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Abstract
Recently, Argumentation Mechanism Design
(ArgMD) was introduced as a new paradigm for
studying argumentation among self-interested
agents using game-theoretic techniques. Prelim-
inary results showed a condition under which
a direct mechanism based on Dung’s grounded
semantics is strategy-proof (i.e. truth enforcing).
But these early results dealt with a highly restricted
form of agent preferences, and assumed agents can
only hide, but not lie about, arguments. In this
paper, we characterise strategy-proofness under
grounded semantics for a more realistic preference
class (namely, focal arguments). We also provide
the first analysis of the case where agents can lie.

1 Introduction
Argumentation has recently become one of the key ap-
proaches to automated reasoning and rational interaction in
Artificial Intelligence [Bench-Capon and Dunne, 2007]. A
key milestone has been Dung’s landmark framework [Dung,
1995]. Arguments are viewed as abstract entities, with a bi-
nary defeat relation among them (resulting in a so-called ar-
gument graph). This view of argumentation enables high-
level analysis while abstracting away from the internal struc-
ture of individual arguments. Much research has been done
on defining criteria (so-called semantics) for evaluating com-
plex argument structures [Baroni and Giacomin, 2007].

However, most research that employs Dung’s approach dis-
counts the fact that argumentation is often a multi-agent, ad-
versarial process. Thus, the outcome of argumentation is
determined not only by the rules by which arguments are
evaluated, but also by the strategies employed by the agents
who present these arguments. As these agents may be self-
interested, they may have conflicting preferences over which
arguments end up being accepted. As such, the design of
the argument evaluation rule should take the mechanism de-
sign perspective [Mas-Colell et al., 1995, Ch 23]: what game
rules guarantee a desirable social outcome when each self-
interested agent selects the best strategy for itself?

Recently, we introduced Argumentation Mechanism De-
sign (ArgMD) as a framework for analysing the strategic in-
centives in argumentation and applied it to the well-known

grounded semantics [Rahwan and Larson, 2008]. However,
this preliminary analysis focused on a rather peculiar form
of agent preferences: each agent wishes to get as many of
its arguments accepted as possible. Moreover, they assumed
agents can only hide, but not lie about, arguments.

In this paper, we apply the ArgMD framework to a more
natural form of agent preferences, namely situations in which
each agent has a single focal argument it wishes to have ac-
cepted. We provide a full characterisation of the strategy-
proofness (i.e. truth-telling being a dominant strategy equi-
librium) under grounded semantics when agents both hide
and/or lie about arguments. We also provide intuitive, suf-
ficient graph-theoretic conditions for strategy-proofness.

The paper advances the state-of-the-art in the computa-
tional modelling of argumentation in two major ways. Firstly,
it provides the first comprehensive analysis of strategic in-
centives under grounded semantics when agents have focal
arguments. This is a much more realistic (and common)
form of agent preferences than the only other analysis under-
taken to-date for grounded semantics (by [Rahwan and Lar-
son, 2008]). Secondly, the paper provides the first analysis
of incentives when agents can lie in argumentation. This is
important since it shows that the ArgMD approach can be ex-
tended to such more realistic cases.

2 Background
We now briefly outline some of key elements of abstract argu-
mentation frameworks. We begin with Dung’s abstract char-
acterisation of an argumentation system [Dung, 1995].

Definition 1 (Argumentation framework). An argumentation
framework is a pair AF = 〈A,⇀〉 where A is a set of argu-
ments and ⇀⊆ A × A is a defeat relation. We say that an
argument α defeats an argument β if (α, β) ∈⇀ (sometimes
written α ⇀ β).1

An argumentation framework can be represented as a di-
rected graph in which vertices are arguments and directed arcs
characterise defeat among arguments.

Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let
α− = {β ∈ A | β ⇀ α}.
Definition 2 (Conflict-free, Defence). Let 〈A,⇀〉 be an ar-
gumentation framework and let S ⊆ A and let α ∈ A.

1We restrict ourselves to finite sets of arguments.



• S is conflict-free if S ∩ S+ = ∅.
• S defends argument α if α− ⊆ S+. We also say that

argument α is acceptable with respect to S.

Intuitively, a set of arguments is conflict free if no argument
in that set defeats another. A set of arguments defends a given
argument if it defeats all its defeaters. We now look at the
collective acceptability of a set of arguments.

