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ABSTRACT

Group-based discussion among human graders can be a useful tool
to capture sources of disagreement in ambiguous classification tasks
and to adjudicate any resolvable disagreements. Existing workflows
for panel-based adjudication, however, capture graders’ arguments
and rationales in a free-form, unstructured format, limiting the
potential for automatic analysis of the discussion contents. We
designed and implemented a structured adjudication system that
collects graders’ arguments in a machine-readable format without
limiting graders’ abilities to provide free-form justifications for
their classification decisions. Our system enables graders to cite
instructions from a set of labeling guidelines, specified in the form
of discrete classification rules and conditions that need to be met in
order for each rule to be applicable. In the present work, we outline
the process of designing and implementing this adjudication system,
and report preliminary findings from deploying our system in the

context of medical time series analysis for sleep stage classification.
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1 INTRODUCTION

A common requirement in supervised machine learning is that
objects can be unambiguously classified into categories. In practice,
however, there exist many classification tasks that are inherently
ambiguous and the reasons why domain experts may be in dis-
agreement over the correct way to classify an object may vary from
task to task and from data object to data object. Several researchers
have recognized this problem and come up with different solutions
to handle it. One main distinction between these different works
can be made around the question of whether expert disagreement
is a problem to be resolved or whether disagreement is treated as a
signal that is leveraged in some useful way. Our work is situated
along the latter line of research. In particular, we propose that a
key component to trusted and explainable artificial intelligence (AI)
systems is to understand and capture the logical arguments and
the various pieces of evidence that lead to divergent interpreta-
tions among experts. The overall goal is to get one step closer to
endowing Al systems with the ability to provide argument-based
explanations about (potentially ambiguous) classification decisions
to their end users. Extending prior work on the design of systems
for real-time group deliberation among remote human annotators
[20, 22] and observational studies of in-person adjudication among
expert annotators [21], in this work, we propose a general approach
for capturing experts’ rationale for individual classification deci-
sions in a structured, guideline-centric format-with the goal of
capturing sources of ambiguity and the content of evidence-driven
adjudication discussions in a machine-readable format. The remain-
der of this paper covers related work, briefly introduces the reader
to the application domain of sleep stage classification, details the
proposed solution and preliminary findings from pilot experiments,
and concludes with a discussion of use cases for our approach.

2 RELATED WORK

2.1 Ambiguity and Inter-rater Disagreement

Ambiguity is an issue of central importance in the field of episte-
mology, where an openness to multiple interpretations complicates
the justification of knowledge. In practice, ambiguity gives rise to
inter-rater disagreement in expert domains when there is lack of
consensus on a single interpretation of a subjective case. Both ambi-
guity and expert disagreement have received extensive coverage in
the epistemological literature [2, 7, 13, 24]. In a recent discussion of
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Figure 1: Visualization of one 30-second epoch of biosignal data to be scored into one of five stages of sleep.

the issue, Garbayo (2014) distinguished legitimate disagreement—
where experts disagree despite access to the same evidence— from
verbal disagreement, where experts misunderstand each other due
to differences in terminology or semantics [13]. In an earlier the-
oretical account, Mumpower and Stewart (1996) delineate three
forms of expert disagreement: (1) personality-based disagreement,
beget by ideology, venality, or incompetence of the experts them-
selves, (2) judgement based disagreement, where information gaps
exist, or (3) structural disagreement generated by different problem
definitions or organizing principles held by experts [13].

In the clinical domain, expert disagreement is prevalent in diag-
nostic tasks that rely on visual analysis of subjective criteria. EEG
interpretation is one such example. For instance, in the context
of epilepsy diagnosis, interictal epileptiform discharges (IEDs) are
key distinguishing features within an EEG—however, neurologists
will often disagree over whether a particular waveform consti-
tutes an IED. In a study by Bagheri et al. (2017), it was found that
inter-rater agreement rates surrounding IED detection could be
predicted based on particular wavelet features, given that the sam-
ple of experts was large enough [1]. In the context of sleep stage
classification, which also depends on the identification of transient
and infrequent features (i.e., sleep spindles and K-complexes), the
average agreement rate among experts is 82.6% [19].

