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Abstract One-sided matching mechanisms are fundamental for assigning a set of
indivisible objects to a set of self-interested agents when monetary transfers are
not allowed. Two widely-studied randomized mechanisms in multiagent settings
are the Random Serial Dictatorship (RSD) and the Probabilistic Serial Rule (PS).
Both mechanisms require only that agents specify ordinal preferences and have a
number of desirable economic and computational properties. However, the induced
outcomes of the mechanisms are often incomparable and thus there are challenges
when it comes to deciding which mechanism to adopt in practice.

In this paper, we first consider the space of general ordinal preferences and
provide empirical results on the (in)comparability of RSD and PS. We analyze
their respective economic properties under general and lexicographic preferences.
We then instantiate utility functions with the goal of gaining insights on the ma-
nipulability, efficiency, and envyfreeness of the mechanisms under different risk-
attitude models. Our results hold under various preference distribution models,
which further confirm the broad use of RSD in most practical applications.

Keywords One-Sided Matching · Random Serial Dictatorship · Probabilistic
Serial Rule · Strategyproofness · Social Welfare · Fairness · Risky Attitudes

1 Introduction

One-sided matching mechanisms have been extensively adopted in many resource
allocation settings such as assigning dormitory rooms or offices to students, stu-
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dents to public schools, college courses to students, organs and medical resources to
patients, and members to subcommittees [5,16,35,46]. Two prominent randomized
matching mechanisms that only elicit ordinal preferences from agents are Random
Serial Dictatorship (RSD) [2] and Probabilistic Serial Rule (PS) [14]. Both mech-
anisms have important economic properties and are practical to implement. The
RSD mechanism has strong truthful incentives but guarantees neither efficiency
nor envyfreeness. PS satisfies efficiency and envyfreeness; however, it is susceptible
to manipulation. Therefore, there are subtle points to be considered when deciding
which mechanism to use. For example, given a particular preference profile, the
mechanisms often produce random assignments which are simply incomparable
and thus, without additional knowledge of the underlying utility models of the
agents, it is difficult to determine which is the “better” outcome. Furthermore,
properties like efficiency, truthfulness, and envyfreeness can depend on whether
there is underlying structure in the preferences, and even in general preference
models it is valuable to understand under what conditions a mechanism is likely
to be efficient, truthful, or envyfree as this can guide designers choices.

In this paper, we study the comparability of PS and RSD when there is only
one copy of each object, and analyze the space of all preference profiles for different
numbers of agents and objects. Working in the space of general ordinal preferences,
we provide empirical results on the (in)comparability of RSD and PS and analyze
their respective economic properties. We show that despite the inefficiency of RSD,
the fraction of random assignments at which PS stochastically dominates RSD
vanishes, especially when the number of agents is less than or equal to the available
objects. We also investigate the manipulability of PS and show that PS is almost
always manipulable in 99% of cases for any combination of agents and objects,
and the fraction of strongly manipulable profiles goes to one as the ratio of objects
to agents increases. We show similar trends under lexicographic preferences, and
further present results on envy of agents over the assignments of other agents
under RSD. Our results show that although the fraction of envious agents grows
with the number of agents, there is a sudden drop in the fraction of envious agents
when there are equal number of agents and objects.

In Section 5, we instantiate utility functions for agents to gain deeper insights
on the manipulability, social welfare, and envyfreeness of the two mechanisms
under different risk attitudes. Our main result is that under risk aversion, the
social welfare of RSD is comparable to that of PS but RSD does create envy among
the agents (though the fraction of envious profiles and the total envy are small).
Moreover, when the number of agents and objects are equal, RSD assignments are
less likely to be dominated by PS. In fact, in several cases RSD outperforms PS in
terms of social welfare, and overall RSD assignments create negligible envy among
agents. We also show that PS is highly susceptible to manipulation in almost all
combinations of agents and objects. The fraction of manipulable profiles and the
gain from manipulation rapidly increases, particularly when agents become more
risk averse. In Section 7, we consider two statistical preference distribution models,
namely Mallows Models and Polya-Eggenberger Urn Models, and show that the
same patterns and trends hold for various combinations of agents and objects,
when varying risk parameters and utility functions.

Our findings shed light on the comparability of PS and RSD and can help
designers of multiagent systems decide which mechanism to adopt in practice.
Even though RSD does not guarantee stochastic efficiency, its social welfare loss is
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mostly negligible, particularly when agents are risk averse. Henceforth, due to its
strategyproofness, RSD is a desirable candidate especially in domains where truth-
ful reporting is not guaranteed. In contrast, PS is a reasonable mechanism, because
of its fairness and efficiency properties, in domains where agents are presumed to
be sincere.

2 Preliminaries

In this section, we describe the basic one-sided matching problem and introduce
the two mechanisms we study in detail, Random Serial Dictatorship (RSD) [2] and
Probabilistic Serial Rule (PS) [14]. We then introduce a number of properties and
criteria used to evaluate these mechanisms.

A one-sided matching problem consists of a set of n agents, N , and a set
of m indivisible objects, M .1 Each agent i ∈ N has a private strict preference
ordering, �i, over M where a �i b indicates that agent i prefers receiving object
a over object b. We represent the preference ordering of agent i by the ordered
list of objects �i= a �i b �i c or �i= (abc), for short. We let P denote the
set of all complete and strict preference orderings over M . A preference profile
�∈ Pn specifies a preference ordering for each agent, and we use the standard
notation �−i= (�1, . . . ,�i−1,�i+1, . . . ,�n) to denote preference orderings of all
agents except i, and thus �= (�i,�−i) denotes a preference profile where agent
i’s preference is �i while �−i is the preferences of all other agents.

The goal in a one-sided matching problem is to assign the objects in M to the
agents in N according to preference profiles, under the constraint that no object
can be assigned to more than one agent. If m = n then this means that each agent
will receive exactly one object, however if m < n then some agents will receive no
object and if m > n then some agents may receive multiple objects. An assignment
is represented as a matrix

A =


A1

A2

...
An

 =


A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m

...
...

. . .
...

An,1 An,2 . . . An,m


where Ai,j ∈ [0, 1] is the probability that agent i is assigned object j. We let A
denote the set of all feasible assignments where an assignment A ∈ A is feasible if
and only if ∀j ∈ M ,

∑
i∈N Ai,j = 1. If A ∈ A is such that Ai,j ∈ {0, 1} then we

say that A is a deterministic assignment; otherwise, A is a random assignment.
Every random assignment can be represented as a convex combination of deter-
ministic assignments [52], and thus we view random assignments as a probability
distribution over a set of deterministic assignments.

2.1 Matching Mechanisms

In general, a matching mechanism, M, is a mapping from the set of preference
profiles, Pn, to the set of feasible assignments, A. That is,M : Pn → A. We focus

1 This problem is sometimes called the assignment problem or house allocation problem in
the literature.
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our attention on two widely studied mechanisms for one-side matching: Random
Serial Dictatorship (RSD) [2] and Probabilistic Serial Rule (PS) [13].

RSD relies on the concept of priority orderings over agents. Such an ordering is
an ordered list of agents where the first agent gets to select its most preferred ob-
ject from the set of objects, the second agent then selects its most preferred object
from the set of remaining objects and so on until no objects remain. When n < m
and agents can receive more than one object, RSD requires a careful method for
the picking sequence at each priority ordering to ensure strategyproofness. This
picking sequence should be based on an arbitrary serial dictatorship quota mecha-
nism, which directly affects the efficiency and envy of the assignments [15,24]. For
simplicity, we use the variant of RSD based on a quasi-dictatorial mechanism [43],
where the first agent selects its most preferred (m − n + 1) objects, and the rest
of the agents choose one object each. This variant of RSD is in fact the worst-
case that affects the fairness of RSD. Nonetheless, we show that even under this
assumption RSD provides a fair random assignment under certain scenarios (for
example, under risk-seeking utilities).

Given a preference profile �∈ Pn, RSD returns an assignment RSD(�) ∈ A
which is a uniform distribution over all deterministic assignments induced from all
possible priority orderings over the set of agents. RSD has been widely adopted
for fair and strategyproof assignments for the school choice problem, course as-
signment, house allocation, and room assignment [1–3,50]

PS treats objects as a set of divisible goods of equal size and simulates a si-
multaneous eating algorithm. Each agent starts “eating” its most preferred object,
all at the same rate. Once an object is gone (eaten away) then the agent starts
eating its next preferred object among the remaining objects. This process ter-
minates when all objects have been “eaten”. Given a preference profile �∈ Pn,
PS(�) ∈ A is a random assignment where Ai,j is the probability (fraction) that
object j is assigned to (or “eaten by”) agent i.

