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Abstract

Understanding when and how computational complexity can
be used to protect elections against different manipulative ac-
tions has been a highly active research area over the past two
decades. A recent body of work, however, has shown that
many of the NP-hardness shields, previously obtained, vanish
when the electorate has single-peaked or nearly single-peaked
preferences. In light of these results, we investigate whether
it is possible to reimpose NP-hardness shields for such elec-
torates by allowing the voters to specify partial preferences
instead of insisting they cast complete ballots. In particular,
we show that in single-peaked and nearly single-peaked elec-
torates, if voters are allowed to submit top-truncated ballots,
then the complexity of manipulation and bribery for many
voting rules increases from being in P to being NP-complete.

1 Introduction

Collective decision making problems abound in human as
well as multiagent contexts and they typically proceed by
using a mechanism that aggregates the preferences of the
participating agents. Voting is one such mechanism, and is,
in fact, one of the most widely used ones. For instance, it
has been proposed as a mechanism for web spam reduction
(Dwork et al. 2001), for collaborative filtering and recom-
mender systems (Pennock, Horvitz, and Giles 2000), and
for multiagent planning (Ephrati and Rosenschein 1993).
As a result of its importance, voting has been extensively
studied, and the theory of social choice has a number of
impossibility results surrounding fundamental issues that
arise in running elections. Among these, one aspect that
has attracted considerable attention is the impact of differ-
ent manipulative actions (bribery, control, and manipula-
tion) on elections. Although the Gibbard-Satterthwaite the-
orem states that all reasonable voting rules are manipulable,
starting with the seminal work of Bartholdi III, Tovey, and
Trick (1989), there has been much work that has looked into
how computational complexity can be used as a barrier to
protect elections against different manipulative actions (see
(Faliszewski, Hemaspaandra, and Hemaspaandra 2010) for
a survey).

While there have been a lot of results in computational
social choice that has obtained NP-hardness shields for dif-
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ferent voting rules using constructions on combinatorially
rich structures such as partitions and covers, a recent body
of work, which was mainly inspired from the work of Walsh
(2007), has shown that such combinatorial protections van-
ish when the voters have structured preferences. In partic-
ular, in single-peaked electorates it was observed by Fal-
iszewski et al. (2011) for control and manipulation and by
Brandt et al. (2015) for bribery that many of the previously
known NP-hardness results fall into polynomial time. Sub-
sequently, there has also been work done on the notion of
nearly single-peaked preferences by Faliszewski, Hemas-
paandra, and Hemaspaandra (2014) where similar, although
not as stark, observations have been made.

In the context of the above results, this paper aims to
take this line of research in a new direction by looking at
the impact of partial preferences on manipulative actions in
single-peaked and nearly single-peaked electorates. In par-
ticular, we consider top-truncated ballots, which are natural
in settings where an agent is certain about his most preferred
candidates, but is unsure or indifferent among the remaining
ones, and we look at their impact on manipulative actions
in single-peaked and nearly single-peaked settings. In doing
S0, we arrive at a number of interesting results, which in turn
form the theme of our paper — of reinstating combinatorial
protections by allowing top-truncated voting.

Our contributions include the following:

1. We, for the first time, systematically study the impact of

partial voting on manipulative actions in structured prefer-
ence profiles. In particular, we look at the problem of ma-
nipulation and bribery in single-peaked and nearly single-
peaked settings when top-truncated ballots are allowed.

2. Under the assumption that the voters submit complete bal-

lots, we first provide polynomial-time algorithms for ma-
nipulation and weighted-bribery for certain voting rules
in single-peaked and nearly single-peaked settings, thus
extending the works of Faliszewski et al. (2011) for ma-
nipulation, Brandt et al. (2015) for bribery, and Fal-
iszewski, Hemaspaandra, and Hemaspaandra (2014) for
nearly single-peaked electorates. We then show how these
polynomial-time problems become NP-complete when
top-truncated ballots are allowed.