Definition 3 (Characteristic function). Let AF = 〈A,⇀〉 be
an argumentation framework. The characteristic function of
AF is FAF : 2A → 2A such that, given S ⊆ A, we have
FAF (S) = {α ∈ A | S defends α}.

When there is no ambiguity about the argumentation
framework in question, we will use F instead of FAF .

Definition 4 (Acceptability semantics). Let S be a conflict-
free set of arguments in framework 〈A,⇀〉.
• S is admissible if it is conflict-free and defends every

element in S (i.e. if S ⊆ F(S)).

• S is a complete extension if S = F(S).

• S is a grounded extension if it is the minimal (w.r.t. set-
inclusion) complete extension.

Intuitively, a set of arguments is admissible if it is a
conflict-free set that defends itself against any defeater – in
other words, if it is a conflict free set in which each argument
is acceptable with respect to the set itself.

An admissible set S is a complete extension if and only if
all arguments defended by S are also in S (that is, if S is
a fixed point of the operator F). There may be more than
one complete extension, each corresponding to a particular
consistent and self-defending viewpoint.

A grounded extension contains all the arguments which are
not defeated, as well as the arguments which are defended
directly or indirectly by non-defeated arguments. This can be
seen as a non-committal view (hence the least fixed point of
F). There always exists a unique grounded extension.

Definition 5 (Indirect defeat and defence [Dung, 1995]). Let
α, β ∈ A. We say that α indirectly defeats β, written α ↪→ β,
if and only if there is an odd-length path from α to β in the
argument graph. We say that α indirectly defends β, written
α # β, if and only if there is an even-length path (with non-
zero length) from α to β in the argument graph.

Finally, the set of initial arguments, denoted IN (AF ), con-
tains all arguments that have no defeaters.

3 Argumentation Mechanism Design
In this section we briefly define the mechanism design prob-
lem for abstract argumentation, as introduced by [Rahwan
and Larson, 2008]. In particular, we specify the agents’ type
spaces and utility functions, what sort of strategic behaviour
agents might indulge in, as well as the kinds of social choice
functions we are interested in implementing.

We define a mechanism with respect to an argumentation
framework 〈A,⇀〉 with semantics S, and we assume that
there is a set of I self-interested agents. We define an agent’s
type to be its set of arguments.

Definition 6 (Agent Type). Given an argumentation frame-
work 〈A,⇀〉, the type of agent i, Ai ⊆ A, is the set of argu-
ments that the agent is capable of putting forward.

An agent’s type can be seen as a reflection of its expertise
or domain knowledge. For example, medical experts may
only be able to comment on certain aspects of forensics in
a legal case, while a defendant’s family and friends may be
able to comment on his/her character. Also, such expertise
may overlap, so agent types are not necessarily disjoint.

A social choice function f maps a type profile (agent type
vector) into a subset of arguments. It specifies the arguments
the judge would wish to accept if he knew all actual argu-
ments.

f : 2A × . . .× 2A → 2A

We will be particularly interested in argument acceptability
social choice functions.
Definition 7 (Argument Acceptability Social Choice Func-
tions). Given an argumentation framework 〈A,⇀〉 with se-
mantics S, and given a type profile (A1, . . . ,AI), the argu-
ment acceptability social choice function f is defined as the
set of acceptable arguments given the semantics S. That is,

f(A1, . . . ,AI) = Acc(〈A1 ∪ . . . ∪ AI ,⇀〉,S).

As is standard in the mechanism design literature, we as-
sume that agents have preferences over the outcomes o ∈ 2A,
represented in utility functions: ui(o,Ai) denotes agent i’s
utility for outcome o when its type is argument set Ai.

Agents may not have incentive to reveal their true types be-
cause they may be able to influence the status of arguments
and thus obtain higher utility. On one hand, an agent might
hide some of its arguments, e.g. to break defeat chains in the
argument framework, thus changing the final set of accept-
able arguments. Alternatively, an agent might lie by making-
up new arguments that it does not have in its argument set.
ArgMD aims to obtain the desired outcome (as per the social
choice function) despite the potential for such manipulations.

