider the situation where the optimal invocation times for providers can be found analytically, given a set of providers
and their ordering in the procurement strategy (such settings were discussed in Sections 4.2.1 and 4.2.2 for independent and
correlated duration distributions, respectively). The problem of finding the optimal procurement strategy then reduces to
the problem of finding the optimal ordering of the providers, among all sets of η providers. This is equivalent to searching
through all possible ordered subsets of set M of size η, which has size m!/(m −η)!. Once the optimal procurement schedule

21 In particular, if an algorithm is maximal-in-range, then VCG-based mechanisms, applied to the restricted problem, are incentive compatible. See [36] for
details.
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is found, then the transfers for all providers must be computed. If a provider is not in the optimal procurement strategy
then their transfer is automatically set to zero, and thus we only need to explicitly compute the transfers for at most η
providers in the optimal procurement strategy. The overall cost of this is η · (m − 1)!/(m − η)!, which results in the overall
complexity of O (mη) for running the mechanism.

In the case that finding the optimal invocation schedule does not allow for a closed-form analytical solution, another
approach is to discretise time. Let T denote the total number of discrete time slots before the deadline D .22 Now, given an
ordered set of candidate providers, each of these providers has at most T possible invocation times, except for the first
provider who should be invoked immediately (recall from Section 4 that it is always optimal to invoke the first provider
with no delay). Since there are at most η candidate providers, finding the optimal invocation times therefore requires
searching through less than T η−1 combinations. Together with finding the optimal set of ordered candidate providers, this
results in a time complexity of O (mη · T η−1).

While these approximations have a desirable computational complexity, they may result in sub-optimal solutions. This
is because they restrict the set of solutions and this can yield an outcome that is significantly worse than the optimal —
especially when the optimal strategy, ρ∗ , contains many more than η providers. In fact, in the following theorem, we show
that it can be arbitrarily far from the optimal.

Theorem 5. For any η � 1, there exists an m, F and c, such that the ratio between the expected social welfare of the optimal solution
and the approximate solution is at least b, for any b � 1. That is:

w(ρ∗(c, F ))

argmaxρ∈Pη
w(ρ|c, F )

� b (37)

Proof. We prove this by showing how to choose m, F and c, so that the above holds. For simplicity, we assume here that
durations of different providers are independent, as shown in Eq. (10). For all i, we let ci = 0 and Fi(D) = 1 − f , with

1 > f � (1 − 1
b )

1
η . Clearly, as providers are free in this example, it is always optimal to invoke all available providers at time

t = 0. Given this, we can now choose m, so that Eq. (37) holds:

b � w(ρ∗(c, F ))

argmaxρ∈Pη
w(ρ|ĉ, F̂ )

⇔ b � (1 − f m) · V

(1 − f η) · V

⇔ m � ln(1 − b · (1 − f η))

ln( f )
(38)

Due to our initial constraints for f , this can always be satisfied. �
To conclude, we have shown that, through limiting the number of possible outcomes, we can obtain a solution which is

polynomial in the number of service providers, while maintaining the desired properties of the mechanism. However, we
have also demonstrated that, in theory, this approximation can be arbitrarily far from the optimal. Nevertheless, we believe
that, in realistic settings, where providers are generally costly, the benefit of increased redundancy diminishes with the
number of providers. Therefore, an approximate solution may often be close to the optimal, even when η is chosen to be
significantly less than m. To this end, in the next section, we empirically evaluate all of the mechanisms discussed thus far,
including the approximation.

6. Empirical evaluation

Having described optimal procurement strategies for scenarios with full information, as well as a number of mechanisms
that incentivise providers to reveal their capabilities truthfully, we now evaluate these approaches in a variety of simulated
environments. The purpose of this evaluation is two-fold and it should be seen as a complement to the theoretical results
of the previous sections. First, we examine the potential benefit of procuring multiple providers and compare this to current
approaches that invoke only single providers or use simple heuristics (Section 6.1). While our example from Section 4.1
showed that redundancy can be beneficial, we use experiments here to quantify these benefits over a much wider range
of realistic environments. Second, we consider the mechanisms proposed in Section 5 and investigate to what extent their
use entails a loss in the consumer’s utility and in overall efficiency (Section 6.2). Again, while our results proved a range
of desirable properties, some of our mechanisms are inherently suboptimal, due to the use of heuristics or approximations,
and they also generally require an additional investment by the consumer to incentivise truthfulness. In this context, our

22 Note that these time slots are not required to be equally spaced. However, it is important that they are set independent of the reports of the providers.
Otherwise, the incentive properties may no longer hold.
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experiments help us quantify these losses in utility over a range of settings. Finally, in Section 6.3, we discuss how our
theoretical and empirical results can be combined to help the consumer choose the right mechanism for a particular setting.

