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Abstract
We study the classic cake cutting problem from
a mechanism design perspective, in particular fo-
cusing on deterministic mechanisms that are strat-
egyproof and fair. We begin by looking at mecha-
nisms that are non-wasteful and primarily show that
for even the restricted class of piecewise constant
valuations there exists no direct-revelation mecha-
nism that is strategyproof and even approximately
proportional. Subsequently, we remove the non-
wasteful constraint and show another impossibil-
ity result stating that there is no strategyproof and
approximately proportional direct-revelation mech-
anism that outputs contiguous allocations, again,
for even the restricted class of piecewise constant
valuations. In addition to the above results, we
also present some negative results when consid-
ering an approximate notion of strategyproofness,
show a connection between direct-revelation mech-
anisms and mechanisms in the Robertson-Webb
model when agents have piecewise constant valu-
ations, and finally also present a (minor) modifica-
tion to the well-known Even-Paz algorithm that has
better incentive-compatible properties for the cases
when there are two or three agents.

1 Introduction
Imagine a scenario where there is heterogeneous divisible
good that is to be divided among a certain set of n agents.
For an appropriately chosen notion of fairness, ideally, we
would like this resource to be divided fairly among these n
agents and so a natural question that arises is on how one
would accomplish this. The cake-cutting problem metaphori-
cally refers to this very scenario and it represents a fundamen-
tal problem in the theory of fair division. More formally, in
the cake cutting problem, the cake is modelled as the interval
[0, 1] and each of the n agents is assumed to have a valua-
tion function over the cake. The goal, as described above,
is to partition the cake so that it is fair according to some
chosen notion of fairness. Starting with the work of Stein-
haus [1948], it has been studied over the last several decades
by mathematicians, economists, and political scientists (see
e.g. the books by Brams and Taylor [1996] and Robertson

and Webb [1998]), and more recently has attracted the atten-
tion of computer scientists (see e.g. the survey by Procaccia
[2016]) partly due to the nature of the challenges involved—
that often require an algorithm design or complexity point of
view—and partly due to its relevance in the design of multia-
gent systems [Chevaleyre et al., 2006].

Most work in the cake cutting literature focuses on ad-
dressing the above described scenario and so most of it is
concerned with computing a fair allocation using propor-
tionality or envy-freeness as the main fairness criterion (see
[Aziz and Mackenzie, 2016], and also [Procaccia, 2016] for
a recent survey). While addressing it is indeed the core
part of the problem, the fact that the valuation functions
of the agents may be their private information entails that
the designed protocols or mechanisms be strategyproof—
meaning that there is no incentive to misreport one’s valua-
tion function—for if otherwise the agents can lie about their
valuation functions and potentially benefit from it. There-
fore, the focus of this paper, like in [Chen et al., 2010;
2013; Mossel and Tamuz, 2010; Maya and Nisan, 2012;
Aziz and Ye, 2014; Brânzei and Miltersen, 2015], is to look
at mechanisms that are not only fair, but also strategyproof.

In this paper, we look at deterministic mechanisms and we
are primarily focused on the direct-revelation model—one
where the agents reveal their entire valuation function. Our
main objective is to better understand the limits of determin-
ism when it comes to imposing strategyproofness and fairness
(or approximate notions of either of them)—i.e., to see what
is or is not achievable with deterministic mechanisms—and
to this end we make the following contributions.

a) In Section 3 we begin by looking at non-wasteful mecha-
nisms and we show a strong impossibility which in turn
strengthens an impossibility result given [Aziz and Ye,
2014, Theorem 7]. In particular, we prove (in Theo-
rem 1) that for any n ≥ 2 and 0 ≤ ε1, ε2 <

1
n such that

3ε1+ε2 <
1
n , there is no deterministic and non-wasteful

mechanism for n agents with piecewise constant valua-
tions that is ε1-strategyproof and ε2-proportional.

b) In Section 4 we remove the non-wasteful constraint and
provide three main results. The first one (Theorem 5)
shows that for any n ≥ 2 and 0 ≤ ε < 1

n , there is
no deterministic mechanism for n agents with piece-
wise constant valuations that makes contiguous alloca-



tions and is strategyproof and ε-proportional. The sec-
ond result (Proposition 6) establishes a connection be-
tween direct-revelation mechanisms and mechanisms in
the Robertson-Webb model for the case when agents
have piecewise constant valuations. And finally, the
third one (Theorem 8) is a positive result where we
present a (minor) modification to the well-known Even-
Paz algorithm that has better incentive-compatible prop-
erties for the cases when there are two or three agents.