2.2 Adjudication in Medical Data Analysis

Disambiguating edge cases generated by inter-rater disagreement
in the medical domain is a matter of contention in the contemporary
literature. Majority-vote techniques have been criticized for their
tendency to promote artificial consensus over valuable data or
insights that might be had from group discussion and deliberation
[23]. Indeed, group deliberation—where group members who hold
conflicting beliefs present arguments and weigh evidence in light
of their individual positions in order to reach a decision—has been
shown to be a useful and productive technique for aggregating
expert opinions and reaching consensus.

A study by Krause et al. (2017) found that in-person, group de-
liberation resulted in significantly higher recall among experts in
diagnosing eye disease from images of the fundus, when compared

to the majority vote technique [10]. Furthermore, it was demon-
strated in the same study that group deliberation, when performed
on just a small portion of a dataset, can be used to train the hyper-
parameters of deep learning models for more effective automated
analysis. Guan et al. (2018) later used the same consensus data set
to train multiple, grader-specific machine learning models, and
showed that the aggregate performance of these models could beat
out a single-prediction model trained with majority labels [8].

Adjudicated diagnoses have also proved valuable as reference
standards for training machine learning models. In work done by
Rajpurkar et al. (2017), cardiologists engaged in group deliberation
to generate an adjudicated electrocardiogram (ECG) data set in the
context of arrhythmia detection. This consensus validation data set
was then used as a benchmark for a convolutional neural network,
which was found to outperform individual cardiologists in ECG
classification when trained solely on independent data labels [16].

Where sleep staging is concerned, it has been argued that group
deliberation, also referred to as “consensus-scoring” or adjudication,
is an optimal method of training human sleep scorers [15].

2.3 Computational Models of Argumentation

Argumentation is an approach to reasoning focused not only on the
conclusions reached, but also on the data and the inference steps
involved in inferring conclusions from the data. Argumentation has
a considerable history in the field of computer science, including
the problem of understanding common patterns of argumentative
discourse in human decision making (e.g., [6, 25]) mapping natu-
ral language to a more formal, machine readable representation
of argumentative discourse (e.g., [3-6, 11, 12, 18]), and using for-
mal representations of arguments to generate new conclusions for
previously unseen queries (e.g., [14, 17]).

3 APPLICATION DOMAIN

We leverage biomedical time series classification, a field with typi-
cally low inter-scorer reliability, as an application domain for em-
bedding our work. In particular, we use examples from sleep stage
classification, the expert task of mapping a sequence of fixed-length
pages (typically 30 seconds) of continuous multimodal medical time
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Figure 2: Rationale form for expert graders to cite guideline
instructions in support of their classification decision.

series (polysomnogram, see Figure 1) to a sequence of discrete sleep
stages (hypnogram). Each fixed-length page of time series (epoch)
is classified into one of five different stages of sleep—Wake, NREM1,
NREM2, NREM3 or REM sleep—based on the stage comprising the
greatest portion of the epoch. Rosenberg and van Hout [19] con-
ducted a study on inter-scorer reliability in sleep stage classification,
finding that expert agreement averages around 82.6%.

4 PROPOSED SOLUTION

We propose to augment the traditional process of collecting ground
truth labels for supervised learning (i.e., querying one or more
experts for the “correct” label to a given input example), by intro-
ducing an extra step to elicit the reasons for certain classification
decisions (i.e., rationale) in a structured form. In particular, we pro-
pose to collect expert rationale in the form of propositional logic
where experts specify the evidence and inference rules they used
to arrive at their classification decisions. In this section, we guide
the reader through the input and output of our proposed approach
and the intermediate steps required to transform the input to the
output. We illustrate our explanations with examples from sleep
stage classification.

Input. Our system will take as input a pool of human experts
and a set of data objects (e.g., images, text documents, medical time
series) to be classified into one of several preset categories. In the
case of sleep stage classification, a set of pages of physiological
time series (see Figure 1) is classified into one of 5 stages of sleep
by a pool of sleep technologists.

Output. For each input data object, our method will output
a distribution of classification labels, one from each expert. For
those data objects that led to some disagreement among the experts
throughout the labeling process, the system will also output each

spindles occur during the first half of that
epoch or the last half of the previous epoch.

Are the following 2 conditions met?
The criteria for stage N3 are not met.
NO UNLIKELY LIKELY
One or more trains of sleep spindles occur

during the first half of the epoch or the last
half of the previous epoch.