A strategy of an agent specifies a complete plan that de-
scribes what action the agent takes for every decision that a
player might be called upon to take, for every piece of infor-
mation that the player might have at each time that it is called
upon to act. In our model, the actions available to an agent
involve announcing arguments according to some protocol.
Thus a strategy, si ∈ Σi for agent i (where Σi is i’s strategy
space) would specify for each possible subset of arguments
that could define its type, what set of arguments to reveal. An
agent’s strategy space specifies all its possible strategies.
Definition 8 (Argumentation Mechanism). Given an argu-
mentation framework AF = 〈A,⇀〉 and semantics S, an
argumentation mechanism is defined as

MSAF = (Σ1, . . . ,ΣI , g(·))

where g : Σ1 × . . .ΣI → 2A.
Note that in the above definition, the notion of dialogue

strategy is broadly construed and would depend on the ar-
gumentation protocol. In a direct mechanism, however, the
strategy spaces of the agents are restricted so that they can
only reveal a subset of arguments indicating its (alleged) type



–that is, Σi = 2A. We focus here on direct mechanisms
since, according to the revelation principle [Mas-Colell et al.,
1995, Ch 23], any equilibrium of an indirect mechanism has
an equivalent truthful direct mechanism. This approach is
common in the mechanism design literature, since it greatly
simplifies analysis without losing generality.

In Table 1, we summarise the mapping of multi-agent ab-
stract argumentation as an a mechanism design problem.

We now present a direct mechanism for argumentation
based on grounded semantics. The mechanism calculates the
grounded extension given the arguments revealed by agents.
We will refer to a specific action (i.e. set of declared argu-
ments) as A◦i ∈ Σi.

Definition 9 (Grounded Direct Argumentation Mechanism).
A grounded direct argumentation mechanism for argumen-
tation framework 〈A,⇀〉 is Mgrnd

AF = (Σ1, . . . ,ΣI , g(.))
where:

– Σi ∈ 2A is the set of strategies available to each agent;

– g : Σ1 × · · · × ΣI → 2A is an outcome rule defined
as: g(A◦1, . . . ,A◦I) = Acc(〈A◦1 ∪ · · · ∪ A◦I ,⇀〉,Sgrnd)
where Sgrnd denotes sceptical grounded acceptability
semantics.

4 Agents with Focal Arguments
Earlier [Rahwan and Larson, 2008], we analysed the
grounded argumentation mechanism under a highly restric-
tive form of agent preferences, called acceptability maximis-
ing preference: each agent wishes to get as many of its argu-
ments accepted as possible. This is rarely seen in practice.

In many realistic dialogues, each agent i is interested in
the acceptance of a particular argument α̂i ∈ Ai, which we
call the focal argument of agent i. Here, other arguments in
Ai\{α̂i} can merely be instrumental towards the acceptance
of the focal argument. We are interested in characterising
conditions under which Mgrnd

AF is strategy-proof for scenar-
ios in which each agent has a focal argument (Other prefer-
ence criteria are also reasonable, such as wanting to win any
argument from a set that support the same conclusion).

Definition 10 (Focal Argument for an Agent). An agent i has
a focal argument α̂i ∈ Ai if and only if ∀o1, o2 ∈ O such
that α̂i ∈ o1 and α̂i /∈ o2, we have ui(o1,Ai) > ui(o2,Ai),
otherwise ui(o1,Ai) = ui(o2,Ai).

Let o ∈ O be an arbitrary outcome. If α̂i ∈ o, we say that
agent i wins in outcome o. Otherwise, i loses in outcome o.

5 When Agents can Hide Arguments
In this section, following our earlier work [Rahwan and Lar-
son, 2008], we assume that there is an external verifier that
is capable of checking whether it is possible for a particular
agent to actually make a particular argument. Informally, this
means that presented arguments, while still possibly defea-
sible, must at least be based on some sort of demonstrable
‘plausible evidence.’ If an agent is caught making up argu-
ments then it will be removed from the mechanism. For ex-
ample, in a court of law, any act of perjury by a witness is

punished, at the very least, by completely discrediting all ev-
idence produced by the witness. Moreover, in a court of law,
arguments presented without any plausible evidence are nor-
mally discarded (e.g. “I did not kill him, since I was abducted
by aliens at the time of the crime!”). For all intents and pur-
poses this assumption removes the incentive for an agent to
make things up.

To investigate whether mechanism Mgrnd
AF is strategy-

proof for any argumentation framework for agents with focal
arguments, consider the following example.