1.1 Related Work
The cake cutting problem has been studied using two in-
put models—Robertson-Web model and the direct-revelation
model. Therefore, we can classify the work on strategic as-
pects of cake cutting into two classes based on the input
model used and look at each of them separately.

Among related papers that operate in the direct-revelation
model [Chen et al., 2010; 2013; Mossel and Tamuz, 2010;
Maya and Nisan, 2012; Aziz and Ye, 2014; Li et al., 2015;
Alijani et al., 2017], the ones which are most relevant to
results in this paper are the works of Chen et al. [2010;
2013] and Aziz and Ye [2014]. Chen et al. [2010; 2013]
were the first to look at strategyproof cake cutting and their
main result was a deterministic, strategyproof, envy-free, pro-
portional, and Pareto-optimal mechanism for the case when
the agents have piecewise uniform valuations. Additionally,
they also presented randomized algorithms that are truthful in
expectation, proportional, and envy free for piecewise linear
valuations.

The other most relevant work that uses the same model is
that of Aziz and Ye [2014]. They present two deterministic
mechanisms, CCEA and MEA, for piecewise constant valua-
tions, where CCEA is robust envy-free1and non-wasteful, and
MEA is Pareto-optimal and envy-free. Although both of them
generalize the mechanism proposed by Chen et al. [2010;
2013], they do not remain strategyproof for piecewise con-
stant valuations. Additionally, they also showed that there is
no mechanism that is strategyproof, robust proportional1, and
non-wasteful for piecewise constant valuations.

Among papers that use the Robertson-Webb model, the
two that are most related are the works of Kurokawa et al.
[2013] and Brânzei and Miltersen [2015]. Kurokawa et al.
[2013] studied envy-free cake cutting and their main result
was a parameterized protocol for piecewise linear valuations.
Additionally, they also showed that there is no mechanism
of complexity bounded only by a function of the number
of agents and the total number of breakpoints that is strate-
gyproof and envy-free for piecewise constant valuations.

The other most relevant paper that operates in the
Robertson-Webb model is that of Brânzei and Miltersen
[2015]. Brânzei and Miltersen [2015] showed that any de-
terministic and strategyproof protocol is a dictatorship when
there are only two hungry agents and for the case when there
are more than two hungry agents they showed that there is at
least one agent who gets an empty piece. Additionally, they

1Robust envy-freeness and robust proportionality are much
stronger notions than envy-freeness and proportionality, respec-
tively; see [Aziz and Ye, 2014] for more details.

also provided a randomized mechanism that is strategyproof
in expectation and ε-proportional for any ε > 0.

Finally, we also briefly remark on the predefined divisible
goods setting which has been extensively studied in fair di-
vision (see, for instance, [Cheung, 2016] and the references
therein). In the predefined goods setting, the task is to fairly
allocate m divisible items among n agents, where the private
information of an agent is the value she has for each of the
items. So, in effect, the predefined goods setting can be con-
sidered as a special case of the setting of cake cutting with
piecewise constant valuations—i.e., one where the valuation
functions of all the agents have the same set of breakpoints—
and therefore all the negative results in that setting carry over
to the cake cutting setting. However, some of the nice positive
results with regards to strategyproof mechanisms in this set-
ting (see, e.g., [Cole et al., 2013] and [Cheung, 2016]) do not
carry over to the cake cutting setting as here, informally, the
difficulty in achieving strategyproofness arises from the fact
that a mechanism has to guard against two types of manip-
ulations: i) with regards to the breakpoints in the valuation
functions and ii) with regards to the values assigned to the
pieces between two consecutive breakpoints.

2 Preliminaries
The cake—which is a heterogeneous divisible good—is mod-
elled as the unit interval [0, 1]. A piece of cake X is a finite
union of disjoint (except at the boundaries of the intervals)
subintervals of [0, 1]. An interval is denoted by I and the
length of an interval I = [x, y] is given by |I| = y − x. In
any cake cutting instance, there are n agents who want a share
of the cake and we denote them by [n] = {1, · · · , n}. Each
agent i ∈ [n] has a non-negative, integrable, and private value
density function (also referred to as their utility/valuation
function), vi : [0, 1] → R+ ∪ {0}, that indicates how agent
i values different parts of the cake, and given a piece of cake
X , the value for X is defined by Vi(X) =

∫
X
vi(x) dx =∑

I∈X
∫
x∈I vi(x) dx. (Note that the fact that the valuation

functions are integrable implies additivity—meaning for two
disjoint intervals I and I ′, Vi(I∪I ′) = Vi(I)+Vi(I

′).) With-
out loss of generality, we assume that the valuation functions
are normalized, i.e., Vi([0, 1]) = 1 for all i ∈ [n]. Addi-
tionally, we say that agent i is hungry if vi(x) > 0 for all
x ∈ [0, 1].