3. We show an example of a natural voting rule where, con-

trary to intuition, the complexity of manipulation actually



increases when moving from the general case (i.e. when
there is no restriction on the preferences) to the single-
peaked case. In particular, in Theorem 5 we show how the
complexity of manipulating eliminate(veto), when top-
truncated ballots are allowed, moves from being in P
in the general case to being NP-complete in the single-
peaked case.

The overarching theme in this work is that top-truncated
voting is useful in reinstating combinatorial protections in
single-peaked and nearly single-peaked electorates. We be-
lieve that the results form a win-win scenario: allowing
voters to specify top-truncated ballots (or partial prefer-
ences, in general) is extremely useful and often necessary
in many multi-agent systems applications and even in real-
world elections, and allowing this additional flexibility in
turn gives us what we want in terms of making the complex-
ity of many manipulative-action problems hard.

Proofs omitted due to space constraints can be found in
the full version of this paper (Menon and Larson 2015b).

Related Work There are two lines of research that are
closely related to our work. First is the work on struc-
tured preference profiles. This line of research has mainly
looked at single-peaked preferences and more recently at
nearly single-peaked preferences. The notion of single-
peaked preferences was introduced by Black (1948) and sub-
sequently there has been a lot of work in social choice lit-
erature on the same. Among these, in particular, we note
the work of Cantala (2004) who introduced the concept of
“single-peaked with outside options” which is similar to the
notion of single-peaked with top-truncated ballots that we
study here, and the work of Barberd (2007) who discussed
how properties of different variants of single-peaked prefer-
ences change for varying amounts of indifference permitted.

In computational social choice, three papers that are most
related to our work are (Faliszewski et al. 2011), (Brandt
et al. 2015), and (Faliszewski, Hemaspaandra, and Hemas-
paandra 2014). The first two papers discuss manipulation
and control, and bribery, respectively, and show how most
of the NP-hardness shields for these manipulative actions
vanish in single-peaked settings. The third paper studies the
complexity of manipulative actions in nearly single-peaked
electorates and shows how in many cases the hardness re-
sults evaporate. Our paper, in contrast, follows the theme of
reinstating these combinatorial protections.

Although the above mentioned papers are by far the most
related to our work, it is worth noting that this line of re-
search has mainly focused on the problem of single-peaked
consistency where, informally, the task is to determine if a
given set of preferences is single-peaked or otherwise (see
(Bartholdi and Trick 1986; Doignon and Falmagne 1994;
Escoffier, Lang, and Oztiirk 2008; Erdélyi, Lackner, and
Pfandler 2013; Lackner 2014)).

The second line of research that is related to this paper
is the work on election problems when partial preferences
are allowed. Here, the papers that are most related are those
of Narodytska and Walsh (2014), Fitzsimmons and Hemas-
paandra (2015), and Menon and Larson (2015a). Narodyt-
ska and Walsh (2014) were the first to look at complexity
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of constructive manipulation under top-truncated voting and
they provided an analysis for three particular voting proto-
cols. Subsequently, Fitzsimmons and Hemaspaandra (2015)
looked into how the complexity of bribery, control, and ma-
nipulation is affected when ties are allowed, and Menon and
Larson (2015a) generalized the complexity of constructive
and destructive manipulation with top-truncated ballots for
broader classes of voting rules and also looked at the im-
pact on complexity when there is uncertainty about the non-
manipulators’ votes. While all three papers discuss results
in the general setting (i.e. when there is no restriction on the
structure of the preferences), in contrast to this, in this paper,
we look at the complexity of manipulation and bribery with
top-truncated ballots when the preferences are restricted to
being single-peaked or nearly single-peaked.

Additionally, we also note that there has been work on
other election problems when preferences are only par-
tially specified. Notable among them are the works of Kon-
czak and Lang (2005) and Xia and Conitzer (2011) on the
possible and necessary winners problem, and the work of
Baumeister et al. (2012) which discusses planning various
kinds of campaigns in settings where the ballots can be trun-
cated at the top, bottom or both. The extension-bribery prob-
lem they introduce in that paper is closely related to the ma-
nipulation problem with top-truncated ballots.