2.2 General Properties

In this section we define key properties for matching mechanisms. To evaluate the
quality of a random assignment, we use first-order stochastic dominance [14, 23].
Given a random assignment Ai, the probability that agent i is assigned an object
that is at least as good as object ` is defined as follows

w(�i, `, Ai) =
∑

j∈M :j�i`

Ai,j . (1)

We say an agent strictly prefers assignment Ai to Bi, if for each object ` the
probability of assigning an object at least as good as ` under Ai is greater or equal
that of Bi, and strictly greater for some object.

Definition 1 (Stochastic Dominance) Given a preference ordering �i, ran-
dom assignment Ai stochastically dominates (sd) assignment Bi(6= Ai) if

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, Bi). (2)
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A matching mechanism is sd-efficient if at all preference profiles �∈ Pn, for
all agents i ∈ N , the prescribed assignment is not stochastically dominated by any
other assignment.

Definition 2 (sd-Efficiency) A random assignment A is sd-efficient if no other
assignment B exists such that for all agents i ∈ N

∀` ∈M, w(�i, `, Bi) ≥ w(�i, `, Ai). (3)

An important desirable property in matching mechanisms is strategyproofness,
that is the mechanism is designed so that no agent has incentive to misreport its
preference.

Definition 3 (sd-Strategyproofness) Mechanism M is sd-strategyproof if at
all preference profiles �∈ Pn and for all agents i ∈ N , for any misreport �′i∈ Pn
such that A =M(�) and A′ =M(�′i,�−i), we have:

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, A′i). (4)

Sd-strategyproofness is a strict requirement. It implies that under any utility
model consistent with the preference orderings, no agent can improve her expected
utility by misreporting. Therefore, a weaker notion of weakly sd-strategyproof re-
quires that no agent can strictly improve her assignment by misreporting. Formally,

Definition 4 (Weak sd-Strategyproofness) Mechanism M is weakly
sd-strategyproof if at all preference profiles �∈ Pn there is no agent i with mis-
report �′i such that A =M(�) and A′ =M(�′i,�−i), we have:

∀` ∈M,w(�i, `, A′i) ≥ w(�i, `, Ai), (5)

with at least one `′ ∈M such that w(�i, `′, A′i) > w(�i, `′, Ai).

Clearly, sd-strategyproofness implies weak sd-strategyproofness but the converse
does not hold.

We say a mechanism M is manipulable at a given preference profile if there
exists at least one agent that can weakly benefit from misreporting its preference.
Formally,

Definition 5 (Manipulablity) A mechanism M is manipulable at preference
profile � if there exists an agent i ∈ N with misreport �′i such that if A =M(�)
and A′ =M(�′i,�−i), we have ∃` ∈M, w(�i, `, A′i) > w(�i, `, Ai).

If there exists some agent who strictly benefits from the manipulation, (i.e.
the mechanism is not even weakly sd-strategyproof) then we say the mechanism
is sd-manipulable (or strictly manipulable). Clearly, a sd-strategyproof mechanism
is not manipulable.

We are also interested in whether mechanisms are fair and use the notion of
envyfreeness to this end. An assignment is sd-envyfree if each agent strictly prefers
her random assignment to any other agent’s assignment.
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Table 1: Properties of PS and RSD.

n ≥ m n < m

PS RSD PS RSD

sd-strategyproof weak 3 7 3
sd-efficiency 3 7 3 7
sd-envyfree 3 weak 3 weak

Definition 6 (sd-Envyfreeness) Given agent i’s preference �i, assignment Ai
is sd-envyfree if for all agents k 6= i ∈ N ,

∀` ∈M, w(�i, `, Ai) ≥ w(�i, `, Ak). (6)

We say an assignment is weakly sd-envyfree if the inequality in Equation 6 is
strict for some ` ∈ M , but there exists at least one `′ for which the inequality in
Equation 6 does not hold. A matching mechanism satisfies sd-envyfreeness if at
all preference profiles �∈ Pn, it induces sd-envyfree assignments for all agents.

Definition 7 (Weak sd-Envyfreeness) Given agent i’s preference �i, assign-
ment Ai is weakly sd-envyfree if there is no other agent ∀k 6= i ∈ N , such that

∀` ∈M, w(�i, `, Ak) ≥ w(�i, `, Ai) (7)

with at least one `′ ∈M such that w(�i, `′, A′k) > w(�i, `′, Ai).

Lastly, we are interested in investigating efficiency, manipulation, and envy of
the random mechanisms when preferences are lexicographic. Under lexicographic
preferences, given two assignments, an agent prefers the one in which there is a
higher probability for getting a more preferred object.

Definition 8 (Lexicographic Dominance) Given a preference ordering �i,
random assignment Ai lexicographically dominates (ld) assignment Bi if there
exists ` ∈M such that

w(�i, `, Ai) > w(�i, `, Bi) and (8)

∀ k �i ` : w(�i, `, Ai) = w(�i, `, Bi).

We say that assignment A lexicographically dominates another allocation B if
there exists no agent i ∈ N that lexicographically prefers Bi to Ai. Thus, an as-
signment mechanism is lexicographically efficient (ld-efficient) if for all preference
profiles its induced assignment is not lexicographically dominated by any other
random assignment.

2.3 Properties of RSD and PS

The theoretical properties of PS and RSD have been well studied in the economics
literature [14], and we summarize the results in Table 1. Both mechanisms are ex
post efficient, that is, their realized outcomes cannot be improved without making
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at least one agent worse off. PS has been shown to be both sd-envyfree and sd-
efficient. However, it is not even weakly sd-strategyproof when n < m [29] and is
only weakly sd-strategyproof when n ≥ m. On the other hand, RSD is always sd-
strategyproof, but it is only weakly sd-envyfree and is not sd-efficient. Example 1
illustrates the sd-inefficiency of RSD.

Example 1 Suppose there are four agents N = {1, 2, 3, 4} and four objects M =
{a, b, c, d}. Consider the following preference profile�= ((abcd), (abcd), (badc), (badc)).
Table 2 shows the outcomes for PS(�) and RSD(�). In this example, all agents
strictly prefer the assignment induced by PS over the RSD assignment. Thus, RSD
is inefficient at this preference profile.

Table 2: Example showing the inefficiency of RSD

(a) Assignment under PS(�)

a b c d

A1 1/2 0 1/2 0
A2 1/2 0 1/2 0
A3 0 1/2 0 1/2
A4 0 1/2 0 1/2

(b) Assignment under RSD(�)

a b c d

A1 5/12 1/12 5/12 1/12
A2 5/12 1/12 5/12 1/12
A3 1/12 5/12 1/12 5/12
A4 1/12 5/12 1/12 5/12

3 Incomparability of RSD and PS

We argue that, despite the recent focus on studying randomized mechanisms, to
date most of the theoretical results have focused on worst-case analysis of their
properties, and a smooth trade-off between the key economic properties are still
underdeveloped (with few exceptions in designing hybrid mechanisms such as [39,
41]). Thus, these findings do not necessarily provide enough guidance to a market
designer trying to select the correct mechanism for a specific setting. For example,
while we know that PS is sd-efficient and RSD is not, this does not mean that PS
assignment always stochastically dominate the assignments prescribed by RSD.

Example 2 Suppose there are three agents N = {1, 2, 3} and three objects M =
{a, b, c}. Consider the following preference profile �= ((acb), (abc), (bac)). Table 3
shows PS(�) and RSD(�). Neither assignment dominates the other since agent 1
is ambivalent between the two assignments while agent 2 prefers PS(�) and agent
3 prefers RSD(�).