2.1 Input Models
The way we have defined the valuation functions above,
it is not necessary that they have a discrete representa-
tion. Therefore, most of the work in cake cutting assumes
a query model—commonly known as the Robertson-Webb
query model—that allows only the following two types of
queries.

1. Eval query: given an interval [x, y], eval(i, x, y) asks
agent i for its value for [x, y], i.e., eval(i, x, y) =
Vi(x, y).

2. Cut query: given a point x and r ∈ [0, 1], cut(i, x, r)
asks agent i for the minimum (i.e., the leftmost) point y
such that Vi(x, y) = r.



While the Robertson-Webb model is the most widely stud-
ied, there is recent work (e.g., [Chen et al., 2010; 2013], [Bei
et al., 2012], [Aziz and Ye, 2014]) which restricts the agents’
valuation functions to ones that have a concise representa-
tion, thus in turn giving rise to another model (referred to as
the direct-revelation model) where the entire valuation func-
tions of the agents are given as input to a mechanism. In this
paper, we consider one fundamental class of restricted valu-
ations, namely, piecewise constant valuations. An agent i is
said to have a piecewise constant valuation if [0, 1] can be par-
titioned into a finite number of intervals such that vi is a con-
stant over each interval (i.e., it is a step function). A special
case of piecewise constant valuations are the piecewise uni-
form valuations where, for some constant c, the function can
only take the values 0 or c. One of the reasons why piecewise
constant valuations are interesting is because they are expres-
sive enough to be able to approximate any general valuation
function.

In this paper, we make use of both input models. All
our negative (impossibility) results are in the direct-revelation
model, while the algorithm we present is in the Robertson-
Webb model. Note that the existence of a mechanism in the
Robertson-Webb model implies an existence in the direct-
revelation model, but the converse is not necessarily true, and
hence our negative results, in particular, are strong. Also, all
our negative results are true for even the restricted class of
piecewise constant valuations and hence naturally carry over
to anything more general (like piecewise linear valuations).

2.2 Properties of Cake Cutting Mechanisms
A direct-revelation cake cutting mechanismM takes the val-
uation functions (v1, · · · , vn) of the agents (which we refer
to as a profile) as input and it outputs an allocation A = (A1,
· · · , An), whereAi is the allocation to agent i, and ∀i, j( 6= i),
Ai and Aj are disjoint (except at the boundaries of the inter-
vals). While in general Ai can be any arbitrary piece of cake,
sometimes we concern ourselves only with contiguous allo-
cations where each Ai is a single interval. Throughout, we
assume that the mechanism allocates (to some agent) all the
pieces of cake that are valued at greater than zero by at least
one of the agents. Additionally, we often useMi(vi, v−i) to
denote Ai, where v−i denotes the valuation functions of all
the agents except i.

A mechanism is said to be non-wasteful if it allocates ev-
ery piece that is desired—meaning that the piece is assigned
a value greater than zero—by at least one agent to an agent
who desires it. More formally, if I is a subinterval of [0, 1]
and D(I) = {i ∈ [n] | Vi(I) > 0}, then a mechanism is
non-wasteful if it always makes an allocation A such that
∀I, I ⊆ ∪i∈D(I)Ai. In this paper, we consider both non-
wasteful and wasteful mechanisms. Additionally, for all our
negative results we assume free disposal, meaning that the
mechanism can throw away pieces of cake that aren’t valued
(at greater than zero) by any of the agents without incurring
a cost. Note that the existence of a mechanism without the
free disposal assumption implies the existence of a mecha-
nism with the free disposal assumption, but the converse is
not necessarily true. Hence, in the context of negative results,
such an assumption only makes them stronger.

In this paper, we use (approximate) proportionality as our
main fairness criterion. In the definition below, proportional-
ity refers to the special case when ε = 0.