6.1. Full information

In this section, we start by considering the full information case, where the consumer has full knowledge of the providers’
costs (ci) and duration distributions (Fi ). We also assume that providers charge their true costs, i.e., τi = ci , and therefore
the social welfare is, in this case, equal to the consumers’s expected utility (as described in Section 4). Throughout the
section, we compare the average expected social welfare (w(ρ)) obtained by the optimal procurement strategy23 described
in Section 4 (Optimal) to two benchmark strategies that are designed to represent current approaches:

• Single: This strategy selects the single provider that individually maximises the consumer’s expected utility. As such, it
represents approaches that do not use redundancy at all (in fact, it is the optimal strategy given this restriction).

• Timeout(p, t): This strategy first orders all providers using a preference ordering given by parameter p ∈ {cost,time,

balanced}. These choices for p, respectively, order all providers by ascending cost, ci , mean duration, 1/λi , or a
combination, ci/λi . The strategy then invokes the providers in that order, leaving a waiting time of t between successive
invocations. This continues until either the task is completed or the deadline is reached. The Timeout strategy represents
approaches that are often used in existing applications to deal with uncertainty (see Section 2.1).

Comparing our Optimal strategy to these benchmarks allows us to quantify the benefit of using redundancy in an optimal
and principled manner to deal with execution uncertainty. Here, our evaluation is guided by the following hypothesis:

Hypothesis 1. Compared to current procurement approaches, using redundancy results in a significant increase in utility
over a wide range of environments.

We divide this section into two parts, corresponding to the two models of uncertainty we have covered in detail in this
paper — first, we test our approach in environments where service durations are independently distributed (Section 6.1.1)
and then we consider those environments where service durations are perfectly correlated (Section 6.1.2).

6.1.1. Independent durations
To test Hypothesis 1 in settings with independent durations, we randomly generate each provider i by drawing its cost ci

and duration rate λi independently and uniformly at random from [0,1]. To consider a range of settings, tasks have either
a low (V low = 2) or a high value (V high = 8) and their deadline is either normal (Dnormal = 2) or urgent (Durgent = 0.5). Fur-
thermore, throughout our evaluation we repeat all experiments 1000 times and use ANOVA and t-tests to ensure statistical
significance at the p < 0.05 level. As the associated confidence intervals are generally small, we omit these in most figures
for clarity.

The results are shown in Fig. 6. Here, we vary the number of providers in the system and plot the average expected
social welfare as a proportion of V . Observing these trends, it is obvious that using redundancy can significantly improve
the consumer’s utility and does so in almost all settings considered. In fact, when averaging over all cases considered, the
Optimal approach achieves more than a 40% improvement over the Single approach. In general, this gain becomes more
pronounced when the number of providers in the system increases, as there are more candidates to invoke redundantly and
the consumer can also be more selective about which providers to procure. Similarly, the gain achieved through redundancy
increases as the deadline becomes shorter. This is because redundancy allows the consumer to achieve a high success
probability, while the Single approach is limited by the single most reliable provider available. Finally, we note that the gain
in utility rises for higher task values, as this justifies the higher investment caused by using redundancy.

Hence, in the results shown here, the most marked improvement over the Single strategy is obtained when the deadline
is short (Durgent), the task value is high (V high) and there are many potential providers (m = 50). Here, the Single approach
achieves 35.82% of V , while the Optimal achieves 82.68% — a 130% improvement that is obtained by using procurement
strategies with an average of 10–11 providers (7–8 of which are typically invoked).

For comparison, the graphs also show two representative Timeout strategies — here, we chose p = balanced with
t = 0.04 and t = 0.53, because these represent the parameter choices that obtain the best average utility for the settings
with Durgent, V high and Dnormal, V low, respectively.24 It is obvious that these heuristic strategies do not consistently achieve
good results. The Timeout(balanced, 0.53) strategy does perform well in both settings with long deadlines, because it balances
the cost of providers with their speed and also benefits from some redundancy, but it performs poorly in settings with
short deadlines. In fact, it performs worse here than the Single approach, because it does not reason about the probability of
completing the task within the tight deadline and therefore chooses providers that do not even have a significant probability

23 This is found using our branch-and-bound algorithm when there are up to twelve providers. We then use the heuristic algorithm to obtain a lower
bound for the optimal when there are more providers. However, as we show later, the heuristic obtains near-optimal results.
24 We obtained these by discretising t in 0.01 steps and then testing all possible parameter combinations.
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Fig. 6. Performance in full information setting.

of success. Similarly, while the Timeout(balanced, 0.04) performs well in the scenario with a short deadline and high value, it
leads to extremely poor or erratic performance in other settings. In fact, here, the strategy often invokes far more providers
than necessary and therefore incurs a large negative utility (which is outside the range of the graphs). In summary, the
Timeout strategy only performs well if its parameters are carefully tuned for its particular environment, and even then,
it is outperformed by our Optimal strategy. Overall, therefore, we can conclude that Hypothesis 1 holds in settings with
independent service durations.