2 Preliminaries
Elections, Voting Rules, and Preferences

Elections An election is modeled as a pair £ = (C,V),
where C' is the set of candidates and V is the set of voter
preferences. For every voter v;, >; denotes their preference
order over C. >; is said to be a complete order (or a com-
plete vote) if it is antisymmetric, transitive, and a total or-
dering on C'. Here, we also consider incomplete orders in the
form of top-truncated ballots. >; is said to be a top-truncated
order (or simply, a top order) if it is a complete order over
any non-empty C’ C C and if all candidates in C'\ C" are as-
sumed to be tied and are ranked below the candidates in C”.
For simplicity, we sometimes use (c1,- - , ¢,,) to denote a
preference order ¢; > --- > c,,. Since this paper looks at
weighted elections, additionally, every voter v; has a weight
w; associated with them.

Voting Rules An election system or a voting protocol
takes the set of votes V' as input and it outputs a collection
W C (C called the winner set. A candidate is said to be
a Condorcet winner if it is preferred over every other can-
didate by a strict majority of the voters, while it is said be
a weak-Condorcet winner if it is preferred over every other
candidate by at least half of the voters. In this paper, we con-
sider the following voting rules. We first present their origi-
nal definitions which is on complete orders and then discuss
how top orders can be handled.

1. Positional scoring rules: A positional scoring rule is de-
fined by a scoring vector & = {1, -+ - , Qy, ), Where iy >
-+ > aun. For each voter v, a candidate receives ay; points
if it is ranked in the ith position by v. Some examples of
scoring rules are the plurality rule with « = (1,0, --- ,0),



the Borda rule withae = (m — 1,m — 2, - -
veto rule with « = (1,--- ,1,0).

2. Scoring elimination rules: Let X be any scoring rule.
Given a complete ordering, eliminate(X) is the rule that
successively eliminates the candidate with the lowest
score according to X. Once a candidate is eliminated, the
rule is then repeated with the reduced set of candidates un-
til there is a single candidate left. In this paper, we mainly
consider two scoring elimination rules: eliminate(Borda)
— which is also known as Baldwin’s rule or Fishburn’s ver-
sion of Nanson’s rule (Niou 1987) — and eliminate(veto).

3. Copeland®: Let « € Q, 0 < a < 1. In Copeland®,
introduced by Faliszewski, Hemaspaandra, and Schnoor
(2008), for each pair of candidates, the candidate pre-
ferred by the majority receives one point and the other
one receives a 0. In case of a tie, both receive « points.

,0), and the

A voting rule which, on every input that has a weak-
Condorcet winner, outputs the set of all weak-Condorcet
winners as the set of winners is said to be weak-Condorcet
consistent.

To deal with top-truncated orders in positional scoring
rules where a voter ranks only k out of the m candidates
(k < m), we use the following three schemes that were used
by Narodytska and Walsh (2014) in their preliminary work
on manipulation with top orders. Emerson (2013) also used
the same schemes for the Borda rule.

1. Round-up: A candidate ranked in the ith position (i < k)
receives a score of «;, while all the unranked candidates
receive a score of «,,. For any positional scoring rule X,
we denote this by X;.

2. Round-down: A candidate ranked in the ith position
(i < k) receives a score of Oy (k—i)—1, While all the
unranked candidates receive a score of «,,. For any posi-
tional scoring rule X, we denote this by X|.

3. Average score: A candidate ranked in the ith position

(1 < k) receives a score of «;, while all the unranked

. o

candidates receive a score of % For any posi-
tional scoring rule X, we denote this by X,,,.

In scoring elimination rules, we deal with top-truncated
votes by using the round-up scheme described above. Here,
we consider a vote to be valid only until at least one of the
candidates listed in it is remaining in the election. In other
words, we simply ignore a vote once all the candidates listed
in it are eliminated. In the case of Copeland®, top orders are
dealt by just keeping to the definition which assumes that all
the unranked candidates are tied and are ranked below the
ranked candidates.