Definition 1 (ε-proportionality). For any ε ∈
[
0, 1

n

)
, a mech-

anismM is said to be ε-proportional if it always returns an
allocation (A1, · · · , An) such that ∀i ∈ [n], Vi(Ai) ≥ 1

n − ε.
Along with (approximate) proportionality, the other ma-

jor property we are concerned with is (approximate) strate-
gyproofness. Informally, for any ε ∈ [0, 1], a cake cutting
mechanism M is said to be ε-strategyproof if an agent can
gain a utility of at most ε by misreporting her valuation func-
tion. More formally, we have the following definition.

Definition 2 (ε-strategyproofness). For any ε ∈ [0, 1], a
mechanism M is said to be ε-strategyproof if for every
agent i ∈ [n], and for all v′i, v−i, Vi(Mi(vi, v−i)) ≥
Vi(Mi(v

′
i, v−i))− ε.

Strategyproofness refers to the special case in the above
definition when ε = 0.

In addition to the above mentioned properties, we also
talk about (approximate) envy-freeness and Pareto-efficiency.
For an ε ∈ [0, 1], a cake cutting mechanism is said to be
ε-envy-free if it always returns an allocation (A1, · · · , An)
such that ∀i, j ∈ [n], Vi(Ai) ≥ Vi(Aj) − ε. Envy-freeness
refers to the special case in the above definition when ε =
0. A cake cutting mechanism is said to be Pareto-efficient
if it always returns an allocation (A1, · · · , An) that is not
Pareto-dominated—meaning that there is no other allocation
(A′1, · · · , A′n) such that ∀i ∈ [n], Vi(A

′
i) ≥ Vi(Ai), with the

inequality being strict for at least one agent. Note that non-
wastefulness, as defined above, can be considered as a weak
form of efficiency where all it is doing is restricting a mecha-
nism from allocating a piece of zero value to an agent if there
is some other agent who has a non-zero value for it.

3 Non-wasteful Mechanisms
Chen et al. [2010; 2013] were the first to consider direct-
revelation mechanisms for cake cutting and they proposed
a polynomial-time deterministic mechanism that is strat-
egyproof, proportional, envy-free, and Pareto-efficient for
piecewise uniform valuations. In light of such a result, one
natural question that arises is if there exists a mechanism
for at least the more general class of piecewise constant val-
uations that is strategyproof, Pareto-efficient, and fair (for
some notion of fairness). We already have an answer to this
question due to Schummer [1996] who considered the prede-
fined divisible goods setting and showed that the only mech-
anism that is strategyproof and Pareto-efficient is a dictator-
ship. And since this predefined goods setting is a special case
of the setting with piecewise constant valuations, we know
that there is no hope for achieving strategyproofness, Pareto-
efficiency, and any notion of fairness. Therefore, in this con-
text, another notion to consider is non-wastefulness which, as
defined in Section 2, is a weaker notion of efficiency. In fact,
Aziz and Ye [2014] considered this notion and showed an im-
possibility result saying that there is no strategyproof, robust
proportional (which is a much stronger notion of proportion-
ality; see [Aziz and Ye, 2014]), and non-wasteful mechanism



[Aziz and Ye, 2014, Theorem 7]. Below, we show a stronger
impossibility which says that there is no deterministic and
non-wasteful mechanism that is even ε1-strategyproof and ε2-
proportional for ε1, ε2 such that 0 ≤ 3ε1 + ε2 <

1
n .

Theorem 1. For any n ≥ 2 and 0 ≤ ε1, ε2 <
1
n such that

3ε1 + ε2 < 1
n , there is no deterministic and non-wasteful

mechanism for n agents with piecewise constant valuations
that is ε1-strategyproof and ε2-proportional.

Proof. Let us assume that there exists a deterministic, ε1-
strategyproof, ε2-proportional, and non-wasteful mechanism
M for n agents. First, consider the profile (u, u, y, · · · , y),
where

u(x) =

{
n
2 x ∈ [0, 2

n ]

0 x ∈ ( 2n , 1]
y(x) =

{
0 x ∈ [0, 2

n ]
n
n−2 x ∈ ( 2n , 1].