Additionally, we note that when solving the above problems, our branch-and-bound approach significantly reduces the
computational time required when compared to a brute-force algorithm. For example, when there are 12 providers and we
consider V high and Durgent, a brute force approach searches over 1.3 billion provider orderings, which takes an average 3.3
hours (using a Java implementation on a Windows-based Intel 2.2 GHz laptop with 4 GB RAM). By contrast, the branch-
and-bound algorithm searches an average of 69 200 orderings (0.005% of the total search space), finding the optimal in just
over two seconds. While the latter still finds solutions for 18–23 providers in minutes (where the brute-force would take
over 2 × 1010 years — longer than the age of the universe), our heuristic approach is better suited for larger settings with
hundreds or thousands of providers. To investigate how its performance compares to the optimal, we have applied both
to all settings described above with twelve or fewer providers. Here, we found no statistically significant difference to the
optimal strategy (the graphs are not shown here for reasons of space).

In the following, we investigate environments with perfectly correlated durations.

6.1.2. Correlated durations
To test Hypothesis 1 in these settings, we repeat the same experiments as above, but now assume that durations are

perfectly correlated. Somewhat surprisingly, the Optimal approach here performs identically to the Single approach, i.e.,
it also always procures only the service provider that individually yields the highest expected utility. Using redundancy,
therefore, does not result in a higher utility for the consumer here, thus contradicting Hypothesis 1 in environments with
perfectly correlated durations. As we will explore in more detail in the remainder of this section, this is here due to the
relatively short deadline that we considered in our previous experiments. More specifically, as a result of the complete
correlation, any additional providers need some time to catch up with previously invoked providers and this negates the
advantage of procuring multiple providers when the deadline is short. Rather, it is best to immediately procure a better
provider, in order to achieve a high probability of success. This is in contrast to the independent case, where any additional
provider immediately contributes positively to the overall success probability. Overall, this is an interesting result, indicating
that the simple greedy approach represented by the Single strategy is adequate and often optimal when durations are
perfectly correlated.
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Fig. 7. Performance with perfectly correlated durations.

However, we note here that there are significant exceptions to this — one of which we have already highlighted in
Section 4.1. In that example, using redundancy resulted in a considerable 50% improvement over the Single approach. To
investigate in more detail the types of environments where such improvements may be found in practice, we note the
following features in our example which set it apart from the settings we have considered so far in our evaluation:

• Long deadline: The task in the example had a long deadline relative to the speed of at least one provider. This made it
feasible to delay the invocation of the second provider without causing a significant impact on its success probability.
This is in contrast to the experiments carried out here, where even the fastest providers (i.e., when λi = 1) have a non-
negligible failure probability, which is quickly decreased by any further delays. Furthermore, any redundantly invoked
providers typically need some time to catch up with previously invoked providers, i.e., to reach the time t where the
capacity of the redundantly invoked provider i is equal to that of its predecessor. Again, this reduces the potential
benefit of using redundancy in settings with short deadlines.

• Correlated cost and quality: The providers in the example displayed a correlation between their quality and cost — one
was cheap and slow, while the other one was expensive and fast. This required making an explicit trade-off between
these, and the redundant approach was able to benefit from combining both providers. In the setting considered above,
we assumed costs and qualities were independent, thus often leading to the situation where a particular provider clearly
dominated the others.

With this in mind, we now consider a variation of our experimental setup. In particular, we use deadline Dnormal = 2
and a high value V high = 8, but we now draw λi uniformly at random from the interval [0,30] and determine the cost as
ci = 4 · (1 − e−λi ). This means that the deadline is now very long relative to some of the providers and we also correlate
the quality with the cost, which is linearly dependent on the success probability within a unit time step. As the branch-
and-bound algorithm is significantly faster in the correlated setting, we solve the problem optimally for up to 100 providers
here (this improvement in speed is due to the fact that we can immediately select an optimal ordering, as described in
Section 4.3.1).