Table 3: Incomparability of RSD and PS

(a) Assignment under PS(�)

a b c

A1 1/2 0 1/2
A2 1/2 1/4 1/4
A3 0 3/4 1/4

(b) Assignment under RSD(�)

a b c

A1 1/2 0 1/2
A2 1/2 1/6 1/3
A3 0 5/6 1/6
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If we knew the utility functions of the agents, consistent with their ordinal
preferences, then we might be able to use the notion of (utilitarian) social welfare
to help determine the better assignment.2 However, it is easy to construct different
utility functions for the agents in Example 2 where both RSD and PS maximize
social welfare. Similarly, the envy of RSD and the manipulability of PS both
depend on the structure of preference profiles, and thus, a compelling question, that
justifies studying the practical implications of deploying a matching mechanism,
is to analyze the space of preference profiles to find the likelihood of inefficient,
manipulable, or envious assignments under these mechanisms. In Example 2, for
instance, if utilities of agents 1 and 2 are 10, 9, and 1, and agent 3’s utility is 10,
6, and 4 for the first, second, and third objects respectively, then PS assignment
outperforms that of RSD with respect to social welfare because (1

2 · 10 + 1
2 · 9 +

(0) · 1) + (1
2 · 10 + 1

4 · 9 + 1
4 · 1) + (3

4 · 10 + (0) · 6 + 1
4 · 4) > (1

2 · 10 + 1
2 · 9 + (0) · 1) +

(1
2 · 10 + 1

6 · 9 + 1
3 · 1) + (5

6 · 10 + (0) · 6 + 1
6 · 4). However, if utility functions change

such that all agents have the same utilities of 10, 9, and 1 for the first, second, and
third objects respectively, then the social welfare under RSD outperforms that of
PS because (1

2 ·10 + 1
2 ·9 + (0) ·1) + (1

2 ·10 + 1
6 ·9 + 1

3 ·1) + (5
6 ·10 + (0) ·9 + 1

6 ·1) >
(1
2 · 10 + 1

2 · 9 + (0) · 1) + (1
2 · 10 + 1

4 · 9 + 1
4 · 1) + (3

4 · 10 + (0) · 9 + 1
4 · 1).

4 General and Lexicographic Preferences

The theoretical properties of PS and RSD only provide limited insight into their
practical applications. In particular, when deciding which mechanism to use in dif-
ferent settings, the incomparability of PS and RSD leaves us with an ambiguous
choice in terms of efficiency, manipulability, and envyfreeness. Thus, we examine
the properties of RSD and PS in the space of all possible preference profiles as well
as under lexicographic preferences. Lexicographic preferences are present in var-
ious applications and have been extensively studied in artificial intelligence and
multiagent systems as a means of assessing allocations based on ordinal prefer-
ences [19, 22, 47]. Under lexicographic preferences, an assignment that assigns a
higher probability to the top ranked object is always preferred to any other as-
signment, regardless of the probabilities assigned to objects in the next positions.
Only when two assignments assign equal probabilities to the top ranked object,
the probability of the next preferred object is considered. In the rest of this paper,
we denote the efficiency, strategyproofness, manipulability, and envyfreeness in the
lexicographic domain with ld- (lexicographically dominate) prefix.

The number of all possible preference profiles is super exponential (m!)n. For
each combination of n agents and m objects we performed a brute force coverage
of all possible preference profiles. Thus, for all subsequent figures each data point
shows the fraction of all possible preference profiles. For each preference profile, we
ran both PS and RSD mechanisms and compared their outcomes in terms of the
stochastic dominance relation. Appendix A illustrates our numerical results. Note
that not only is computing RSD probabilities #P-complete (and thus intractable)
[6, 48], but checking the desired properties such as envyfreeness, efficiency, and
manipulability of random assignments is shown to be NP-hard for general settings

2 Given utility functions for the agents, where ui(j) is the utility agent i derives from being
assigned object j, the (utilitarian) social welfare of an assignment A is

∑
i

∑
j Ai,jui(j).
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Fig. 1: The fraction of preference profiles under which PS dominates RSD.

[9, 10]. Thus, for larger settings even if we randomly sample preference profiles it
is not easy to verify the aforementioned properties.

4.1 Preliminary Results

Our experimentation discloses several intriguing observations, confirming theoreti-
cal results and providing additional insights into matching markets. A preliminary
look at our empirical results illustrates the following: when m ≤ 2, n ≤ 3, PS coin-
cides exactly with RSD, which results in the best of the two mechanisms, i.e., both
mechanisms are sd-efficient, sd-strategyproof, and sd-envyfree. Another interest-
ing observation is that when m = 2, for all n, PS is sd-strategyproof (although the
PS assignments are not necessarily equivalent to assignments induced by RSD),
RSD is sd-envyfree, and for most instances when m = 2, PS stochastically domi-
nates RSD, particularly when n ≥ 4.

4.2 Efficiency

Our first finding is that the fraction of preference profiles at which RSD and PS
prescribe identical random assignments goes to 0 when n grows. There are two
conclusions that one can draw. First, this result confirms the theoretical results
of Manea on asymptotic inefficiency of RSD [34], in that, in most instances, the
assignments induced by RSD are not identical to the PS assignments. Second, this
result suggests that the ordinal notion of stochastic dominance is insufficient when
comparing the efficiency of matching mechanisms, and thus, the social welfare of
the random outcomes is highly dependent on the underlying utility models.

The fraction of preference profiles �∈ Pn for which RSD is stochastically
dominated by PS at � converges to zero as n

m → 1. Figure 1a shows that when
m grows beyond m > 5, due to incomparability of RSD and PS with regard to
the stochastic dominance relation, the RSD assignments are rarely stochastically
dominated by sd-efficient assignments prescribed by PS.
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Table 4: The fraction of agents that strictly prefer the assignments prescribed by
each of the mechanisms on average for all combinations of n and m, where in each
cell x, y represent the fractions for PS and RSD respectively.

n\m 2 3 4 5 6 7 8

8 .93, 0 .85, 0 .76, 0 .68, 0 .60, 0 .51, .02 .39, .10
7 .88, 0 .85, .01 .74, 0 .65, .01 .53, .03 .40, .14 .24, .02
6 .80, 0 .87, .01 .70, .01 .61, .05 .42, .21 .27, .04 .29, .01
5 .62, 0 .68, .02 .66, .08 .40, .24 .31, .08 .32, .02 .35, .01
4 .38, 0 .50, .05 .34, .22 .35, .15 .35, .05 .38, .02 .42, .01
3 0, 0 .10, .10 .43, .23 .43, .08 .45, .04 .45, .01 .47, 0
2 0, 0 .40, .24 .59, .16 .65, .09 .69, .05 .68, .02 .70, .01

We also see similar results when we restrict ourselves to lexicographic prefer-
ences (Figure 1b). The fraction of preference profiles �∈ Pn for which RSD is
lexicographically dominated by PS at � gets close to zero as n

m → 1. For lexi-
cographic preferences, we also observe that the fraction of preference profiles for
which PS assignments lexicographically dominate (ld-dominate) RSD assignments
goes to 1 when the number of agents and objects diverge. The fraction of preference
profiles �∈ Pn for which RSD is lexicographically dominated by PS at � converges
to 1 as |n −m| grows. In other words, when the number of agents and objects is
unequal PS significantly outperforms RSD for most instances of the problem. In-
tuitively, when some agents can receive more than one object (n < m) or when
there are not sufficient objects (n > m) for all agents, in each realized ordering of
agents by RSD, those with higher priority are treated very differently than those
in lower priority. Thus, the RSD outcomes tend to be unfair and undesirable for
most agents.

One immediate conclusion is that although RSD does not guarantee either
sd-efficiency or ld-efficiency, in most settings when n

m → 1 (and also n ≤ m for
sd-efficiency according to Figure 1a), neither of the two mechanisms is preferred
in terms of efficiency. Hence, one cannot simply rule out the RSD mechanism.

An interesting question is to consider the fraction of agents that strictly prefer
one mechanism over the other one. Table 4 illustrates the fraction of agents that
strictly prefer PS or RSD on average. As expected, in all instances more agents
prefer PS assignments to RSD assignments. For RSD, the fraction of agents that
strictly prefer RSD assignments is maximized when n = m, whereas PS assign-
ments are desirable by more agents when n > m, which increases as n−m grows.
On the other hand, when there are more objects than agents m > n, most agents
(more than 50%) do not strictly prefer any of the mechanisms to another.

4.3 Manipulability of PS

One critical issue with deploying PS is that it does not provide incentives for honest
reporting of preferences. Although for n ≥ m PS is weakly sd-strategyproof [14]
and ld-strategyproof [49], when n < m PS no longer satisfies these two properties.3

The real concern is that, in the absence of strategyproofness, PS assignments are

3 A recent experimental study on the incentive properties of PS shows that human subjects
are less likely to manipulate the mechanism when misreporting is a Nash equilibrium. However,
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Fig. 2: Heatmaps illustrating the manipulablity of PS.

only efficient (or envyfree) with respect to the reported preferences. Thus, if an
agent decides to manipulate the outcome by misreporting its preferences, PS will
no longer guarantee efficiency, nor envyfreeness with respect to the true underlying
preferences. Thus, we are interested in understanding the degree to which PS
assignments are manipulable.