Let M make an allocation A1, A2 to agent 1 and agent 2,
respectively. Without loss of generality, we can assume that
|A1| ≥ |A2|. Now, sinceM is non-wasteful, |A1| + |A2| =
2
n , and so this implies that |A1| ≥ 1

n .
Next, let us consider the profile (v, u, y, · · · , y), where

v(x) = 1
|A1| when x ∈ A1 and 0 otherwise. Since M is

non-wasteful and ε1-strategyproof, agent 1 has to get a util-
ity of at least 1 − ε1 from the allocation in this profile, be-
cause if it allocates anything less, then agent 1 will deviate
to Profile 1. Therefore, if M allocates A′1 and A′2 to agent
1 and 2, respectively, then (1− ε1) · |A1| ≤ |A′1| and so
|A′2| ≤ |A2|+ ε1 · |A1|.

Finally, consider the profile (v, w, y, · · · , y), where

w(x) =


1−δ
|A1| x ∈ A1

δ
|A2| x ∈ A2

0 otherwise

Now, here, since M is non-wasteful and because agent 1
does not desire any part of A2, agent 2 gets at least A2. How-
ever, agent 2 has a total utility of only δ for A2, and since we
assumed thatM is also ε2-proportional, it has to get a piece
of length, say, `, of A1, where

δ +
`

|A1|
(1− δ) ≥ 1

n
− ε2 =⇒ ` ≥ |A1| ·

( 1n − ε2 − δ)
(1− δ)

.

IfM allocatesA′′1 andA′′2 to agent 1 and 2, respectively, in
this profile, then |A′′2 | ≥ |A2|+ ` ≥ |A2|+ |A1| ·

( 1
n−ε2−δ)
(1−δ) .

Also, from the profile (v, u, y, · · · , y) we know that |A′2| ≤
|A2|+ ε1 · |A1|. Therefore, if n2

(
|A2|+ |A1| ·

( 1
n−ε2−δ)
(1−δ)

)
>

n
2 (|A2|+ ε1 · |A1|) + ε1, then agent 2 can deviate from
(v, u, y, · · · , y) to (v, w, y, · · · , y) and as a result gain strictly
more than ε1. So, considering this inequality, we have,

n

2

(
|A2|+ |A1| ·

( 1n − ε2 − δ)
(1− δ)

)
>
n

2
(|A2|+ ε1|A1|) + ε1

1

n
·
(
( 1n − ε2 − δ)

(1− δ)
− ε1

)
>

2

n
ε1 (as |A1| ≥

1

n
)

δ <
1− n(3ε1 + ε2)

n(1− 3ε1)
.

This in turn implies that for every 0 ≤ ε1, ε2 < 1
n such that

3ε1 + ε2 <
1
n , we can always find a 0 < δ < 1−n(3ε1+ε2)

n(1−3ε1)
to fit in the definition of the function w(x) such that the
inequality—and hence our theorem—will be true.

With respect to the above theorem, we highlight the fol-
lowing corollaries which are basically special cases when ε1
and ε2 are zero, respectively. The first one rules out the pos-
sibility of guaranteeing some value (however small) to all the
agents if the mechanism has to be non-wasteful and strate-
gyproof. The second one, on the other hand, provides a lower
bound for the natural question on whether we can come up
with mechanisms that can guarantee proportionality and non-
wastefulness and at the same time allow only a maximum
gain of ε, where 0 ≤ ε < (1− 1

n ), from misreporting. Unfor-
tunately, we do not have an accompanying upper bound result
for this and so the question of an upper bound remains open.

Corollary 2. For any n ≥ 2 and 0 ≤ ε < 1
n , there is no de-

terministic, strategyproof, ε-proportional, and non-wasteful
mechanism for n agents with piecewise constant valuations.

Corollary 3. For any n ≥ 2 and 0 ≤ ε < 1
3n , there is no de-

terministic, ε-strategyproof, proportional, and non-wasteful
mechanism for n agents with piecewise constant valuations.

4 Removing Non-wastefulness
While non-wastefulness is certainly a desirable property, it

seems like the negative results in the previous section were
largely driven by this constraint as it severely restricts the
kind of allocations that a mechanism can make. So, what
if we remove this constraint? Do similar impossibilities still
hold, or are there mechanisms that satisfy some of those prop-
erties? These are the questions we try to answer here.