Single-Peaked Preferences The notion of single-peaked
preferences, first introduced by Black (1948), captures set-
tings where the preferences of a voter are based on a one-
dimensional axis. The basic idea here is that every voter has
a peak (their most preferred alternative) and that their util-
ity for an alternative decreases the further it is away from
this peak. Below, we provide the formal definition of single-
peaked preferences on complete orders. We use the defini-
tion of single-peakedness found in (Faliszewski et al. 2011).
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Definition 1. A collection of votes, V, is said to be single-
peaked if there exists a linear order L over C' such that for
every triple of candidates a, b, and c it holds that:

(aLbLeV cLbLa) = (WweV)[a>py b = b, ].

When voters are allowed to present top-truncated ballots,
this notion of single-peakedness essentially captures those
scenarios where they have a continuous range over L over
which their preferences are single-peaked and outside of
which they are indifferent among the alternatives. In social
choice theory, this notion of single-peaked preferences has
been captured as single-peaked with outside options in the
context of choosing a level of public good by Cantala (2004).

Throughout this paper, following the model proposed by
Walsh (2007), we assume that the societal order L is given
as part of the input.

Example 1. Let C = {c;, ¢2,¢3,¢4} and caLegLezLey be a
linear order over C. Then, the preference orders ¢4 > c3 >
co = ¢y and ¢4 > co > c3 > c; are both valid complete
single-peaked orders, while the preference order ¢4 > ¢; >
c2 > c3is not a valid single-peaked order. Also, with respect
to the given linear order, ¢4 > c3 and ¢4 > co are both valid
top-truncated single-peaked orders, while ¢4 > ¢; is not.

Nearly Single-Peaked Preferences Although single-
peaked preferences are an interesting domain to study, it
is often the case that real-world electorates are not truly
single-peaked, but are only very close to being single-
peaked. The notion of “near” single-peakedness was first
raised by Conitzer (2009) and Escoffier, Lang, and Oztiirk
(2008), and was subsequently systematically studied by Fal-
iszewski, Hemaspaandra, and Hemaspaandra (2014) and
Erdélyi, Lackner, and Pfandler (2013). In this paper, we look
at only one notion of “nearness”, namely the maverick no-
tion which is defined below.

Definition 2 (k-maverick SP Electorate). A collection of
votes V' is called a k-maverick SP electorate if all but at
most k of the voters are single-peaked consistent with the
societal order L.

Manipulative Actions

In this paper, we consider two manipulative action prob-
lems: manipulation and bribery. In particular, we study the
Constructive Coalitional Weighted Manipulation (CWCM)
problem and the Weighted-bribery problem. CWCM was
first studied by Conitzer, Sandholm, and Lang (2007). and
is described below.

Definition 3 (CWCM). Given a set of candidates C, a set
of weighted votes, S (preferences of the non-manipulators),
the weights for a set of votes, 7' (manipulators’ votes), and
a preferred candidate, p, we are asked if there exists a way

to cast the votes in 7" so that p is a winner in the election
E=(C,5uUT).

The complexity-theoretic study of the bribery problem
was first introduced by Faliszewski, Hemaspaandra, and
Hemaspaandra (2009). Here we mainly look at the weighted
version of the bribery problem which is described below.



Definition 4 (Weighted-bribery). Given a set of candidates,
C, the set of weighted votes, V, a preferred candidate, p, and
a limit, £ € N, we are asked if there exists a way to change
the votes of at most k of the voters in V' so that it results in
p being a winner.

Throughout this paper, unless otherwise specified, we
use the non-unique winner model (where the objective is
to make the preferred candidate a winner) as our standard
model.

3 Manipulation

In this section we study CWCM with top-truncated votes
in both single-peaked and nearly single-peaked electorates.
Since the theme of this paper is the reinstatement of combi-
natorial protections by top-truncated voting, for all the vot-
ing rules considered in this section, we present both the “eas-
iness” result (if not already known from previous work) as
well as the subsequent “hardness” result that arises as a con-
sequence of allowing top-truncated ballots.