UNLIKELY LIKELY

Optionally clarify in your own words or reply to others...

o Please select whether you think all conditions
for instruction N2-2b are met!

Figure 3: Expert graders specify their level of confidence for
individual conditions required for a cited instruction.

individual expert’s rationale for their final classification decision
in the form of propositional logic. In other words, for ambiguous
cases, the system will list the inference rule(s) each expert used
to arrive at a certain classification decision as well as the expert’s
confidence levels for the evidence criteria that need to be met in
order for the chosen inference rule(s) to be applicable. An example
for sleep stage classification may look as follows:

e Expert A:
- Classification: Wake
- Rule: “[W-3a] Score epochs without alpha rhythm as stage
W if eye blinks are present.”
- Confidence for Evidence Criteria:
* Alpha rhythm absent: Yes
* Eye blinks present: Likely
e Expert B:
— Classification: NREM1 Sleep
- Rule: “[N1-2] In patients who generate alpha rhythm, score
stage N1 if the alpha rhythm is extenuated and replaced by
low-amplitude, mixed-frequency activity for more than half
of the epoch.”
- Confidence for Evidence Criteria:
* Patient generates alpha rhythm: Likely

* Alpharhythm is extenuated and replaced by low-amplitude,

mixed-frequency activity for more than half of the epoch:
Yes

4.1 Capturing Structured Rationale

Our solution requires two components to capture rationale in the
format above:
(1) Rule-based representation of the classification guidelines
(2) User interface to collect rationale in structured form
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Rule-based representation of the classification guidelines.

The first step in collecting rationale in a structured form is to define
the set of possible inference rules for classifying objects, and a set of
evidence criteria (i.e., Boolean propositions) that need to be met in
order for a given rule to be applicable. For our application domain
of sleep stage classification, we adapted the official AASM Manual
for the Scoring of Sleep and Associated Events [9] into a set of 36
individual inference rules (8 for Wake, 10 for NREM1 Sleep, 9 for
NREM?2 Sleep, 3 for NREM3 Sleep, and 6 for REM Sleep) with 52
unique evidence criteria.

User interface to collect rationale in structured form. The
resulting rule-based representation of the classification guidelines
needs to be exposed through a user interface enabling experts to
specify individual inference rules and to indicate the extent to which
they believe that the evidence criteria required for the selected rules
are met. Figure 2 illustrates our implementation of such an interface.
In our example, the interface starts out as an empty rationale form
with two input fields—one to select discrete inference rules, and
one to optionally explain more in one’s own words. The first input
field will automatically suggest possible inference rules based on
the current classification decision (e.g., Wake) and the keywords
typed into the input field. Once the user selects an inference rule,
the rationale form automatically lists the evidence criteria that
need to be true in order for the rule to be applicable (Figure 3),
prompting the user to indicate the extent to which they believe
each condition is met, one of: No, Unlikely, Likely, Yes. The interface
produces warnings for invalid inputs (e.g., selecting rules while
indicating that their conditions are not met) to ensure the user has
selected at least one inference rule in support of their classification
decision and specified their confidence level for each of the evidence
criteria, before submitting the rationale and proceeding to the next
disagreement case.

2000

300 A

50

# Rationales (log)
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1 2 3
# Instructions cited in rationale

Figure 5: Number of rationales citing one, two and three
guideline instructions.

5 PILOT EXPERIMENT

A pilot experiment was conducted to explore the usefulness of the
proposed procedure and to demonstrate sample analyses made pos-
sible by the resulting structured adjudication data. For our pilot
experiment, we sampled six EEG recordings from six unique pa-
tients, three with Parkinson’s disease (PD) and three normal control
subjects. As is the case for other neurological disorders, sleep stud-
ies from PD patients may exhibit slight differences in the expression
of sleep-relevant features (e.g., sleep spindles and K-complexes),
compared to healthy subjects, and may therefore lead to different
disagreement patterns among domain experts. For annotation, we
recruited 18 sleep technologists as expert graders forming six panels
of three experts each. Each EEG recording was assigned to exactly
one of the six expert panels, and each expert grader participated in
exactly one panel. Graders first performed an initial independent
round of scoring on their assigned recordings, followed by three
rounds of adjudication, one round per grader in the panel. In each
adjudication round, the active grader stepped through each individ-
ual epoch with any level of disagreement among panel members,
re-scored the epoch and provided a rationale for their reclassifica-
tion decision. In each adjudication round and for each disagreement
epoch, the active grader was presented with the most recent grades
from all three panel members, as well as the grades and rationales
submitted during each of the preceding rounds. The three pan-
els adjudicating recordings from PD patients used the structured,
guideline-centric way of collecting rationale during adjudication
discussions. In contrast, the three remaining panels adjudicating
recordings from normal control subjects used the non-structured,
free-form way of collecting rationale.