The results for this modified setting are shown in Fig. 7. Not surprisingly, the improvement is still not as large as in
environments with independent durations, because the overall success probability still depends only on the single best
provider (whereas in independent settings, every provider contributes to increasing this success probability). Nevertheless,
we can now see that the Optimal strategy here still offers a significant advantage over the Single strategy. In fact, over
the environments tested here, the average improvement is 6.12%. Furthermore, this relative improvement increases with
the number of available providers, resulting in a 7.14% improvement when there are 100 providers. We note that the
Timeout strategy performs poorly here. Despite choosing the best p and t parameters, as before, the strategy is inherently
ineffective for the correlated case, because it invokes similar providers in sequence, which often does not increase the
success probability at all and instead incurs additional costs.

These results indicate that using redundancy can be beneficial even in perfectly correlated settings, although the im-
provement is not as pronounced as in the independent case and there are some environments where redundancy offers no
additional benefit over the Single strategy. However, we have so far assumed that the task difficulty follows an exponential
distribution. We believe that this may be inherently less suitable to redundant procurement when durations are correlated,
as it has a constant hazard rate and a density that quickly diminishes over time. Thus, a single reasonably fast provider is
often the best choice for the consumer. In the following, we consider a different scenario, where redundancy may offer a
more substantial benefit.

This new scenario is based on the observation that many realistic computational problems exhibit phase transitions in
their difficulty [7]. That is, although the problem may be hard to solve in the general case, many instances can be solved
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Fig. 8. Bi-modal distribution to simulate distinct levels of difficulty.

Fig. 9. Performance with perfectly correlated durations and bi-modal distribution.

quickly in polynomial time. Yet, when the problem parameters exhibit certain properties, the run-time becomes exponential.
This typically happens abruptly and can be difficult to predict a priori for individual instances.

As we believe that such a setting often occurs when there is uncertainty about the task difficulty (i.e., when provider
durations are correlated), we extend our evaluation here to settings where the task difficulty is a multi-modal distribution.
More specifically, we assume that the task difficulty falls either into the class of relatively easy problems or into the class
of hard problems, which have a significantly higher and more variable run-time. Although the difficulty is uncertain a priori,
the consumer may still have a probability distribution, based on past problems and conditional on certain features of the
input data. To model this in our evaluation, we assume that the task difficulty follows a mixture of two normal distributions
that are truncated at 0, as shown in Fig. 8.

More specifically, in this setting, we again assume V high and Dnormal. The problem difficulty Y is given by the density

function g(y) = 5
7

n0,0.5(y)

1−N0,0.5(0)
+ 2

7
n4,1(y)

1−N4,1(0)
, where nλ,σ (y) is the density function of a normal distribution with mean λ and

standard deviation σ and Nλ,σ (y) the corresponding cumulative distribution function. The completion time of a partic-
ular provider i is given by qi(t) = λit , where λi is drawn uniformly at random from [0,2]. As before, we correlate the
quality and cost by setting ci = 4 · (1 − e−λi ). It should be noted that Fi here no longer follows an exponential distribu-
tion, as we assumed in Section 4.2.2. For this reason, we restrict our invocation times to ten uniformly spaced time steps,
(0, D

10 , 2D
10 , . . . , 9D

10 ), and then use a brute-force search to find the optimal schedule for a given ordering of providers.
The results are shown in Fig. 9 and indicate that the Optimal approach offers a more significant improvement over the

Single approach when the problem difficulty follows a multi-modal distribution (we omit the Timeout strategy, as it again
performs very poorly). In fact, over the cases tested here, the average improvement is 24.1% and in some cases reaches
27.3% (when m = 50). Compared to the exponential distribution, these problems are more conducive to using redundancy,
because different providers can be used to specifically target parts of the distribution. For example, initially, a cheap provider
can be procured to cover problems with a low run-time (in this example, this occurs in over 70% of all cases); then, when a
certain threshold is reached, a fast provider is procured, because the task at hand is most likely one that is difficult to solve.

In conclusion, we have so far shown that redundancy offers a significant benefit over the procurement of single providers.
This is particularly the case when duration distributions are independent, because each additional provider increases the
probability of success and many cheap providers can be combined to obtain a high quality of service. We showed in general
that Hypothesis 1 holds in these environments.

When durations are perfectly correlated, this improvement is generally lower, because the consumer’s success probability
depends only on the capacity of the best service provider and because even faster providers need some time to catch up
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with previously invoked providers. In some environments, especially with short deadlines, this means that redundancy may
offer no benefit over the Single approach. However, when deadlines are long, costs and service qualities are correlated, or
when the uncertainty follows a multi-modal distribution, redundancy can offer a clear advantage over the Single approach.

While we have so far considered settings where the consumer has full information about the providers’ capabilities and
costs, we now move on to settings where this information is private.