Single-Peaked Electorates

Walsh (2007) was the first to consider manipulation with
single-peaked preferences and he showed that STV remains
NP-hard to manipulate for 3 candidates. Subsequently, Fal-
iszewski et al. (2011) showed that for many voting proto-
cols which are usually hard to manipulate, restricting the
preferences to being single-peaked makes them easy. In par-
ticular, they showed that any 3-candidate scoring rule with
(a1 — a3) < 2(ag — ag) is easy to manipulate. This result
was then extended to obtain a complete characterization for
any m-candidate scoring rule in (Brandt et al. 2015). Here,
we look at 3-candidate scoring rules again and we study the
impact on complexity of manipulation when top-truncated
voting is allowed. The following results for the case of 3-
candidate Borda rule was also shown by Fitzsimmons and
Hemaspaandra (2015).

Theorem 1. For any 3-candidate scoring rule X that is not
isomorphic to plurality or veto, in single-peaked electorates,
CWCM with top-truncated votes in X | is NP-complete.

Theorem 2. For any 3-candidate scoring rule X that is
not isomorphic to plurality, in single-peaked electorates,
CWCM with top-truncated votes in X, is NP-complete.

From Theorem 1 and Theorem 2 we can see that a re-
laxation of the complete votes assumption by additionally
allowing top-truncated votes actually increases the com-
plexity of CWCM for all 3-candidate scoring rules with
(a1 — a3) < 2(ag — a3) from being in P (Faliszewski et al.
2011) to being NP-complete when either the round-down or
average score evaluation schemes are used. However, with
the round-up evaluation scheme manipulation become easy
for all m-candidate scoring rules as shown below.

Theorem 3. In single-peaked electorates, computing if a
coalition of manipulators can manipulate plurality, veto,
plurality,,, and X4, for any scoring rule X, with weighted
top-truncated votes takes polynomial time (for any number
of candidates).
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Another interesting point to note here is that Theorem 1,
Theorem 2, and Theorem 3 together also imply that the re-
striction of preferences to being single-peaked has no effect
on the complexity of manipulation with top-truncated bal-
lots, since the same results were obtained by Menon and
Larson (2015a) in the general case as well.

Next, we look at CWCM in Copeland® and we present
both the “easiness” and the “hardness” result.

Theorem 4. In single-peaked electorates, for 3-candidate
Copeland®, a € Q,0 < a < 1,

1. CWCM with complete votes is in P.
2. CWCM with top-truncated votes is NP-complete.

We note that for &« = 1 both CWCM with complete votes
and top-truncated votes can be shown to be in P.

Our final result for manipulation under single-peaked
preferences is the very interesting case of eliminate(veto).

Theorem 5. In single-peaked electorates, in the unique win-
ner model, for eliminate(veto),

1. CWCM with complete votes is in P when the number of
candidates is bounded.

2. CWCM with top-truncated votes is NP-complete for
even three candidates.

Theorem 5 is most interesting not because of the fact that
it follows the theme of our paper, but for the following other
reasons. First is the very unusual behavior that it is showing
here. Eliminate(veto), when there are only a bounded num-
ber of candidates and in the unique winner model, is known
to be in P for practically everything — from CWCM with
complete votes in the general case (Coleman and Teague
2007), to CWCM with top-truncated votes in the general
case (Menon and Larson 2015a), and to even when there is
only partial information (in the form of top-truncated votes)
on the non-manipulators’ votes (Menon and Larson 2015a).
However, here, with single-peaked preferences and with top-
truncated votes, it is NP-complete even when there are only
three candidates. Second, what makes Theorem 5 even more
interesting is the fact that this actually serves as a counterex-
ample (with the only caveat that, to be fair, they had con-
sidered only complete votes in that paper) to a conjecture
stated by Faliszewski et al. (2011) where they say that they
do not expect the complexity of manipulation for “any exist-
ing, natural voting system” to increase when moving from
the general case (where there is no restriction on the prefer-
ences) to the single-peaked case. But this is exactly what we
are seeing here.