Chen et al. [2010; 2013] provided a deterministic and
strategyproof mechanism for piecewise uniform valuations
and one of the main open questions they had posed was on
generalizing their mechanism for piecewise constant valua-
tions. Subsequently, Aziz and Ye [2014] and Brânzei and
Miltersen [2015] had posed the same question regarding the
existence of mechanisms that are strategyproof and propor-
tional for piecewise constant valuations. Here we address a
special case of this question when the mechanism makes con-
tiguous allocations and show that there exists no determinis-
tic direct-revelation mechanism that is strategyproof and ε-
proportional, for any 0 ≤ ε < 1

n . Additionally, we also prove
a stronger result (Proposition 4) for the case of two agents.
Informally, at a high-level, the proofs of both of these results
follow the same theme as in the proof of Theorem 1 where we
construct valuation profiles with an aim of arriving at a con-
tradiction. However, unlike in Theorem 1, we now no longer
have the non-wasteful constraint, and so this requires some
additional arguments which use the fact that the allocations
are contiguous. Due to space constraints, the proofs of both
of the statements below have been deferred to the full version
[Menon and Larson, 2017].

Proposition 4. For any 0 ≤ ε1, ε2 < 1
2 such that

ε1 + ε2 < 1
2 , there exists no deterministic mechanism for

two hungry agents with piecewise constant valuations that



makes contiguous allocations and is ε1-strategyproof and ε2-
proportional.

As an aside, note that the ε2 = 0 case in Proposition 4 es-
sentially says that if we insist on contiguous and proportional
allocations, then one cannot provide any guarantee on strate-
gyproofness (i.e., such mechanisms cannot be ε-strategyproof
for any feasible ε). Later on, in Theorem 8, we show how one
can circumvent this and obtain a 1

4 -strategyproof and propor-
tional mechanism for two agents by giving each of them at
most two contiguous pieces.

Theorem 5. For any n ≥ 2 and 0 ≤ ε < 1
n , there is no de-

terministic mechanism for n agents with piecewise constant
valuations that makes contiguous allocations and is strate-
gyproof and ε-proportional.

Given Theorem 5, the first natural question that arises is if
we can extend it to the case when the mechanism can make
arbitrary allocations. Unfortunately, we do not have an an-
swer to this question. Instead, below, we show a connection
between direct-revelation mechanisms and mechanisms in the
Robertson-Webb model for the case when agents have piece-
wise constant valuations. We believe that it will be useful in
either of the cases—i.e., if the answer to the above question
is either in the positive or if we want to prove that such a
mechanism does not exist. In the case that such a mechanism
exists, the connection basically shows that when given an up-
per bound on the maximum number of breakpoints in any
agent’s valuation function, one can construct a mechanism
in the Robertson-Webb model that approximately achieves
both of the properties. And in the case that one wants to
prove that such a mechanism does not exist, one can use this
connection to prove a non-existence (of mechanisms that are
ε-strategyproof and ε-proportional for some ε > 0) in the
Robertson-Webb model and then map it back to show that
there is no (finite) direct-revelation mechanism that is strate-
gyproof and proportional.

Proposition 6. Let P1, P2, P3 denote the property of strate-
gyproofness, proportionality, and envy-freeness, respectively,
and let P ⊆ {P1, P2, P3}. Given k, an upper bound on
the maximum number of breakpoints in any agent’s valuation
function, and any n ≥ 2, if there exists a (finite) determinis-
tic direct-revelation mechanism for n agents with piecewise
constant valuations that satisfies Pi, ∀Pi ∈ P , then, for any
ε > 0, there exists a mechanism in the Robertson-Webb model
for n agents with piecewise constant valuations that asks at
most (n

⌊
2k
ε

⌋
) queries on each input and is ε-Pi, ∀Pi ∈ P .

Proof (sketch). Since in the Robertson-Webb model we only
have query access to the valuation functions, the first step is
to basically “learn” these functions to a sufficiently good ap-
proximation using only eval and cut queries. Subsequently,
once we have that, we can essentially feed these functions to
the direct-revelation mechanism in order to create a mecha-
nism in the Robertson-Webb model that achieves an approx-
imate version of all the properties. For the first step, the key
observation is following claim.