Figure 2 shows that the fraction of profiles at which PS is manipulable goes to
1 as n or m grow. PS is almost 99% manipulable for n > 5,m > 5. Another inter-
esting observation is that, for all n < m, the fraction of sd-manipulable preference
profiles goes to 1 as m−n grows (Figure 2b). These results imply that when agents
are permitted to receive more than a single object, agents can strictly benefit from
misreporting their preferences.

Moreover, at those instances of problem where PS is sd-strategyproof, the
assignment prescribed by PS most often coincides with the RSD assignment. For
example, when n = m = 5, PS is only sd-strategyproof at 10% of preference profiles
(90% manipulable), 6% of which are identical to the assignments prescribed by
RSD. This insight further confirms the vulnerability of PS to misreporting (See
Table 7 for detailed numerical results).

As illustrated in Figure 3, the manipulability of PS under lexicographic pref-
erences has a similar trend when there are more objects than agents (n < m) and
the fraction of ld-manipulable preference profiles converges to 1 even more rapidly
when m

n grows.

4.4 Envy in RSD

The PS mechanism has a desirable fairness property and is guaranteed to satisfy
sd-envyfreeness, whereas RSD is not sd-envyfree. To further investigate the envy
among agents under RSD, we measured the fraction of agents that are weakly
sd-envious of at least one other agent.

Figure 4 shows that for RSD, the percentage of agents that are weakly envious
increases with the number of agents. Figure 4a reveals an interesting observation:

subjects’ tendency for misreporting is still significant even when it does not improve their
assignments [25].



12 Hadi Hosseini et al.

0 0.31 0.53 0.78 0.87 0.95 0.97

0 0 0.05 0.27 0.54 0.69 0.83

0 0 0 0.01 0.18 0.35 0.54

0 0 0 0 0 0.04 0.18

0 0 0 0 0 0 0.01

0 0 0 0 0 0 0

0 0 0 0 0 0 0

2

3

4

5

6

7

8

2 3 4 5 7 86 

n:
 #
Ag

en
ts

0.00

0.25

0.50

0.75

1.00

ld-manipulable

m: #Objects

Fig. 3: The fraction of ld-manipulable profiles under PS.

0 0.23 0.2 0.16 0.13 0.12 0.11

0 0.11 0.47 0.46 0.42 0.41 0.39

0 0.21 0.27 0.61 0.62 0.62 0.61

0 0.27 0.42 0.42 0.69 0.71 0.71

0 0.31 0.52 0.59 0.54 0.74 0.74

0 0.33 0.57 0.66 0.69 0.61 0.79

0 0.34 0.6 0.7 0.74 0.74 0.69

2

3

4

5

6

7

8

2 3 4 5 7 86 

n:
 #

A
ge

nt
s

0.0

0.2

0.4

0.6

0.8

Weak 
Envy

m: #Objects

(a) A heatmap showing the percentage of envious
agents.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●● ●

●

●

●●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●●

●●

●●●●

●

●

●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●● ●

●●●●

●

●●

●

●●●

●

●●●●●

●

●●

●●

●

●

●

●●●●●

●

●●●●●●●

●

●●●

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10

n = m

Pe
rc

en
ta

ge
 o

f E
nv

io
us

 A
ge

nt
s

#A
ge

nt
s 

= 
#O

bj
ec

ts

2
3
4
5
6
7
8
9
10

(b) Boxplots showing the various envy pro-
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Fig. 4: Plots representing the percentage of (weakly) envious agents under RSD.

fixing any n > 3, the percentage of agents that are (weakly) envious grows with the
number of objects, however, there is a sudden drop in the percentage of envious
agents when there are equal number of agents and objects.

For a better understanding of the population of agents who feel (weakly) en-
vious under RSD, we illustrate the various envy profiles based on the percentage
of envious agents in all instances of the problem when n = m (Figure 4b). One
observation is that there are few distinct envy profiles at each n, each representing
a particular class of preference profiles, and by increasing n, the fraction of agents
that are envious of at least one other agent increases.

5 Utility Models

Given a utility model consistent with an agent’s preference ordering, we can find
the agent’s expected utility for a random assignment. Let ui denote agent i’s
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Von Neumann-Morgenstern (VNM) utility model consistent with its preference
ordering �i. That is, ui(a) > ui(b) if and only if a �i b. Then, agent i’s expected
utility for random assignment Ai is E(ui|Ai) =

∑
j∈M Ai,jui(j).

We say that agent i (strictly) prefers assignment Ai to Bi if and only if
E(ui|Ai) > E(ui|Bi). A mechanism is strategyproof if there exists no agent that
can improve its expected utility by misreporting its preference ordering.

Definition 9 (Strategyproof) Mechanism M is strategyproof if for all agents
i ∈ N , and for any misreport�′i∈ Pn, such that A =M(�) and A′ =M(�′i,�−i),
given a utility model ui consistent with �i, we have E(ui|Ai) ≥ E(ui|A′i).

A matching mechanism is envyfree if for all preference profiles it prescribes an
envyfree assignment.

Definition 10 (Envyfreeness) Assignment A is envyfree if for all i, k ∈ N ,
given utility model ui consistent with �i, we have E(ui|Ai) ≥ E(ui|Ak).

Given utility functions for the agents, the (utilitarian) social welfare of an as-
signment A is

∑
i E(ui|Ai). A random assignment A is sd-efficient if and only if

there exists a profile of utility values consistent with � such that A maximizes
the social welfare ex ante [14,38]. This existence result does not shed light on the
social welfare when comparing two random assignments, since an assignment can
be sd-efficient but may not have desirable expected social welfare. Consider the
following random assignments: assignment A which is sd-efficient and assignment
B 6= A which is not stochastically dominated by A. Given a preference profile, A is
guaranteed to maximize the social welfare for at least one profile of consistent util-
ities. However, there may be other profiles of utilities consistent with preferences
at which B maximizes the sum of utilities (social welfare).

Example 3 Consider the problem introduced in Example 2 with assignments il-
lustrated in Table 3. Let’s assume that all agents have the same utility model
u1 = u2 = u3 where the utilities are (10, 9, 0) for the first, second, and third
objects respectively. The sum of expected utilities under the PS assignment is
(1
2 · 10 + 1

2 · 9 + 0) + (1
2 · 10 + 1

4 · 9 + 1
4 · 0) + (3

4 · 10 + 0 · 9 + 1
4 · 0) = 97

4 = 24.25,
while the sum of expected utilities under the RSD assignment is (1

2 · 10 + 1
2 · 9 +

0) + (1
2 ·10 + 1

6 ·9 + 1
3 ·0) + (5

6 ·10 + 0 ·9 + 1
6 ·0) = 73

3 = 24.33. It is easy to see that
for this profile, the expected social welfare under RSD is larger than that of PS.

Thus, given a profile of utilities we investigate the expected social welfare of
the assignments under PS and RSD.

5.1 Instantiating Utility Functions

To deepen our understanding as to the performance of the two mechanisms, we
investigate different utility models. In particular we look at the performance of the
mechanisms when the agents are all risk neutral (i.e. have linear utility functions),
when agents are risk seeking and when agents are risk averse.

Our first utility model is the well-studied linear utility model. Given an agent
i’s preference ordering �i, we let r(�i, j) denote the rank of object j. For example,
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Fig. 5: Utility values for various α under risk taking, risk neutral, and risk averse
models. There are eleven objects ranked from 1 to 11, with linear utilities from 0
(the last object) to 10 (the top choice). The trendlines fit exponential trends to
the discrete alpha parameters.

given preference ordering a �i b �i c then r(�i, a) = 1, r(�i, b) = 2 and r(�i
, c) = 3. The utility function for agent i, given object j is ui(j) = m− r(�i, j).