6.2. Private information

Now we consider the mechanisms described in Section 5. As mentioned there, these mechanisms have a number of
desirable properties (including incentive compatibility and individual rationality), but some of them do not result in a
welfare-maximising outcome and generally require the centre to pay providers more than their costs. However, our theo-
retical results do not quantify these losses in realistic settings. To address this shortcoming, we measure the performance of
our mechanisms empirically here, by applying them to a wide range of settings. To this end, we are interested in the loss
of utility in terms of social welfare (i.e., how far the solutions obtained by the mechanisms are from the optimal solution),
as well as in the inherent loss of utility to the consumer caused by its lack of information about the providers’ costs and
duration distributions (this latter cost is also called the information rent in the mechanism design literature [34, Ch. 23]).

We start in Section 6.2.1 by considering the uniform and discriminatory pricing mechanisms we proposed to deal with
scenarios where the duration probabilities are known by the consumer and only the costs are private information. We omit
a specific discussion of our first mechanism, the marginal contribution mechanism, because its performance in terms of
expected social welfare and the consumer’s expected utility is equal to the Execution-Contingent VCG, which we cover in
detail in Section 6.2.2. As discussed in Sections 5.2.2 and 5.2.3, both the uniform and the discriminatory pricing mechanisms
for these scenarios are generally sub-optimal, but we expect some to perform better in certain settings. Hence, in addition
to quantifying the overall utility obtained by the mechanisms, our investigation is driven by the following hypotheses:

Hypothesis 2. When we have sufficient information to choose k optimally, then the uniform pricing mechanism consistently
outperforms the discriminatory pricing mechanisms (both in terms of social welfare and the consumer’s utility).

Hypothesis 3. When insufficient information is available and an inappropriate k is chosen, the uniform pricing mechanism
can perform poorly and is consistently outperformed by the discriminatory pricing mechanisms.

Then, in Section 6.2.2, we turn to the Execution-Contingent VCG mechanism, which applies to cases where both the
duration probabilities and costs of providers are private information. As this mechanism is efficient, i.e., always obtains
the optimal solution, we are mostly concerned about the loss of utility caused by over-paying the providers. Since the
mechanism uses more information about the providers, we test the following hypothesis:

Hypothesis 4. For a sufficiently large number of available providers, the Execution-Contingent VCG mechanism consistently
matches or exceeds the consumer’s utility achieved by the uniform and discriminatory pricing mechanisms.

Finally, as part of Section 6.2.2, we also consider the approximations introduced in Section 5.3.3 and investigate how
they affect the consumer’s performance.

6.2.1. Uniform and discriminatory pricing mechanisms
In order to test the performance of these mechanisms, we apply them to the same settings as described in Section 6.1.1.25

Fig. 10 shows the results for two particular settings — one with many providers, a short deadline and a high value and one
with fewer providers, a longer deadline and low value. These serve to illustrate the effect of varying the parameter k (before
we move on to more general results over the whole range of environments). In more detail, for each strategy, Fig. 10
shows the utility obtained by the consumer and by the providers, as well as the efficiency loss, as compared to the optimal
solution.

It is immediately obvious here that all mechanisms suffer from a loss in utility for the consumer, as described above.
More specifically, if the optimal k is chosen for the uniform pricing mechanism, the consumer achieves an average 86.0%
and 83.4% of the optimal (respectively in the two example settings). In terms of social welfare, this corresponds to 95.4%
and 94.6% of the optimal. Compared to this, the discriminatory pricing mechanisms achieve an average consumer’s utility
that is 72.0% of the optimal, and an average social welfare that is 85.5% of the optimal. These results highlight that despite
their simplicity, the proposed mechanisms can achieve a good performance compared to the optimal. Furthermore, choosing
k optimally here clearly offers an advantage over the discriminatory mechanisms, thus supporting Hypothesis 2.

Our second observation here is that the performance of the uniform pricing mechanism depends heavily on the choice of
k and can be as low as 25% of the optimal if the wrong parameter is chosen. Furthermore, the best parameter depends on

25 As before, we solve the problem optimally when there are twelve or fewer providers and use the heuristic for settings with more providers.
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Fig. 10. Performance of incentive compatible mechanisms.

Fig. 11. Performance of incentive compatible mechanisms over all environments (average expected consumer’s utility).

the scenario. For example, for the task with V low, k = 3 is the best choice for maximising the consumer’s utility, achieving
over 83.4% of the optimal. However, for V high, it is one of the worst, achieving only 58%. Hence, these results indicate that
a consumer can achieve a good utility by using appropriate k parameters. However, when k is set incorrectly (e.g., when
insufficient information is available about the environment), it can obtain better results by using one of the discriminatory
pricing mechanisms, which consistently perform well. This supports Hypothesis 3.