α1 α2 α3 α4

(a) Graph with full revelation (b) Graph with α1 withheld

α2 α3 α4

Figure 1: Hiding an argument is beneficial

Example 1. Consider a grounded direct argumentation
mechanism with agents x, y and z with typesAx = {α1, α4},
Ay = {α2} and Az = {α3} respectively, and with focal ar-
guments defined as follows: α̂x = α4; α̂y = α2; α̂z = α3.
Let the defeat relation be defined as follows: ⇀= {(α1, α2),
(α2, α3), (α3, α4)}. If agents reveal all their arguments, we
have the graph shown in Figure 1(a), with the accepted argu-
ments marked by boxes. Here, agent z is the only winner.

It turns out that the mechanism is susceptible to strategic
manipulation, even if we suppose that agents do not lie by
making up arguments (i.e., they may only withhold some ar-
guments). In this case, for both agents y and z, revealing their
true types weakly dominates revealing nothing at all (since
hiding their single focal arguments can only guarantee their
respective loss). However, it turns out that agent x is better off
only revealing {α4}. By withholding α1, the resulting argu-
ment network becomes as depicted in Figure 1(b). Under this
outcome, x wins, which is better for x than truth-revealation.
Remark 1. Given an arbitrary argumentation framework
AF and agents with focal arguments, mechanism Mgrnd

AF is
not strategy-proof.

Having established this property, the natural question to
ask is whether mechanism Mgrnd

AF is strategy-proof under
some conditions. The following theorem provides a full char-
acterisation of strategy-proof mechanisms for sceptical ar-
gumentation frameworks, for agents with focal arguments,
when hiding arguments is possible. Note that A−i denotes
arguments of all agents other than agent i.
Theorem 1. Let AF be an arbitrary argumentation frame-
work, and let GE (AF ) denote its grounded extension. Mech-
anism Mgrnd

AF is strategy-proof for agents with focal argu-
ments if and only if AF satisfies the following condition:
∀i ∈ I, ∀S ⊆ Ai and ∀A−i, we have α̂i /∈ GE (〈Ai∪A−i,⇀
〉) implies α̂i /∈ GE (〈(Ai\S) ∪ A−i,⇀〉).

Proof. ⇒) Let i ∈ I be an arbitrary agent with type Ai and
focal argument α̂i ∈ Ai. SupposeMgrnd

AF is strategy-proof.
This implies that ∀S ⊆ Ai and ∀A−i:

ui(GE (〈Ai ∪A−i,⇀〉),Ai) ≥ ui(GE (〈S ∪A−i,⇀〉),Ai)



MD Concept ArgMD Instantiation
Agent type θi ∈ Θi Agent’s arguments θi = Ai ⊆ A
Outcome o ∈ O whereO is the set of possible outcomes. Accepted arguments Acc(.) ⊆ A
Utility ui(o, θi) Preferences over 2A (what arguments end up being accepted)
Social choice function f : Θ1 × . . .×ΘI → O f(A1, . . . ,AI) = Acc(〈A1 ∪ . . . ∪ AI ,⇀〉,S).

by some argument acceptability criterion
MechanismM = (Σ, g(·)) where
Σ = Σ1 × · · · × ΣI and g : Σ→ O Σi is an argumentation strategy, g : Σ→ 2A

Direct mechanism: Σi = Θi Σi = 2A (every agent reveals a set of arguments)
Truth revelation RevealingAi

Table 1: Abstract argumentation as a mechanism

Therefore, by definition of the focal argument: if α̂i ∈
GE (〈S ∪ A−i,⇀〉) then α̂i ∈ GE (〈Ai ∪ A−i,⇀〉). Then,
by contraposition we have that:

α̂i /∈ GE (〈Ai∪A−i,⇀〉) implies α̂i /∈ GE (〈S∪A−i,⇀〉).

⇐) Suppose that given any A−i, we have that ∀i ∈ I, ∀S ⊆
Ai, α̂i /∈ GE (〈Ai ∪ A−i,⇀〉) implies α̂i /∈ GE (〈S ∪
A−i,⇀〉).

We want to prove that:

ui(GE (〈Ai∪A−i,⇀〉),Ai) ≥ ui(GE (〈S∪A−i,⇀〉),Ai).

Suppose not. Then ∃i and ∃S′ ⊆ Ai such that

ui(GE (〈Ai∪A−i,⇀〉),Ai) < ui(GE (〈S
′
∪A−i,⇀〉),Ai).

But this means that α̂i ∈ GE (〈S′ ∪ A−i,⇀〉) while α̂i /∈
GE (〈Ai ∪ A−i,⇀〉). Contradiction. Therefore, i has no
incentive to declare any arguments other than those of her
type, and thus the mechanism is strategy-proof.