We use an exponential utility model to capture risk attitudes beyond risk-
neutrality. An exponential utility has been shown to provide an appropriate trans-
lation for individuals’ utility models [4]. In particular, we define the exponential
utility as follows:

ui(j) =

{
(1− e−α(m−r(�i,j)))/α, α 6= 0

m− r(�i, j), α = 0
(9)

The parameter α represents the agent’s risk attitude. If α > 0 then the agent is
risk averse, while if α < 0 then the agent is risk seeking. When α = 0 then the
agent is risk neutral and we have a linear utility model. The value |α| represents
the intensity of the attitude. That is, given two agents with α1 > α2 > 0, we
say that agent 1 is more risk averse than agent 2. Similarly if α1 < α2 < 0 then
agent 1 is more risk seeking than agent 2. Figure 5 illustrates the risk curvature
for various risk taking and risk averse α parameters.

Table 5 shows sample utility values for various risk taking, neutral, and risk
averse utility profiles. When α = 0 these utilities resemble linear rankings. These
values show how a utility for objects in various ranking positions will change
according to risk attitude models. Note that, in our analysis, we do normalize the
utilities such that all utilities add up to 1. Therefore, in Table 5 the normalized
utilities when α = 0 are (2

3 ,
1
3 , 0) respectively.

6 Results

For our experiments, we vary three parameters: the number of agents n, the num-
ber of objects m, and the risk attitude factor α. Each data point in the graphs



Investigating the Characteristics of One-Sided Matching Mechanisms 15

Table 5: Sample utility values when there are 3 objects under different risk atti-
tudes and risk intensities.

rank \ α α = −2 α = −1 α = 0 α = 1 α = 2
1 26.799 6.389 2 0.865 0.491
2 3.195 1.718 1 0.632 0.432
3 0 0 0 0 0

shows the average over all possible preference profiles. We study the same settings
as in Section 4 when n ≥ m and n < m. For each utility function, we look at
homogeneous populations of agents where agents have the same risk attitudes but
may have difference ordinal preferences.

To compare the social welfare, at each instance of the problem, we investigate
the percentage change (or improvement) in social welfare of PS compared to RSD
under various utility models. That is,∑

i E(ui|PS(�))−
∑
i E(ui|RSD(�))∑

i E(ui|RSD(�))
.

To measure the manipulability of PS at each instance of the problem, we are
interested in answering two key questions: i) In what fraction of profiles is PS
manipulable? and ii) If manipulation is possible, what is the average percentage
of maximum gain? That is,

max
i
{E(ui|PS(�′i,�−i))− E(ui|PS(�))

E(ui|PS(�))
}.

To study the envy under the RSD mechanism, we consider two measures: i)
the fraction of envious agents, and ii) the total envy felt by all agents.

6.1 Risk Neutral

We first look at how RSD and PS perform under the assumption that the utility
models are linear (Figure 6). In most cases, the social welfare under PS increases
compared to RSD; however, the social welfare of PS is very close to that of RSD
when n = m (less than 0.015 overall improvement in all cases). Interestingly, under
RSD the fraction of envious agents gets close to 0 when n ≥ m. With regards to
strategyproofness, PS is manipulable in most combinations of n and m and the
fraction of manipulable profiles and the utility gain from manipulation increases
as the number of objects compared to agents increases.

6.2 Risk Seeking

Figure 7 presents our results in terms of percentage change in social welfare be-
tween PS and RSD. Positive numbers show the percentage of improvement in
social welfare from PS to RSD. Negative values represent those cases where RSD
has increased social welfare compared to PS.
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Fig. 6: Linear Utility: (a) The percentage change in social welfare of PS over RSD,
(b) the fraction of envious agents under RSD, (c) the total envy of all agents, (d)
the fraction of manipulable profiles under PS, and (e) the average percentage of
maximum gain by manipulating PS.
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Social welfare: Fixing α < 0, for n ≥ m when n
m grows PS improves the

social welfare compared to RSD in all instances of the problem and the percentage
of improvement also increases. A similar trend holds when varying risk intensity
α for fixed n and m where n 6= m. For n < m, when m

n grows the fraction of
profiles at which PS has higher social welfare compared to RSD rapidly increases
and the percentage change is also noticeably larger, quickly getting close to 90%
improvement (Figures 7a, 7c, and 7e). This social welfare gap between PS and
RSD grows as the risk intensity |α| increases. Surprisingly, this trend changes for
equal number of agents and objects n = m: the more risk-seeking agents are (larger
|α|), RSD becomes more desirable than PS, and in fact, RSD improves the social
welfare in more instances.

Envy: Figure 8 shows that for n ≥ m, the fraction of envious agents under all
profiles vanishes and RSD becomes envyfree. This is more evident when agents are
more risk-seeking. Intuitively, these observations confirm the theoretical findings
about the envyfreeness of RSD under lexicographic preferences [24]. This is because
one can consider lexicographic preferences as risk-seeking preferences where an
object in a higher ranking is infinitely preferred to all objects that are ranked
less preferably [24]. When n < m, our quasi-dictatorial extension of RSD creates
some envy among the agents, because the agent with the highest priority receives
m−n+1 objects, while all other agents receive at most one object. An interesting
result is the envy created by RSD starts to fade out when the risk intensity |α|
increases.

Manipulability: Figure 9 shows the manipulability of the PS assignments
when agents are risk seeking. We see that the possibility of manipulation (and
any gain) decreases as the risk intensity increases. When n ≥ m the fraction of
manipulable profiles goes to 0 the more risk seeking agents become. However, when
n < m even though the fraction of manipulable profiles (and manipulation gain)
decreases, the fraction of manipulable profiles goes to 1 as m

n grows.

6.3 Risk Aversion

Social welfare: Figures 7b, 7d, and 7f show that, fixing risk factor α > 0, when
n
m grows, PS assignments are superior to that of RSD in terms of social welfare in
more instances, and the percentage change in social welfare increases. Fixing risk
factor α > 0 and when m

n grows, RSD is more likely to have the same social welfare
as PS, and in fact in some instances the social welfare under RSD is better than the
social welfare under PS. Fixing m and n, when the risk intensity α increases RSD is
more likely to have the same social welfare as PS, that is, the welfare gap between
PS and RSD closes when agents are more risk averse (α increases). This result is
insightful and states that under risk aversion the random assignments prescribed
by RSD are either comparable to those of PS or in some cases (e.g. when m = n)
are even superior to the assignments prescribed by PS due to the underlying shape
of the utility models. Figure 17 illustrates the percentage change in social welfare
based on the difference between available objects and agents (m − n) for risk
seeking, linear, and risk averse utilities with different risk intensities.

Envy: In Figure 10 we observe that when n ≥ m (upper left triangles), the
fraction of envious agents and total envy grows as n

m → 1. Increasing the risk
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(f) Risk averse, α = 2.

Fig. 7: The percentage change in social welfare of PS compared to RSD for var-
ious settings of the risk and risk intensities. The negative values show that RSD
outperforms PS.

intensity (|α|), the fraction of envious agents increases; however, the total envy
among the agents remains considerably low, less than or equal to 0.01.

For n < m (lower right triangles), the fraction of envious agents and total
envy grows as risk intensity increases. An interesting observation is that envy is
maximized when m = n + 1, and it decreases as m

n grows. This is mostly due
to the choice of using randomized quasi-dictatorial mechanism for implementing
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Fig. 8: The fraction of envious agents and total envy perceived by agents under
RSD for risk-seeking utilities with various risk intensities.

RSD where the first dictator receives m+ n− 1 objects and all other agents only
receive a single object. Lastly, we noticed that in all instances where RSD creates
envy among the agents, around 25% of agents bear more than 50% of envy. That
is, few agents feel extremely envious while all other agents are either envyfree or
only feel a minimal amount of envy.
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Fig. 9: The fraction of manipulable instances and manipulation gain of PS under
risk-seeking preferences with various risk intensities.

Manipulability: Figure 11 illustrates the manipulability of the PS assign-
ments when agents have risk averse preferences. The fraction of manipulable pro-
files rapidly goes to 1 as m

n grows. Similarly, as agents become more risk averse
(α increases) the fraction of manipulable profiles goes to 1 and the manipulation
gain increases.
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Fig. 10: The fraction of envious agents and total envy perceived by agents under
RSD for risk averse utilities. The total envy is shown up to two decimal points.