Claim 1. Given an ε > 0, we can use
⌊
2k
ε

⌋
cut queries to

ε-approximate any piecewise constant function v(x) that has

Input: An agent i’s piecewise constant valuation function
vi(x), ε > 0, and k

Output: A piecewise constant function wi(x) that ε-
approximates vi(x)

1: N ←
⌊
2k
ε

⌋
, x0 ← 0, xN+1 ← 1

2: for j ∈ {1, · · · , N} do
3: xj ← cut

(
i, xj−1,

ε
2k

)
, cj ← ε

2k·(xj−xj−1)

4: wi(x) = cj , x ∈ [xj−1, xj ]
5: end for
6: if XN 6= 1 then
7: wi(x) =

(1− ε
2k ·N)

xN+1−xN , x ∈ [xN , xN+1]

8: end if
9: return wi(x)

Algorithm 1: ε-approximation of a piecewise constant function us-
ing

⌊
2k
ε

⌋
cut queries.

at most k breakpoints by another piecewise constant function
w(x) such that W ([0, 1]) = 1 and for any piece of cake X ,∫

X

v(x) dx− ε

2
≤
∫
X

w(x) dx ≤
∫
X

v(x) dx+
ε

2
. (1)

Proof (sketch). Algorithm 1 describes how to convert v(x)
to w(x) by using

⌊
2k
ε

⌋
cut queries. It is easy to see that

W ([0, 1]) = 1. To prove that for any piece of cake X ,∫
X
v(x) dx − ε

2 ≤
∫
X
w(x) dx ≤

∫
X
v(x) dx + ε

2 , con-
sider some arbitrary X . If we denote the breakpoints of
v by {b1, · · · , bk} (since there are only a maximum of k
breakpoints), where 0 = b0 < b1 < · · · < bk+1 = 1,
and if we let Ci = X ∩ [xi−1, xi], then we know that∫
X
w(x) dx =

∑N+1
i=1

∫
Ci
w(x) dx. Additionally, also note

that if [xi−1, xi] does not contain any breakpoint bj of the
original function v(x), then

∫
Ci
w(x) dx =

∫
Ci
v(x) dx since

we know that v(x) is constant over this interval (as there are
no breakpoints) and so v(x) = ε

2k·(xi−xi−1)
= w(x),∀x ∈

[xi−1, xi]. This, along with the fact that v(x) has at most k
breakpoints, implies that there are at most k Ci’s for which∫
Ci
w(x) dx 6=

∫
Ci
v(x) dx. Now, if we assume without loss

of generality that these are C1 · · · , Ck, then using the fact
that

∫
Ci
w(x) dx ≤ ε

2k and
∫
Ci
v(x) dx ≤ ε

2k we have that
for every i ∈ {1, · · · , k},

− ε

2k
≤
∫
Ci

w(x) dx−
∫
Ci

v(x) dx ≤ ε

2k
. (2)

Now, since
∫
X
[w(x) − v(x)] dx =

∑k
i=1(

∫
Ci
[w(x) −

v(x)] dx), we can now use equation 2 to prove our claim.

Given the above claim, we can now build a mechanism
MRW in the Robertson-Webb model in the following way,
where (v1, · · · , vn) are the original valuation functions and
(w1, · · · , wn) are the corresponding ε-approximated func-
tions.
∀i ∈ [n], MRW

i (v1, · · · , vn) = Mi(w1, · · · , wn). (3)

It is clear that MRW makes at most (n
⌊
2k
ε

⌋
) queries on

each input. To prove thatMRW is ε-Pi for all Pi ∈ P satis-
fied byM, let us consider each of the properties separately.



i) When M satisfies P1 (strategyproofness). Since M
is strategyproof, the only way for an agent i with a valuation
function vi to manipulateMRW is to pretend as if its func-
tion is some v′i and answer the queries accordingly. This in
turn will result in w′i being the ε-approximated function in-
stead of wi if it reported truthfully. However, we know that
∀w′i, w−i, Wi(Mi(wi, w−i)) ≥Wi(Mi(w

′
i, w−i)). This in

turn implies that using equation 1 we have,

Vi(Mi(wi, w−i)) +
ε

2
≥ Wi(Mi(wi, w−i)) ≥

Wi(Mi(w
′
i, w−i)) ≥ Vi(Mi(w

′
i, w−i)) −

ε

2
.

And so, now, using equation 3, we have that for all v′i, v−i,
Vi(MRW

i (v′i, v−i)) − Vi(MRW
i (vi, v−i)) ≤ ε.

The other two cases can be proved similarly and we defer
the complete proof to the full version.