This result is consistent with the literature on mechanism
design. While general strategy-proof results obtain only at
the cost of dropping other desirable properties (like non-
dictatorship, as per the Gibbard-Satterthwaite theorem [Mas-
Colell et al., 1995, Ch 23]), positive results obtain by restrict-
ing the domain of types on which the mechanism is applied
(e.g. restriction to quasi-linear preferences [Mas-Colell et al.,
1995, Ch 21]).

Although the above theorem gives us a full characterisa-
tion, it is difficult to apply in practice. In particular, the the-
orem does not give us an indication of how agents (or the
mechanism designer) can identify whether the mechanism is
strategy-proof for a class of argumentation frameworks by ap-
pealing to explicit graph-theoretic properties. Below, we pro-
vide such analysis. But before we can do this, we present the
following lemma. This lemma explores what happens when
we add a new argument (and its associated defeats) to a given
argumentation framework, thus resulting in a new argumenta-
tion framework. In particular, we are interested in conditions
under which arguments acceptable in the first framework are
also accepted in the second. We show that this is true under
the condition that the new argument does not indirectly defeat
arguments acceptable in the first framework.
Lemma 1 ([Rahwan and Larson, 2008]). Let AF 1 = 〈A,⇀1

〉 and AF2 = 〈A ∪ {α′},⇀2〉 such that ⇀1⊆⇀2 and (⇀2

\ ⇀1) ⊆ ({α′} × A) ∪ (A × {α′}). If α is in the grounded
extension of AF 1 and α′ does not indirectly defeat α, then α
is also in the grounded extension of AF 2.

With the above lemma in place, we now provide an intu-
itive, graph-theoretic condition that is sufficient to ensure that
Mgrnd

AF is strategy-proof when agents have focal arguments.

Theorem 2. Suppose every agent i ∈ I has a focal argument
α̂i ∈ Ai. If each agent’s type contains no (in)direct defeat
against α̂i (formally ∀i ∈ I, @α ∈ Ai such that α ↪→ α̂i),
thenMgrnd

AF is strategy-proof.

Proof. Let A′−i = (A′1, . . . ,A′i−1,A′i+1, . . . ,A′I) be arbi-
trary revelations from all agents not including i. We will show
that agent i is always best off revealing Ai. That is, no mat-
ter what sets of arguments the other agents reveal, agent i is
best off revealing its full set of arguments. Formally, we will
show that ∀i ∈ I ui(Acc(〈A′1 ∪ · · · ∪ Ai ∪ · · · ∪ A′I ,⇀
〉,Sgrnd),Ai) ≥ ui(Acc(〈A′1 ∪ · · · ∪ A◦i ∪ · · · ∪ A′I ,⇀
〉,Sgrnd),Ai) for any A◦i ⊂ Ai.

We use induction over the sets of arguments agent i may
reveal, starting from the focal argument α̂i ( note that any
strategy that does not reveal α̂i can be safely ignored). We
show that, considering any strategy A′′i ⊆ Ai, revealing one
more argument can only increase i’s chance of getting α̂i ac-
cepted, i.e. it (weakly) improves i’s utility.
Base Step: If Ai = {α̂i}, then trivially, revealing Ai weakly
dominates revealing ∅.
Induction Step: Suppose that revealing argument set A′′i ⊆
Ai weakly dominates revealing any subset of A′′i . We need
to prove that revealing any additional argument can increase,
but never decrease the agent’s utility. In other words, we need
to prove that revealing any setA′i, whereA′′i ⊂ A′i ⊆ Ai and
|A′i| = |A′′i |+ 1, weakly dominates revealing A′′i .

Let α′ where {α′} = A′i −A′′i be the new argument.
Suppose the focal argument α̂i is in the grounded extension

when revealing A′′i (formally α̂i ∈ Acc(〈A′1 ∪ · · · ∪ A′′i ∪
· · · ∪A′I ,⇀〉,Sgrnd)). We need to show that after adding α′,
argument α̂i remains in the grounded extension. Formally, we
need to show that α̂i ∈ A′i∩Acc(〈A′1∪· · ·∪A′i∪· · ·∪A′I ,⇀
〉,Sgrnd). This is true from Lemma 1, and from the fact that
Ai does not include indirect defeats against α̂i.