Finally, to generalise these observations, Fig. 11 plots the performance of the mechanisms in terms of the average ex-
pected consumer’s utility over all environments considered in this section.26 In Fig. 12, we plot the corresponding average

26 Note we discuss the performance of the Execution-Contingent VCG mechanism, labelled as EC-VCG, in Section 6.2.2.
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Fig. 12. Performance of incentive compatible mechanisms over all environments (average expected social welfare).

expected social welfare. For brevity, we replace all choices for k by a Best-k and a Worst-k mechanism, which show the
performance when k is chosen to maximise and minimise the expected consumer’s utility, respectively.27 Here, we note
that the discriminatory pricing mechanisms consistently perform worse than Best-k (supporting Hypothesis 2), but simi-
larly outperform Worst-k (supporting Hypothesis 3). Neither of the two discriminatory pricing mechanisms dominates the
other, but we generally observe that the Halving mechanism performs better in the low value (V low) environments than
the Pairing mechanism. This is due to the fact that the Halving mechanism usually results in at least one cheap provider
at the expense of having fewer candidate providers to choose from. This is advantageous in the low value case, because
the consumer prefers to invoke fewer and cheaper providers here. Furthermore, in Fig. 12, we notice that the mechanisms
generally achieve a good overall social welfare.28

6.2.2. Execution-Contingent VCG
In this section, we now consider our final mechanism, the Execution-Contingent VCG, which can be applied in settings

where both the duration distributions and costs are private information. Again, we apply this mechanism to the same
settings as in the previous section.29 The results of this are plotted in Figs. 11 (average expected consumer’s utility) and 12
(average expected social welfare).

First, we note that since the Execution-Contingent VCG is efficient (i.e., always selects the social welfare maximising
outcome), its average expected social welfare is equal to the performance of the optimal strategy in the full information
setting. In terms of the consumer’s utility, there are two prominent trends over all environments. Initially, when there are
few providers, the Execution-Contingent VCG achieves a comparably low utility for the consumer. This is because each
procured provider is more likely to make a significant contribution and thus receives a high payment from the mechanism
(more specifically, the utility that would be obtained without that provider’s presence is typically considerably lower).

27 We implement this by considering the average results of all possible choices for k. We then pick the parameter k that yielded the highest or lowest
average utility for the consumer and re-run the experiments with that parameter.
28 The performance plots in that figure are not as smooth in the previous figures. This is because the mechanisms do not explicitly optimise for the

expected social welfare, but rather for the consumer’s utility. Thus, short downwards trends are sometimes observed, especially for the performance of the
Best-k strategy, where a particular choice of k may be optimal for the consumer’s utility, but not necessarily for the social welfare. This phenomenon is
evidenced also by the first scenario in Fig. 10, where k = 10 maximises the consumer’s utility, but k = 11 maximises the social welfare.
29 Here, we again obtain results for thirteen or more providers using our heuristic approximation. In this particular setting, it must be noted that the

mechanism is then no longer incentive compatible. However, as we argued earlier, the heuristic is a close approximation to the optimal case and so we
nevertheless show the results to provide an intuition of the mechanism’s performance.
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Table 3
Summary of empirical results (compared to optimal social welfare in full information setting).

Mechanism Consumer’s utility Social welfare
(% of optimal) (% of optimal)

Uniform pricing (Best-k) 85.84% 94.37%
Discriminatory pricing (pairing) 76.70% 86.58%
Discriminatory pricing (halving) 77.34% 88.24%
Execution-Contingent VCG 85.59% 100.00%

Fig. 13. Performance of Execution-Contingent VCG when approximating the optimal schedule.

However, as the number of providers in the system increases, the utility obtained by the Execution-Contingent VCG quickly
rises, in most cases eventually exceeding the performance of all other mechanisms tested. In the first scenario (Durgent and
V low), it only slowly approaches the performance of the Best-k mechanism, but as m is increased further, it also eventually
dominates the latter (these results are not shown here). Overall, these results support Hypothesis 4. To summarise, the
overall averaged performance results of all mechanisms shown in Figs. 11 and 12 are given in Table 3.

To conclude this section, we consider the effect of using approximations for the Execution-Contingent VCG mechanism.
As argued in Section 5.3.3, such approximations allow the mechanism to remain incentive compatible even in settings with
many agents. To this end, we consider the same environments examined thus far, but fix the number of total providers
in the system to m = 50 (to consider a setting with many providers). We then record the performance of the Execution-
Contingent VCG mechanism as we vary the maximum number of providers that are included in the allocation, i.e., the
parameter η from Section 5.3.3. Both the average consumer’s utility and the social welfare obtained are plotted in Fig. 13.