6.4 Statistical Analysis

Given our empirical results, we are interested in further analyzing the statistical
significance of the social welfare between the two mechanisms. Essentially, we
are comparing the outcome (social welfare) of two independent treatments (i.e.
RSD and PS) independently for every given preference profile. Hence, we need to
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Fig. 11: The fraction of manipulable instances and manipulation gain of PS under
risk aversion with various risk intensities.

account for various factors in our study, including the number of agents, n, the
number of objects, m, and the risk factor, α. Since we are interested in comparing
the two mechanisms under well-defined conditions, we consider two independent
variables: 1) market type with two levels: single assignment for n ≥ m (µ =
1.74, σ = 0.001), and multiple assignment for all problems where n < m (µ =
1.56, σ = 0.001), and 2) risk attitudes with three levels: α ∈ {−2,−1} (µ =
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2.13, σ = 0.001) for risk seeking attitudes, α = 0 (µ = 1.53, σ = 0.002) for risk
neutrality, and α ∈ {1, 2} (µ = 1.29, σ = 0.001) for risk aversion. The detailed
descriptive statistics can be found in Tables 8 and 9 in Appendix B.

To evaluate the efficiency (social welfare) of the two mechanisms, PS and
RSD, we ran a mixed repeated measure analysis of variance (ANOVA) with the
mechanisms as the within subject factors and risk and market type (according to
the number of agents and objects) as between subject factors. An ANOVA test
with repeated measures with a Greenhouse-Geisser correction showed that there
was a significant main effect of mechanisms on social welfare (F (1, 244994) =
77289.65, p < 0.001). More specifically, the average of social welfare when using
PS (µ = 1.78, σ = .68) was significantly more than RSD (µ = 1.60, σ = 0.57). An
analysis of Variance with repeated measures with a Greenhouse-Geisser correc-
tion showed a significant interaction between the mechanisms and risk attitudes
(F (2, 244994) = 34730.86, p < 0.001). A Pairwise comparison showed that PS
resulted in significantly higher social welfare in risk averse (p < 0.001), neutral
(p < 0.001), and risk seeking (p < 0.001) conditions. See Table 10 in Appendix B
for detailed descriptive statistics.

An ANOVA test with repeated measures with a Greenhouse-Geisser correc-
tion showed a significant interaction between the mechanisms and the market
type (F (1, 244994) = 25202.18, p < 0.001). Pairwise comparisons showed that PS
resulted in significantly higher social welfare in conditions were the number of
objects was more than the agents (p < 0.001) as well as the conditions were the
number of agents were equal or more than the number of objects (p < 0.001). See
Table 11 in Appendix B for detailed descriptive statistics.

Lastly, we are interested in measuring the statistical significance between the
social welfare of RSD and PS when n ≥ m or n < m and varying the risk attitudes.
This analysis provides a better understanding of the interactions between the mar-
ket type and agents’ risk attitudes. An ANOVA test with repeated measures with a
Greenhouse-Geisser correction showed a significant three-way interaction between
the mechanisms, market type, and risk attitudes (F (2, 244994) = 24451.17, p <
0.001). The descriptive statistics are shown in Table 13. We followed the analysis
with a pairwise comparison between PS and RSD in all risk profiles. PS resulted
in significantly higher social welfare compared to RSD when the number of objects
was more than the number of agents in all risk profiles: risk averse (p < 0.001),
risk seeking (p < 0.001), or risk neutral (p < 0.001). However, Table 12 confirms
our previous results: the mean difference between social welfare of PS and RSD is
minimized (even though statistically significant) when agents are risk averse, with
0.023 for n < m and 0.054 for n ≥ m.

7 Other Ranking Distribution Models

In this section, we use variations of two statistical models that are commonly used
to capture realistic preference distributions in a population of players. Considerable
work in computational social choice and machine learning has exploited these
statistical models to capture the distribution of ranking preferences in a population
of agents [8,31,32]. We will focus on Mallows Models and Polya-Eggenberger Urn
Models (Urn) [11,33,36].
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In Mallows models the population is distributed around a reference ranking
proportional to the Kendall-Tau (KT) distance [26, 27]. Henceforth, preferences
closer to the reference ranking are more likely to appear in the population. In
other words, agents’ preferences deviate from the reference ranking with decreas-
ing probability as rankings move away from the reference. Mallows models are
parametrized by a reference ranking and a dispersion parameter. Formally, given
a reference ranking (�̂) and a dispersion parameter (φ), we have

P (�) =
1

Z
φKT (�,�̂), ∀ �∈ P (10)

where Z = 1·(1+φ)·(1+φ+φ2) · · · (1+. . .+φm−1). When φ = 1 the Mallows model
is equivalent to the uniform distribution, and when φ = 0 the distribution mass
is entirely on the reference ranking. It is also possible for an agent population to
have multiple references. In these cases, Mallows Mixture models are parametrized
by a set of ranking reference with their corresponding dispersion parameters.

In the Urn distribution model, with every random selection of a preference
order the probability of this preference order being selected in subsequent samples
increases. Intuitively, we can think of a collection of m! preference orderings and
every time an ordering is sampled uniformly from this collection, it will be replaced
by two copies of the same preference ordering.

We use the PrefLib Toolkit [37] to generate Mallows and Urn distribution
models. In our experiments, we used Mallows model with one reference ranking as
well as Mallows mixture models with five reference rankings. Every data point in
the figures is averaged over 1,000 samples.

In general, the same patterns under the uniform preference distribution hold
for various numbers of agents and objects and when varying the risk parameter
and utility functions.

Social welfare: Figures 12 and 13 show the results of our simulation for social
welfare when agents’ preferences are drawn from Mallows models. These results
are consistent with pure Mallows models with single reference rankings (Figure 12)
as well as Mallows mixture models with five references (Figure 13). The percentage
change in social welfare is infinitesimal when n ≥ m for both risk averse and risk
seeking populations. Under risk aversion, this percentage change in social welfare
remains small when n < m. Similar to the uniform populations, the negative values
show that in some cases, particularly when n = m, RSD assignments outperform
those under PS assignments.

Manipulability: The PS assignments remain very susceptible to manipulation
even under more natural assumptions on how the preferences are distributed.
Figures 14 illustrates the manipulability of the PS assignments and the average
gain from manipulation when agents are drawn from Mallows mixture models
under risk averse and risk seeking attitudes.

The fraction of manipulable profiles and manipulation gain goes to 0 when
agents are risk seeking. Under risk aversion, the fraction of manipulable profiles
and manipulation gain rapidly increases as mn grows (Figure 14). These results hold
under pure Mallows distribution (Figure 15) as well as under the Polya-Urn model
(Figure 16) but with slightly slower growth. This is consistent with the fact that,
in less diverse populations, agents’ preference are more similar and conflicting,
and thus manipulation is less likely (even though still significantly considerable)
as opposed to more diverse and uniform set of profiles.
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Fig. 12: The percentage change in social welfare of PS compared to RSD under
the pure Mallows distribution with a single reference.
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Fig. 13: The percentage change in social welfare of PS compared to RSD under
the Mallows Mixture distribution with five references.

8 Related Literature

Assignment problems with ordinal preferences have attracted interest from many
researchers. Svensson showed that serial dictatorship is the only deterministic
mechanism that is strategyproof, nonbossy, and neutral [51]. Random Serial Dic-
tatorship (RSD) (uniform randomization over all serial dictatorship assignments)



26 Hadi Hosseini et al.

0 0.08 0.22 0.45

0 0 0.02 0.15

0 0 0 0

0 0 0 0

3

4

5

6

3 4 5 6
m: #Objects

n:
 #

A
ge

nt
s

0.0

0.1

0.2

0.3

0.4

Manipulable

(a) Manipulation, Mallows Mixture, α = −2.

0 0 0.01 0.02

0 0 0 0.01

0 0 0 0

0 0 0 0

3

4

5

6

3 4 5 6
m: #Objects

n:
 #

A
ge

nt
s

0.00

0.01

0.02
Gain

(b) Gain, Mallows Mixture, α = −2.

0.21 0.64 0.91 0.89

0.36 0.64 0.92 0.98

0.38 0.76 0.86 0.99

0.29 0.76 0.94 0.94

3

4

5

6

3 4 5 6
m: #Objects

n:
 #

A
ge

nt
s

0.00

0.25

0.50

0.75

Manipulable

(c) Manipulation, Mallows Mixture, α = 2.

0.01 0.07 0.06 0.05

0.04 0.04 0.07 0.05

0.03 0.03 0.04 0.05

0.01 0.04 0.04 0.03

3

4

5

6

3 4 5 6
m: #Objects

n:
 #

A
ge

nt
s Gain 

0.06

0.04

0.02

0.00

(d) Gain, Mallows Mixture, α = 2.