Thus, by induction, revealing the full set Ai weakly domi-
nates revealing any sub-set thereof.

Note that in the theorem, ↪→ is over all arguments inA. In-
tuitively, to guarantee the strategy-proof property for agents
with focal arguments, it suffices that no (in)direct defeats ex-
ist from an agent’s own arguments to its focal argument. Said
differently, each agent i’s arguments must not undermine its



own focal argument, neither explicitly and implicitly. By ‘ex-
plicitly,’ we mean that none of i’s own arguments can defeat
its focal argument. By ‘implicitly,’ we mean that other agents
cannot possibly present a sequence of arguments that reveal
an indirect defeat between i’s own arguments and its focal
argument. More concretely, in Example 1 and Figure 1(a),
while agent x’s argument set Ax = {α1, α4} is conflict-free,
when agents y and z presented their own arguments α2 and
α3, they revealed an implicit conflict between x’s arguments
and x’s focal argument. In other words, they showed that x
contradicts himself (i.e. committed a fallacy of some kind).

An important observation is that under the condition in
Theorem 2, we need not assume that the actual set of possible
presentable arguments is common knowledge. To ensure the
strategy-proof property, each agent only needs to know that
indirect defeat chains cannot arise from any of its arguments
to its focal argument.

One may reasonably ask if the sufficient condition in Theo-
rem 2 is also necessary for agents to reveal all their arguments
truthfully. As Example 2 shows, this is not the case. In par-
ticular, for certain argumentation frameworks, an agent may
have truthtelling as a dominant strategy despite the presence
of indirect defeats among its own arguments.

α1 α2 α3 α4

α5

Figure 2: Strategy-proofness despite indirect self-defeat

Example 2. Consider the variant of Example 1 with the ad-
ditional argument α5 and defeat (α5, α3). Let the agent types
be Ax = {α1, α4, α5}, Ay = {α2} and Az = {α3} respec-
tively. The full argument graph is depicted in Figure 2. With
full revelation, the mechanism outcome rule produces the out-
come o = {α1, α4, α5}.

Note that in Example 2, truth revelation is now a dominant
strategy for x despite the fact that α1 ↪→ α4 (note that here, x
gains nothing by hiding α1). This hinges on the presence of
an argument (namely α5) that cancels out the negative effect
of the (in)direct self-defeat among x’s own arguments.

6 When Agents can Hide or Lie
In the previous section, we restricted agent strategies to show-
ing or hiding arguments in their own type. We did not allow
agents to reveal arguments that are outside of their types. That
is, agents were not allowed to lie by stating something they
did not know, but only by hiding something they do know.
This is the approach taken originally by us [Rahwan and Lar-
son, 2008].

In this section, we investigate (for the first time) strategy-
proofness of grounded mechanisms without this assumption.
We first show that the characterization of strategy-proofness
is identical to that when agents could only hide arguments
(the only difference is that S ranges over A instead of Ai).

Theorem 3. Let AF be an arbitrary argumentation frame-
work, and let GE (AF ) denote its grounded extension. Mech-
anism Mgrnd

AF is strategy-proof for agents with focal argu-
ments if and only if AF satisfies the following condition:
∀i ∈ I, ∀S ⊆ A and ∀A−i, we have α̂i /∈ GE (〈Ai∪A−i,⇀
〉) implies α̂i /∈ GE (〈S ∪ A−i,⇀〉).

Proof. The proof is essentially the same as the proof of The-
orem 1, such that S ranges over A instead of Ai.

As we did in the case of hiding, this result can be weak-
ened to yield a more intuitive sufficient condition for strategy-
proofness.
Theorem 4. Suppose every agent i ∈ I has a focal argument
α̂i ∈ Ai. If the following conditions hold:
(A) no agent type contains (in)direct defeat against its focal

argument (formally ∀i ∈ I, @β ∈ Ai such that β ↪→ α̂i);
(B) no argument outside any agent’s type (in)directly de-

fends its focal argument (formally ∀i ∈ I, @β ∈ A\Ai
such that β # α̂i);

thenMgrnd
AF is strategy-proof.