These results are positive, indicating that the mechanism performs well even if the number of providers in the final
solution is restricted. In most scenarios, only two or three providers are required to perform close to the optimal, while the
urgent and high value scenario requires four providers to achieve over 90% of the optimal social welfare. It is somewhat
surprising here that the consumer’s utility often reaches the equivalent utility of the optimal case more quickly and in
some cases even exceeds it by a small amount. Intuitively, this is because using fewer providers increases the competition
between those that are selected, thereby increasing the transfers they receive. This means that if the consumer is primarily
interested in maximising its own profit rather than finding the efficient outcome, even fewer providers are required to
achieve a good solution. Also, as the social welfare maximising outcome is not necessarily optimal for the consumer, it may
even reap a small benefit by choosing η strategically. Furthermore, we note here that the time to find a solution is still fast
even when choosing a high η. For example, when η = 6, it takes an average of six seconds in the urgent and high value
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scenario; when η = 7, this rises to 45 seconds. These trends continue to hold for larger numbers of providers, and even
problems with hundreds of providers can be solved in minutes or faster (see [16] for further results).

6.3. Choosing the right mechanism

To conclude this section, we now summarise our main theoretical and empirical results for each of the mechanisms. This
builds on Table 2 and briefly describes the main information requirements, the scalability, expected performance (based on
the results in this section) and other advantages and disadvantages of each mechanism. As such, it is intended to help a
service consumer select a suitable mechanism for a particular setting.

• Marginal contribution:
– Information requirements: Duration distributions need to be known by the consumer (e.g., through previous interac-

tions or an appropriate trust and reputation system).
– Scalability: Few providers (dozens or fewer), as it requires the consumer to compute an optimal procurement schedule.
– Performance: Optimal social welfare, high utility to the consumer after transfers (around 85% of the optimal).
– Advantages: Incentive compatible in dominant strategies.
– Disadvantages: Vulnerable to de-commitments, which can be mitigated by imposing high penalties on non-compliant

providers or by collecting a deposit prior to invocation. Also only individually rational in expectation, i.e., providers
can sometimes incur a negative utility.

• Uniform pricing:
– Information requirements: Known duration distributions and some knowledge about the providers’ cost distributions.

The latter is required to set the parameter k. More specifically, such knowledge would in practice arise from previous
interactions with providers or general domain knowledge, and would allow the consumer to simulate the mechanism
for various choices of k prior to execution.

– Scalability: Many providers (hundreds or thousands).
– Performance: Near-optimal social welfare (around 95% of the optimal), high consumer’s utility (around 85% of the

optimal).
– Advantages: Incentive compatible in dominant strategies and post-execution individually rational (providers never

make a loss).
– Disadvantages: High information requirements.

• Discriminatory pricing:
– Information requirements: Known duration distributions.
– Scalability: Many providers (hundreds or thousands).
– Performance: High social welfare (around 86–87% of the optimal), reasonable consumer’s utility (around 77% of the

optimal).
– Advantages: Incentive compatible in dominant strategies and post-execution individually rational.
– Disadvantages: Lower performance than other mechanisms.

• Execution-Contingent VCG:
– Information requirements: None.
– Scalability: Few providers (dozens).
– Performance: Optimal social welfare, high consumer’s utility (around 85% of the optimal).
– Advantages: Low information requirements — elicits both truthful reports about costs and duration distributions.
– Disadvantages: Ex-post incentive compatible (weaker than in dominant strategies) and only individually rational in

expectation.
• Approximate Execution-Contingent VCG:

– Information Requirements: None.
– Scalability: Many providers (hundreds, depending on parameter η).
– Performance: Close to Execution-Contingent VCG if sufficiently high η is chosen.
– Advantages: Low information requirements.
– Disadvantages: Ex-post incentive compatible and individually rational in expectation. Requires parameter η to be set

by the consumer, but the choice is less critical than the parameter k of the uniform pricing mechanism. Specifically,
it should generally be set to the highest feasible value given the computational constraints of the consumer. However,
even with relatively low values (around η = 6 in the settings we tested), a performance that is almost equivalent to
the optimal Execution-Contingent VCG can be achieved.

7. Conclusions

In this paper, we developed a novel approach for procuring services with uncertain execution durations in an optimal
manner. This approach uses redundancy to increase the probability that a task is completed by a given deadline and ex-
plicitly balances the cost of redundancy with its benefit. In order to deal with large systems that may contain many (tens)



2058 S. Stein et al. / Artificial Intelligence 175 (2011) 2021–2060
service providers, we proposed an optimal branch-and-bound algorithm to significantly reduce the search space and also a
near-optimal greedy heuristic which can deal with hundreds or even thousands of providers.