6 RESULTS

The output of our rationale form (i.e., sleep stage classification
labels and their given expert rationales) provided the basis for a
detailed set of quantitative results across multiple items of analysis.
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For ambiguous cases in which experts were required to provide
a rationale and confidence levels for their assessments, data were
collected on the number of citations each guideline instruction in
the AASM scoring manual [9] received. As seen in Figure 6, select
guideline sections received a disproportional number of citations
compared to others, based on the sleep stage to which the classifica-
tion label pertained. The guideline section listing rules for scoring
NREM?2 sleep received the greatest number of citations overall,
while instruction W-2 received the highest number of citations for
a given instruction. Certain guideline instructions, such as R-4b,
received only a single citation across all ambiguous cases.

Despite a wide distribution in the subsections indexed by ex-
pert rationales, rarely did individual rationales cite more than one
guideline instruction (see Figure 5). The significant majority of
rationales (>2000) referenced only one instruction, while less than
3% of rationales given cited two. For all rationales collected, none
cited more than three instructions in total.

Since adjudication decisions in sleep stage classification often
hinge on the presence or absence of distinguishing features of an
EEG waveform, references to feature types were also collected from
expert rationale output. 15 basic features in total were mentioned
across all rationales, again, with select features (i.e., alpha rhythm,
train of sleep spindles, non-arousal associated K-complexes) receiv-
ing far more mentions than others. However, unlike the data for
the number of citations per guideline instruction (Figure 6), there
was a much flatter distribution in the number of mentions received
by each feature type, with no substantial difference between the
number of mentions across 7 of the 15 feature types, as shown in
Figure 7.

Results from three adjudicated rounds of scoring with 6 panels
of expert participants (3 experts per panel) showed a marked de-
crease in the number of controversial cases—and thus an increase
in inter-rater agreement—between independent annotation and the

end of adjudication, as seen in Figure 4. For the 3 panels that adju-
dicated EEG recordings from healthy controls, average agreement
rate increased across three rounds of adjudication, and rose from
~66% to ~83%. These 3 panels provided rationales for disagreement
cases through a non-structured, free-form interface. Among the
three panels that adjudicated EEG recordings from Parkinsonian
patients, average inter-rater agreement rate increased across three
rounds of adjudication from ~63% to ~86%. Here, experts provided
classification rationales for disagreement cases through our struc-
tured, guideline-centric interface. While overall change in average
agreement rate did not substantially differ between free-form and
structured adjudication, there were clear differences between the
rates at which agreement rates increased across adjudication rounds
in these two scenarios. Where free-form rationales were provided
for disagreement cases between experts, average inter-rater agree-
ment increased in a linear fashion between independent annotation
and adjudication. For those expert panels that provided their ratio-
nales through the structured, guideline-centric interface, inter-rater
agreement increased in a step-wise fashion, with the biggest jump
in average agreement rate occurring between the first and second
round of adjudication.

Furthermore, a stepwise logistic regression model was used to
understand which feature types, when mentioned during a given
adjudication round, were associated with the probability that the
active adjudicator will change their classification decision in the
same round. As outlined in Table 1, the likelihood that an expert
would change their classification decision could be predicted based
on which feature types were mentioned in their rationale. Graders
mentioning arousals (p < 0.05) or low-amplitude mixed frequency
activity (LAMF; p < 0.001) in their adjudication rationales were sig-
nificantly more likely to stick with their classification decision than
those not mentioning these features. Citing instructions pertaining
to K-complexes (p < 0.01) or trains of sleep spindles (p < 0.001) was
significantly associated with a change in the grader’s classification
decision in the same round. The logistic model selected additional
feature types—low chin EMG tone, reading eye movements and
rapid eye movements (REM)—contributing to the model fit without
statistical significance.