Although, as mentioned above, it remains open as to
whether a strategyproof and proportional mechanism exists,
another goal one could still consider is on finding better pro-
portional mechanisms (in terms of ε-strategyproofness). Be-
low, we begin the pursuit of this goal and as our final question
in this paper ask if there are positive results at least regard-
ing mechanisms that are proportional and ε-strategyproof for
some ε < (1 − 1

n ). We answer it with a “Yes” and in par-
ticular we first prove—by showing a bound on the maximum
gain an agent can get by misreporting—that the well-known
Even-Paz algorithm [Even and Paz, 1984] satisfies the above
criterion for the case when there are at least four agents. And
following this, we present a minor modification to the same
that has better incentive compatible properties than the orig-
inal Even-Paz algorithm for the cases when there are two or
three agents. Due to space constraints, proofs of Proposition 7
and Theorem 8 have been deferred to the full version.
Proposition 7. For n ≥ 2 agents, the Even-Paz algorithm is
deterministic, proportional, and ε-strategyproof, where

ε =


1
2 when n = 2 or n = 4
2
3 when n = 3 or n = 5

1− 2
n when n ≥ 6.

Next, we show that the bounds on ε can be improved for
the cases when there are two or three agents. In particular, we
show that Algorithm 2 is proportional and ε-strategyproof,
where ε = (1 − 3

2n ) or ε = (1 − 3
2n + 1

2n2 ) depending on
whether n is even or odd, respectively. And so, for the cases
when there are two or three agents, the gain is 1

4 or 5
9 , respec-

tively, as opposed to 1
2 or 2

3 in the Even-Paz algorithm.
Theorem 8. Algorithm 2 is deterministic, proportional, and
ε-strategyproof, where

ε =

{
1− 3

2n when n is even

1− 3
2n + 1

2n2 when n is odd.

5 Discussion
One of the main open questions raised by Chen et al. [2010;
2013] (and also by Aziz and Ye [2014] and Brânzei and Mil-
tersen [2015]) was on the existence of deterministic mecha-
nisms that are strategyproof and fair for piecewise constant

Procedure: modifiedEP([a, b], S)
Input: ([a, b], S), where [a, b] ⊆ [0, 1] is the cake to be

proportionally allocated among k = |S| agents
1: If k == 1, then return ([a, b])
2: for each i ∈ S do
3: ci = cut

(
i, a,
b k2 c
k · Vi(a, b)

)
4: end for
5: Let {d1, · · · , dk} be the sorted order of the ci’s, SL ←
{i ∈ S | ci ≤ db k2 c}, and SR ← S \ SL.

6: Proportionally allocate the cake
[
db k2 c, db k2 c+1

]
among the k agents using the Even-Paz algorithm.

7: Recursively call modifiedEP on
[
a, db k2 c

]
and[

db k2 c+1, b
]

with SL and SR, respectively. Return the
allocations so formed along with the proportional allo-
cation of the piece

[
db k2 c, db k2 c+1

]
.

Main:
8: output modifiedEP([0, 1], S = {1, · · · , n}).

Algorithm 2: Modified Even-Paz algorithm.

valuations. Here we addressed a special case of this and we
showed (in Theorem 5) that for any n ≥ 2 agents there is no
deterministic mechanism that makes contiguous allocations
and is strategyproof and even ε-proportional. Although the
contiguous allocations constraint captures some interesting
scenarios, we believe that answering the above question with-
out this (rather strong) constraint is important. In particular,
when given the fact that there exists randomized mechanisms
that are a) truthful in expectation, proportional, and envy-
free for piecewise linear valuations in the direct-revelation
model [Chen et al., 2013] and b) truthful in expectation and ε-
proportional in the Robertson-Webb model [Brânzei and Mil-
tersen, 2015], we believe that resolving this question can give
us a clearer picture regarding the limits of determinism.

Moving away from the above result, in Section 4 we
showed (in Theorem 8) that there exists a proportional mech-
anism that has better incentive-compatible properties than the
Even-Paz algorithm for the cases when there are two or three
agents. With regards to this result, one of the main ques-
tions that arise is the following and we suggest it as an open
problem: for n ≥ 2 agents, what is the minimum achiev-
able ε for which there exists a deterministic mechanism that
is proportional and ε-strategyproof? It is unclear how we can
provide a lower bound, or improve the proposed mechanism
to get smaller values of ε. And also, at the same time there
is the question of whether we can make Algorithm 2 non-
wasteful when agents have concisely representable valuation
functions. Therefore, given our lower bound (Theorem 1)
in Section 3, another problem that remains open is whether
we can guarantee non-wastefulness along with proportional-
ity and ε-strategyproofness, where 1

3n ≤ ε < (1− 1
n ).
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