Fig. 14: The fraction of manipulable instances and manipulation gain of PS under
the Mallows mixture model with five references.

satisfies strategyproofness, proportionality, and ex post efficiency [2]. Bogomolnaia
and Moulin noted the inefficiency of RSD from the ex ante perspective, and charac-
terized the matching mechanisms based on first-order stochastic dominance [14].
They proposed the probabilistic serial mechanism as an efficient and envyfree
mechanism with regards to ordinal preferences. While PS is not strategyproof, it
satisfies weak strategyproofness for problems with equal number of agents and ob-
jects. However, PS is strictly manipulable (not weakly strategyproof) when there
are more objects than agents [28]. Kojima and Manea, showed that in large as-
signment problems with sufficiently many copies of each object, truth-telling is a
weakly dominant strategy in PS [29]. In fact PS and RSD mechanisms become
equivalent [17], that is, the inefficiency of RSD and manipulability of PS vanishes
when the number of copies of each object approaches infinity.

The practical implications of deploying RSD and PS have been the center of
attention in many one-sided matching problems [1,40]. In the school choice setting
with multi-capacity alternatives, Pathak observed that many students obtained a
more desirable random assignment through PS in public schools of New York
City [44]; however, the efficiency difference was quite small. These equivalence
results and their extensions to all random mechanisms [30], do not hold when the
quantities of each object is limited to one.
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Fig. 15: The fraction of manipulable instances and manipulation gain of PS under
the pure Mallows model with one reference ranking.
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the Polya-Urn model.
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Table 6: A random assignment for a preference profile wherein PS and RSD both
prescribe an identical matching, i.e. PS(�) = RSD(�).

a b c

A1 1/3 1/2 1/6
A2 1/3 0 2/3
A3 1/3 1/2 1/6

Other interesting aspects of PS and RSD such as computational complexity
and best-response strategies have also been explored [8, 9, 20]. In this vein, Aziz
et al. proved the existence of pure Nash equilibria, but showed that computing
an equilibrium is NP-hard [8]. Nevertheless, Mennle et al. [42] showed that agents
can easily find near-optimal strategies by simple local and greedy search. In the
absence of truthful incentives, the outcome of PS is no longer guaranteed to be
efficient or envyfree with respect to agents’ true underlying preferences, and this
inefficiency may result in outcomes that are worse than RSD, especially in ‘small’
markets [20]. The utilitarian and egalitarian welfare guarantees of RSD have been
studied under ordinal and linear utility assumptions [7,12]. For arbitrary utilities,
RSD provides the best approximation ratio for utilitarian social welfare when
m = n among all mechanisms that rely only on ordinal preferences [21].

9 Discussion

We studied the space of general preferences and provided empirical results on
the incomparability of RSD and PS. It is worth mentioning that at preference
profiles where PS and RSD induce identical assignments, RSD is sd-efficient, sd-
envyfree, and sd-strategyproof. However, PS is still highly manipulable. We further
strengthen this argument by providing an observation in Example 4:

Example 4 Consider the following preference profile �= ((bca), (cab), (bca)). Ta-
ble 6 shows the prescribed random assignment. In this example, with PS as
the matching mechanism, agent 1 can misreport her preference as �′1= (cba),
and manipulate her assignment to 1/4(b), 1/2(c), 1/4(a). It is easy to see that
agent 1’s misreport improves her expected outcome for all utility models where
2
6u1(c) > 1

4u1(b) + 1
12u1(a) (for example utilities 10, 9, 0 for b, c, a respectively.).

We investigated various utility models according to different risk attitudes.
Our findings hold under various assumptions on the population of agents and
preference profile distributions. Our main results are:

– In terms of efficiency, the fraction of preference profiles �∈ Pn for which
PS stochastically (or lexicographically) dominates RSD converges to zero as
n
m → 1. When instantiating the preferences with actual utility functions, PS
assignments are only slightly better than RSD assignments (even though sta-
tistically significant) in terms of social welfare when varying n and m. Nonethe-
less, the mean difference between social welfare of PS and RSD is minimized
particularly under risk averse utilities.
In fact, in several cases where m = n RSD assignments are superior in terms of
social welfare (see Figures 7 and 17). The superiority of PS compared to RSD
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closes.

only becomes significant under risk seeking profiles when m > n. Interestingly,
this is exactly the domain that PS does not even guarantee the weak notion
of sd-strategyproofness [29], as shown empirically in Figure 9 for risk seeking
agents.

– PS is almost 99% manipulable when n ≤ m and the fraction of sd- and ld-
manipulable profiles rapidly goes to 1 as m

n grows. When instantiating the
preferences with utility functions, the manipulability of PS increases as agents
become more risk averse. Moreover, an agent’s utility gain from manipulation
also grows when the risk intensity increases.

– For risk seeking utilities, when n ≥ m the fraction of envious agents under all
profiles vanishes and RSD becomes envyfree. For risk averse utilities, the frac-
tion of envious agents increases as agents become more risk averse. However,
the total amount of envy just slightly grows, and surprisingly, only few agents
feel extremely envious while all other agents are either envyfree or only feel a
minimal amount of envy.

An interesting future direction is to provide theoretical and empirical investi-
gation on the egalitarian social welfare of the matching mechanisms in single and
multi unit assignment problems as well as in the full preference domain, comple-
menting [7, 18]. Another open direction is to provide a parametric analysis of the
matching mechanisms according to the risk aversion factor.
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10 Design Recommendations for Multiagent Systems Practitioners

Our work in this paper can be used to help guide designers of multiagent systems
who need to solve assignment problems. If a designer strongly requires sd-efficiency
then the theoretical results of PS indicate that it is better than RSD. However,
our results show that PS is highly prone to manipulation for various combinations
of agents and objects. This manipulation and the possible gain from manipulation
become more severe particularly when agents are risk averse, and designers need to
take this into consideration. On the other hand, while RSD does not theoretically
guarantee sd-efficiency, our results show that it tends to do quite well – in some
instances even outperforming PS in terms of social welfare. RSD also has the added
advantage of being sd-strategyproof and thus is not prone to the manipulation
problems of PS.

Although computing RSD probabilities (fractional assignments) is #P-hard
[6, 48], RSD is easy to implement in practice. However, the welfare cost of adopt-
ing manipulable mechanisms such as PS raises concern and has real consequences
[16, 45]. Even though computing optimal manipulation strategies is computation-
ally hard for the PS mechanism, evidentially individuals can easily figure out how
to manipulate such mechanisms using simple greedy heuristics [16,42]. Our inves-
tigations show that in many instances RSD performs as desirably as PS in terms of
social welfare. Conversely, PS assignments are highly susceptible to manipulation
especially when agents are risk averse.

These findings suggest that in multiagent settings where mechanism designers
are unsure of sincere reporting of their preferences or when agents are mostly
risk averse, the use of RSD is more desirable to ensure truthful reporting while
providing reasonable social welfare. However, PS is still a desirable assignment
mechanism for its fairness and efficiency properties, particularly in settings where
agents are sincere.
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Appendices
A Numerical Results

The following table shows the results of comparing RSD and PS under ordinal
preferences for various combinations of agents and objects. Note that in most
instances, RSD and PS do not induce the same random assignment.