Proof. What we want to prove is that ∀i, ∀A−i and ∀S 6= Ai,
if (A) and (B) hold, then

ui(GE (〈Ai∪A−i,⇀〉),Ai) ≥ ui(GE (〈S∪A−i,⇀〉),Ai).
Following the definition of focal arguments, our goal above
can be rephrased as proving, for any arbitrary S 6= Ai, that:

α̂i /∈ GE (〈Ai∪A−i,⇀〉) implies α̂i /∈ GE (〈S∪A−i,⇀〉).
Suppose α̂i /∈ GE (〈Ai ∪ A−i,⇀〉), and let us show that
α̂i /∈ GE (〈S ∪ A−i,⇀〉).

We do this by showing, recursively, that for a given α̂i,
there must exist a β ⇀ α such that for all z ⇀ β:
z /∈ GE (〈Ai ∪ A−i,⇀〉) then z /∈ GE (〈S ∪ A−i,⇀〉)
implies α /∈ GE (〈Ai∪A−i,⇀〉) then α /∈ GE (〈S∪A−i,⇀
〉).
Base Step: From α̂i /∈ GE (〈Ai ∪ A−i,⇀〉), it follows that
∃β ∈ Ai∪A−i, β ⇀ α̂i for which @z ∈ GE(〈Ai∪A−i,⇀〉)
such that z ⇀ β. Let β1 = β be such a defeater.

By assumption (A), β1 /∈ Ai (since otherwise, we would
have β1 ⇀ α̂i and therefore β1 ↪→ α̂i for some β1 ∈ Ai).
But since β1 ∈ Ai∪A−i, we conclude that β1 ∈ A−i. This in
turn implies that β1 ∈ S ∪A−i. In other words, the defeaters
of α̂i given action profile Ai ∪ A−i are preserved when the
agent changes the action profile to S ∪ A−i.

We will now show that @z ∈ GE(〈S ∪A−i,⇀〉) such that
z ⇀ β1.

Let z1 ∈ S ∪ A−i, such that z1 ⇀ β1, be an arbitrary
defeater of β1 when agent i lies. By assumption (B), we
conclude that z1 /∈ A\Ai (since otherwise, we would have
z1 ⇀ β1 ⇀ α̂i and therefore z # α̂i for some z ∈ A\Ai).
This in turn implies that z1 ∈ Ai. In other words, no new de-
fenders of α̂i can be introduced when the agent moves from
action profileAi ∪A−i to action profile S ∪A−i. Therefore,
since we already know that z1 /∈ GE(〈Ai ∪ A−i,⇀〉), z1

cannot be in GE(〈S ∪ A−i,⇀〉). Then:

z1 /∈ GE (〈Ai∪A−i,⇀〉) implies z1 /∈ GE (〈S∪A−i,⇀〉) (∗)



Suppose now that α̂i ∈ GE (〈S∪A−i,⇀〉). This would mean
that for every β ∈ Ai∪A−i, β ⇀ α̂i, ∃z ∈ GE(〈S∪A−i,⇀
〉) such that z ⇀ β, but then, for β1 there should exist a
z1 satisfying this condition. But by (∗), no z1 ∈ GE (〈S ∪
A−i,⇀〉). Therefore, we have from (∗) that:

α̂i /∈ GE (〈Ai∪A−i,⇀〉) implies α̂i /∈ GE (〈S∪A−i,⇀〉).
Recursive Step: Let zk ∈ Ai∪A−i be an arbitrary argument
such that zk ⇀ βk for some βk with βk ↪→ α̂i. Assume
that zk /∈ GE (〈Ai ∪ A−i,⇀〉). We will show that zk /∈
GE (〈S ∪ A−i,⇀〉).

From zk /∈ GE (〈Ai∪A−i,⇀〉), it follows that ∃β ∈ Ai∪
A−i such that β ⇀ zk while @zk+1 ∈ GE(〈Ai ∪ A−i,⇀〉).
Let βk+1 = β be such a defeater.

By assumption (A), βk+1 /∈ Ai (since otherwise, we would
have βk+1 ↪→ α̂i for some βk+1 ∈ Ai). But since βk+1 ∈
Ai∪A−i, we conclude that βk+1 ∈ A−i. This in turn implies
that βk+1 ∈ S ∪ A−i. In other words, the defeaters of zk+1

given action profile Ai ∪ A−i are preserved when the agent
changes the action profile to S ∪ A−i.

We will now show that @z ∈ GE(〈S ∪A−i,⇀〉) such that
z ⇀ βk+1.