We believe that our technique can be applied to a variety of realistic service-oriented settings, including grids and cloud
computing, where services are offered by potentially unreliable providers. To highlight the benefit of using redundancy, we
simulated these environments and showed empirically that it leads to a significant improvement in performance. In some
cases, when the deadline of the task was short and the value high, using redundancy resulted in a 130% improvement over
approaches that procure only a single provider, as is commonly done in existing task allocation scenarios. In our work, we
investigated different sources of uncertainty and we showed that redundancy is most beneficial when service durations
are independent. Surprisingly, however, redundancy can still offer a significant advantage even in settings where service
durations are perfectly correlated (up to 27%).

Now, in order to procure services optimally, the consumer requires probabilistic performance information about the
available services. While some existing work has considered the use of reputation systems in this context, such systems
may not be available or there may be insufficient information about particular providers. To address such settings, we
looked into techniques from mechanism design to incentivise providers to reveal their private performance information to
the consumer. In particular, we developed a number of novel mechanisms that can be applied in different scenarios.

The first two of these, the uniform pricing mechanism and the discriminatory pricing mechanisms, apply to settings
where only service costs are private information. These have highly desirable properties — they are incentive compatible in
dominant strategies and are post-execution individually rational — and they retain these properties even when a sub-optimal
outcome is chosen by the mechanism. For settings where costs and duration functions are private information, we showed
that the standard VCG mechanism is no longer incentive compatible as providers can profit from inflating their response
times. To address this, we proposed a novel Execution-Contingent VCG mechanism. This is ex-post incentive compatible,
individually rational and efficient. However, unlike the other mechanisms, it has to select the optimal outcome, which can
be intractable for very large environments. To address this, we developed a simple approximation, which can be found in
polynomial time and which we demonstrated to achieve a high utility in practice.

We plan to extend our work in a number of ways in the future. First, we would like to consider settings with mul-
tiple interdependent tasks. These often occur in practical application areas where consumers need to complete complex
workflows. To address these settings, we will extend our branch-and-bound algorithm and also consider more expressive
consumer preferences, such as utility functions that depend on the workflow completion time.

Second, we will deal with multiple consumers that compete for the services of the providers, as this setting happens of-
ten in practical service-oriented application settings. For this, we plan to look into the application of two-sided markets and
extend existing work in this area to our redundant procurement setting. In this context, we will be particularly interested in
the impact increased competition among consumers will have on the use of redundancy. Clearly, when services are scarce,
there will be less scope for redundant procurement, but particularly urgent or valuable tasks may still be allocated multiple
services. Depending on the aims of the system designer, it will be interesting to also investigate alternative social welfare
functions in this setting, such as the Nash product or egalitarian social welfare.

Finally, we intend to investigate more dynamic settings where both tasks and services arrive over time. This again is a
common feature of realistic settings, where providers enter or leave the system and new unexpected tasks may suddenly
appear. In such scenarios, agents may strategise not only about reporting their service capabilities, but also about when
to make these reports. As such, we will consider applying and extending techniques from the field of online mechanism
design [41].
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Appendix A. Optimal procurement as a restless bandit problem

The optimal procurement problem can be modelled as a restless bandit problem. Given ci , Fi(t) for each provider i,
and deadline D , define state space S = {S j,k | j,k � 0, j + k � D} ∪ {S V , S A}. For each provider i, define bandit Bi with
starting state S0,0. Define the activation probability function as follows. If the bandit is currently in state S0, t with t � D
when activated, then with probability 1.0 it transitions to state St,1. If the current state is S j,k such that j + k < D , then it
transitions to state S j,k+1 with probability 1.0. Otherwise, if the bandit is in state S j,k such that j +k = D then it transitions
to state S A , which is an absorbing state. The cost every time Bi is activated is ci . The passive dynamics (i.e., when the
bandit is not activated) are defined as follows. For any state S0,k such that k � D , the transition to state S0,k+1 occurs with
probability 1.0, and if k = D then the transition to state S A occurs with probability 1.0 (where S A is again an absorbing
state). For any state S j,k with j > 0 and j + k � D , the probability of transitioning to state S V is Fi(k) while the probability
of transitioning to S j,k+1 is 1 − Fi(k). The probability of transitioning from state S V to state S A and from any state S j,k
such that j + k = D to state S A is also 1.0. Finally, set the passive rewards for all states except S V to be zero, and set the
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reward of S V to be a perishable value V (i.e., once obtained, the value for the state changes to zero) [25]. This problem is
defined such that a bandit will only be activated at most once in the optimal schedule, and the optimal activation schedule
(i.e., that maximises the average reward) is exactly the optimal procurement strategy.
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