7 DISCUSSION

The main contribution of our present work is a structured system
and procedure for capturing expert rationale during adjudication
of complex data sets—in this case, within the application domain of
sleep stage classification. In addition to querying a group of experts
for data labels (i.e., a sleep stage for a given epoch), we solicited
rationales from these expert graders in the form of propositional
logic (i.e., the reason for their classification decision in the form of
a sleep scoring guideline), as well as their self-reported confidence
levels for their evidence criteria. During structured adjudication,
average inter-rater agreement rose by roughly 23%.

Applications of this system exist both within and outside of the
present application domain. In the context of sleep stage classifi-
cation, controversial cases surrounding classification decisions—
especially those that remain after adjudication—may point to am-
biguous instructions in the sleep scoring guidelines. With output
from a structured rationale form, specific guideline sections and
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Table 1: Logistic model for understanding the likelihood of
a grader changing their decision in a given round, based on
the feature types mentioned in their rationale.

Model Parameters

Variable ﬁ Std. Error t p-value
K Complex  0.93 0.33 2.77 >
Train Of Sleep Spindles  0.37 0.09 3.97 e
Arousal  -0.52 0.25 -2.10 *
Lamf -1.72 0.51 -3.36 i

Low Chin Emg Tone  16.28 624.19 0.03
Reading Eye Movements -14.22  294.25  -0.05
Rem -14.22 624.19 -0.02

instructions can be indexed for potential iteration. Likewise, partic-
ular feature types mentioned in given rationales may require more
rigorous definitions.

Beyond the present application domain, we have shown that the
use of statistical models like the one illustrated in Table 1 can help
predict outcomes of structured adjudication, e.g., the likelihood that
an individual grader will change their assessment based on particu-
lar evidence criteria. Similar models could be used to predict how
many rounds of adjudication are necessary to resolve ambiguous
cases. Of the total ~23% rise in average inter-rater agreement during
our structured adjudication procedure, ~19% of that increase oc-
curred between the first and second adjudication rounds. Additional
analysis may reveal patterns as to which types of disagreements
are resolved early vs. late.

The most notable limitation of work of this kind lies with the
fact that adjudication is costly—especially in terms of time invest-
ment from expert graders. In addition, adjudication procedures
like the one we deployed in this application domain depend on
the existence of standardized grading guidelines (like the AASM

sleep scoring manual [9]) which must be agreed upon by all expert
graders participating. In this study, we mapped an existing standard
scoring manual into a set of scoring instructions integrated into the
adjudication interface. In cases where a single agreed-upon grading
guideline does not exist in the community (e.g., interpretation of
EEGs for epileptiform abnormalities), there is interesting potential
for future work in the iterative development of scoring guidelines
based on adjudication procedures that become increasingly struc-
tured, and thus less time-intensive, over time.

This study has laid the groundwork for future work in the area
of analyzing the sources of inter-rater disagreement in labelling
complex datasets, within the application domain of sleep stage clas-
sification. Throughout the continuation of this project, we intend
to prepare and make publicly available a high-quality dataset of
adjudicated human polysomnograms. The use cases for this data
are severalfold. First, there is the potential to derive concrete sug-
gestions for guideline development. Second, the data could be used
to build machine learning models for predicting ambiguity and
sources of disagreement for previously unseen data, an ability that
would be helpful for guiding human labelling resources, and for
establishing new pathways towards more informed and explainable
concepts of uncertainty in machine learning. Third, these adju-
dication data sets can be used to train human graders in better
disambiguating edge cases by leveraging structured information
from adjudication rounds to target grader training towards different
categories of ambiguity.

8 CONCLUSION

In this work, we introduced a novel perspective on the problem
of handling expert disagreement in ambiguous classification tasks
by proposing a structured procedure for collecting expert argu-
ments put forward during panel-based adjudication in the form of
propositional logic. We demonstrated the applicability of our ap-
proach in the context of medical time series analysis for sleep stage
classification, and showcased how the data produced can facilitate
detailed quantitative analyses of discussion contents and outcomes.
Our solution has implications for the broader field of supervised
learning from human-labeled data by translating the problem of
trustworthy Al systems to that of trusted and explainable ground
truth.
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