Let zk+1 ∈ S ∪ A−i such that zk+1 ⇀ βk+1 be an ar-
bitrary defeater of βk+1 when agent i lies. By assumption
(B), we conclude that zk+1 /∈ A\Ai (since otherwise, we
would have zk+1 ⇀ βk+1 ↪→ α̂i and therefore z # α̂i

for some z ∈ A\Ai). This in turn implies that zk+1 ∈ Ai.
In other words, no new defenders of α̂i can be introduced
when the agent moves from action profile Ai ∪ A−i to ac-
tion profile S ∪ A−i. Therefore, since we already know
that zk+1 /∈ GE(〈Ai ∪ A−i,⇀〉), zk+1 cannot be either in
GE(〈S ∪ A−i,⇀〉). Then:

zk+1 /∈ GE (〈Ai ∪ A−i,⇀〉)
implies zk+1 /∈ GE (〈S ∪ A−i,⇀〉) (∗∗)

Suppose now that zk ∈ GE (〈S ∪ A−i,⇀〉). This would
mean that for every β ∈ Ai ∪ A−i, β ⇀ α̂i, ∃z ∈ GE(〈S ∪
A−i,⇀〉) such that z ⇀ β, but then, for βk there should
exist a zk satisfying this condition. But by (∗∗), no zk+1 ∈
GE (〈S ∪ A−i,⇀〉). Therefore, we have that from (∗∗) it
follows that:
zk /∈ GE (〈Ai∪A−i,⇀〉) implies zk /∈ GE (〈S∪A−i,⇀〉).
Recursion Termination: The recursion must eventually
reach some βK ∈ IN (〈Ai ∪ A−i,⇀〉) with βK ↪→ α̂i.
Let zK ∈ S ∪ A−i such that zK ⇀ βK be an arbitrary
defeater of βK when agent i lies. By assumption (B), we
conclude that zK /∈ A\Ai (since otherwise, we would have
zK ⇀ βK ↪→ α̂i and therefore z # α̂i for some z ∈ A\Ai).
But this in turn implies that zK ∈ Ai. But this contradicts
with the fact that βK ∈ IN (〈Ai ∪ A−i,⇀〉). Hence, no
such zK exists and therefore zK /∈ GE (〈Ai ∪ A−i,⇀〉).
Furthermore, we conclude that βK /∈ IN (〈S ∪ A−i,⇀〉)
and thus βK /∈ GE(〈S ∪ A−i,⇀〉). Therefore, zK /∈
GE (〈Ai ∪ A−i,⇀〉) such that zK ⇀ βK . In summary:

zK /∈ GE (〈Ai∪A−i,⇀〉) implies zK /∈ GE (〈S∪A−i,⇀〉).
By the above recursion, we conclude that, since α̂i /∈
GE (〈Ai∪A−i,⇀〉) it follows that α̂i /∈ GE (〈S∪A−i,⇀〉).
Therefore,Mgrnd

AF is strategy-proof.

Let us interpret the above theorem intuitively. The the-
orem rests on two key conditions: (a) that an agent cannot
benefit from hiding any of its own arguments, because its ar-
guments cannot “harm” its focal argument; and (b) that an
agent cannot benefit from revealing any argument it does not
have, because these arguments cannot “benefit” its focal ar-
gument. For the theorem to hold, these conditions must be
satisfied for every agent, no matter what the other agents re-
veal. While this may appear obvious in hindsight, the pre-
cise proof is rather involved, and requires careful attention to
the intricate aspects of the grounded semantics when applied
to different related argument graphs – namely graphs corre-
sponding to different strategy profiles that agents may choose
to play. This level of attention to detail is essential for any
thorough analysis of strategic argumentation.

7 Conclusion
ArgMD is a new paradigm for studying argumentation among
self-interested agents using game-theoretic techniques. It
provides a fresh perspective on the study of semantics for
conflicting knowledge bases, especially when those are dis-
tributed among different entities (e.g. knowledge-based
agents on the Semantic Web). While game-theoretic ap-
proaches have been applied extensively to resource allocation
among agents (e.g. through auctions), no similar develop-
ment has yet taken place for strategic aspects of interaction
among knowledge-based agents.

The only other paper that uses ArgMD to-date [Rahwan
and Larson, 2008] dealt with a highly restricted form of agent
preferences, and assumed agents can only hide, but not lie
about, arguments. In this paper, we showed how ArgMD can
be applied to more realistic preferences and action spaces.

Future work includes analysing incentives under other vari-
eties of agent preferences and other argumentation semantics.
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