Dominance RSD PS manipulability

n m Equal SD LD weakEnvy weak SD LD

2 2 100% 0% 0% 0% 0% 0% 0%
2 3 27% 18% 29% 23% 31% 31% 31%
2 4 10% 36% 60% 20% 53% 53% 53%
2 5 3% 39% 78% 16% 78% 78% 78%
2 6 1% 45% 90% 13% 87% 87% 87%
2 7 0% 46% 95% 12% 95% 95% 95%
2 8 0% 45% 96% 11% 97% 97% 97%
2 9 0% 47% 96% 11% 100% 100% 100%
2 10 0% 48% 99% 9% 99% 99% 99%

3 2 100% 0% 0% 0% 0% 0% 0%
3 3 67% 0% 0% 11% 24% 0% 0%
3 4 3% 5% 40% 47% 77% 5% 5%
3 5 0% 4% 75% 46% 96% 26% 27%
3 6 0% 6% 84% 42% 95% 53% 54%
3 7 0% 5% 90% 41% 100% 68% 69%
3 8 0% 5% 93% 39% 100% 80% 83%
3 9 0% 9% 96% 35% 100% 90% 92%
3 10 0% 7% 95% 34% 100% 94% 94%

4 2 62% 38% 38% 0% 0% 0% 0%
4 3 33% 34% 46% 21% 42% 0% 0%
4 4 21% 3% 8% 27% 72% 0% 0%
4 5 0% 0% 48% 61% 96% 1% 1%
4 6 0% 0% 76% 62% 98% 17% 18%
4 7 0% 0% 84% 62% 100% 33% 35%
4 8 0% 1% 93% 61% 99% 52% 54%
4 9 0% 1% 94% 60% 100% 65% 69%
4 10 0% 2% 95% 56% 100% 79% 85%

5 2 39% 61% 61% 0% 0% 0% 0%
5 3 8% 34% 83% 27% 66% 0% 0%
5 4 3% 19% 53% 42% 94% 0% 0%
5 5 6% 1% 7% 42% 90% 0% 0%
5 6 0% 0% 58% 69% 100% 0% 0%
5 7 0% 0% 84% 71% 100% 4% 4%
5 8 0% 0% 91% 71% 100% 18% 18%
5 9 0% 0% 94% 71% 100% 32% 36%
5 10 0% 0% 97% 70% 100% 49% 55%

Continued on the next page
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Dominance RSD PS manipulability

n m Equal SD LD weakEnvy weak SD LD

6 2 21% 79% 79% 0% 0% 0% 0%
6 3 2% 71% 96% 31% 59% 0% 0%
6 4 0% 22% 88% 52% 90% 0% 0%
6 5 0% 9% 46% 59% 98% 0% 0%
6 6 3% 1% 7% 54% 96% 0% 0%
6 7 0% 0% 62% 74% 100% 0% 0%
6 8 0% 0% 89% 74% 100% 1% 1%
6 9 0% 0% 95% 75% 100% 8% 9%
6 10 0% 0% 97% 75% 100% 23% 25%

7 2 12% 88% 88% 0% 0% 0% 0%
7 3 1% 64% 99% 33% 83% 0% 0%
7 4 0% 26% 97% 57% 99% 0% 0%
7 5 0% 8% 87% 66% 100% 0% 0%
7 6 0% 2% 41% 69% 100% 0% 0%
7 7 1% 1% 6% 61% 99% 0% 0%
7 8 0% 0% 71% 79% 100% 0% 0%
7 9 0% 0% 93% 79% 100% 0% 0%
7 10 0% 0% 96% 78% 100% 5% 6%

8 2 8% 92% 92% 0% 0% 0% 0%
8 3 0% 63% 100% 34% 76% 0% 0%
8 4 0% 33% 99% 60% 95% 0% 0%
8 5 0% 10% 97% 70% 100% 0% 0%
8 6 0% 4% 83% 74% 100% 0% 0%
8 7 0% 1% 29% 74% 100% 0% 0%
8 8 0% 0% 5% 69% 99% 0% 0%
8 9 0% 0% 70% 81% 100% 0% 0%
8 10 0% 0% 93% 82% 100% 0% 0%

9 2 3% 97% 97% 0% 0% 0% 0%
9 3 0% 76% 100% 35% 70% 0% 0%
9 4 0% 33% 100% 62% 100% 0% 0%
9 5 0% 19% 99% 72% 100% 0% 0%
9 6 0% 6% 98% 76% 100% 0% 0%
9 7 0% 2% 78% 78% 100% 0% 0%
9 8 0% 0% 26% 78% 100% 0% 0%
9 9 0% 0% 4% 71% 100% 0% 0%
9 10 0% 0% 69% 84% 100% 0% 0%

10 2 2% 99% 99% 0% 0% 0% 0%
10 3 0% 70% 100% 37% 79% 0% 0%
10 4 0% 46% 100% 63% 98% 0% 0%
10 5 0% 17% 100% 73% 97% 0% 0%
10 6 0% 10% 99% 77% 100% 0% 0%
10 7 0% 2% 95% 79% 100% 0% 0%
10 8 0% 1% 77% 80% 100% 0% 0%
10 9 0% 0% 21% 79% 100% 0% 0%

Continued on the next page
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Dominance RSD PS manipulability

n m Equal SD LD weakEnvy weak SD LD

10 10 0% 0% 4% 73% 100% 0% 0%

Table 7: Experimental results over the space of preference profiles. SD (respectively
LD) refers to the fraction of profiles where PS Stochastically (Lexicographically)
Dominates RSD, and weakEnvy shows the average fraction of agents that are
weakly envious under RSD. The last three columns show the fraction of profiles
that PS is weakly manipulable, sd-manipulable (SD), and ld-manipulable (LD).
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B Descriptive Statistics

B.1 Descriptive Statistics

Market Type Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

n < m 1.560 .001 1.557 1.563
n ≥ m 1.744 .001 1.741 1.746

Table 8: Descriptive statistics on market type: the mean of social welfare of both
mechanisms when grouped by market type.

Risk attitude Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

Risk averse 1.290 .001 1.287 1.293
Neutral 1.530 .002 1.526 1.534
Risk seeking 2.135 .001 2.132 2.138

Table 9: Descriptive statistics on risk attitudes: the mean of social welfare of both
mechanisms when grouped by risk attitudes.

B.2 Descriptive Statistics of the Mechanisms Grouped by Risk Attitudes

SW Risk Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

RSD
Risk averse 1.270 .001 1.268 1.273
Neutral 1.469 .002 1.465 1.473
Risk seeking 1.931 .001 1.928 1.934

PS
Risk averse 1.309 .002 1.306 1.312
Neutral 1.591 .002 1.586 1.595
Risk seeking 2.339 .002 2.336 2.342

Table 10: The descriptive statistics on the social welfare of RSD and PS grouped
by risk attitudes. The table shows the mean of social welfare of RSD and PS when
grouped by risk attitudes.
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B.3 Descriptive Statistics of the Mechanisms Grouped by Market Type

SW Risk Mean Std. Error 95% Confidence Interval
Lower Bound Upper Bound

RSD
n < m 1.411 .001 1.408 1.414
n ≥ m 1.703 .001 1.701 1.705

PS
n < m 1.708 .002 1.705 1.711
n ≥ m 1.784 .001 1.781 1.787

Table 11: The descriptive statistics on the social welfare of RSD and PS grouped
by market type. The means of social welfare achieved by PS and RSD get close to
one another when n ≥ m.

B.4 Pairwise Comparison with Both Factors, Market Type and Risk Attitudes

Market Type Risk Mean Difference4 Std. Error Sig. 95% Confidence Interval for Difference5

(PS-RSD) Lower Bound Upper Bound

n < m
Risk averse .023 .002 .000 .020 .026
Neutral .168 .002 .000 .163 .172
Risk seeking .701 .002 .000 .698 .704

n ≥ m
Risk averse .054 .001 .000 .051 .056
Neutral .075 .002 .000 .071 .079
Risk seeking .115 .001 .000 .112 .117

Table 12: Pairwise comparisons with market type and risk attitudes. The mean
difference shows the difference between mean of PS and RSD when grouped by
market type and risk attitudes. The mean difference between social welfare of PS
and RSD is minimized (even though statistically significant) when agents are risk
averse, with 0.023 for n < m and 0.054 for n ≥ m.

4 The mean difference is significant at the .05 level.
5 Adjustment for multiple comparisons: Bonferroni.
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Market Type Risk Mean Std. Deviation

RSD SW

n < m

Risk averse 1.1843 .08698
Neutral 1.3553 .18243
Risk seeking 1.6937 .60872
Total 1.4222 .45927

n ≥ m

Risk averse 1.3566 .17760
Neutral 1.5836 .17802
Risk seeking 2.1688 .73549
Total 1.7269 .61023

Total

Risk averse 1.2828 .16895
Neutral 1.4857 .21244
Risk seeking 1.9652 .72331
Total 1.5963 .57089

PS SW

n < m

Risk averse 1.2074 .09007
Neutral 1.5229 .16679
Risk seeking 2.3945 .78311
Total 1.7453 .74047

n ≥ m

Risk averse 1.4104 .23198
Neutral 1.6584 .20814
Risk seeking 2.2836 .74060
Total 1.8093 .63857

Total

Risk averse 1.3234 .21052
Neutral 1.6003 .20292
Risk seeking 2.3311 .76109
Total 1.7819 .68483

Table 13: Descriptive statistics of PS and RSD outcomes grouped by market type
and risk attitudes. The means and standard deviations of PS and RSD are shown
when grouping the data by market type and risk attitudes.
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