Nearly Single-Peaked Preferences

For nearly single-peaked electorates, Faliszewski, Hemas-
paandra, and Hemaspaandra (2014) were the first to look
at the complexity of manipulation, bribery, and control. In
that paper, they introduced several notions of nearness and
among them was the k-maverick-SP-society where all but at
most k of the voters are consistent with the societal order L.
As noted before, we only consider this notion of “nearness”
in this paper. We start off by looking at 3-candidate scor-
ing rules and we show the impact of top-truncated voting on



CWCM. Note that Faliszewski et al. showed that for all 3-
candidate scoring rules that are not isomorphic to plurality
CWCM for 1-maverick-SP-societies was NP-complete (Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2014).

Theorem 6. In 1-maverick-SP societies, for any 3-candidate
scoring rule X that is not isomorphic to plurality or veto,
CWCM with top-truncated votes in X | is NP-complete.

Theorem 7. In 1-maverick-SP societies, for any 3-candidate
scoring rule X that is not isomorphic to plurality, CWCM
with top-truncated votes in X, is NP-complete.

Next, we look at eliminate(veto) and we show how top-
truncated voting increases the complexity of manipulation
for eliminate(veto) in 1-maverick-SP electorates and that it
continues to portray the unusual behavior noted earlier.

Theorem 8. In 1-maverick-SP electorates, in the unique
winner model, for eliminate(veto),

1. CWCM with complete votes is in P when the number of
candidates is bounded.

2. CWCM with top-truncated votes is NP-complete for
even three candidates.

4 Bribery

Faliszewski, Hemaspaandra, and Hemaspaandra (2009)
were the first to look at the complexity of bribery in elec-
tions. Subsequently, the problem was studied by Brandt et
al. (2015) in single-peaked settings and there they showed
that many of the combinatorial protections for bribery van-
ish when the preferences are restricted to being single-
peaked. Finally, Faliszewski, Hemaspaandra, and Hemas-
paandra (2014) also studied the problem when the prefer-
ences are nearly single-peaked. Here, we revisit the problem
of bribery in single-peaked and nearly-single peaked set-
tings and we try and see if bribery too, like manipulation,
fits into our theme of reinstating combinatorial protections
in single-peaked and nearly single-peaked elections through
top-truncated voting.

Weighted-Bribery in Scoring Rules

Here we first derive the results for 3-candidate scoring rules
in single-peaked settings when only complete votes are al-
lowed. Subsequently, we do the same when top-truncated
ballots are allowed. The NP-completeness proofs use an idea
that is similar to the one used by Faliszewski, Hemaspaan-
dra, and Hemaspaandra (2009) in Theorem 4.9, where they
use a reduction from a modified version of the weighted ma-
nipulation problem to show that a-weighted-bribery is NP-
complete when it isn’t the case that g = a3 = -+ = Q.

Let us first define the modified version of manipulation
that we will use to reduce to the problem of weighted-
bribery. The modified problem defined here is similar to the
one used by Faliszewski, Hemaspaandra, and Hemaspaan-
dra (2009), with the only difference that in their problem
all the manipulators need to have weights at least twice as
much as the weight of the heaviest non-manipulator, while
in our case we require that all the manipulators need to have
weights at least thrice as much as the weight of the heaviest
non-manipulator.
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Definition S (CWCM’). CWCM’ is the same problem as
CWCM with the restriction that each manipulative voter has
a weight at least thrice as much as the weight of the heaviest
non-manipulator.

Next, we show that for all 3-candidate scoring rules with
(a1 —ag) > 2(ag—as), CWCM’ is NP-complete. The proof
here makes use of the corresponding result for CWCM given
by Faliszewski et al. (2011) in Theorem 4.4.

Theorem 9. In single-peaked electorates, CWCM’ with
complete votes is NP-complete for 3-candidate scoring rules
when (041 — 043) > 2(042 — 043).

We now show the result for weighted-bribery in scoring
rules.

Theorem 10. In single-peaked settings, weighted-bribery
with complete votes is in P for 3-candidate scoring rules
when (o7 — a3) < 2(ag — a3) and is NP-complete other-
wise.

For the case of top-truncated ballots, we proved in The-
orem 1 that, in single-peaked settings, CWCM with top-
truncated votes is NP-complete for all 3-candidate scoring
rules except plurality and veto when the evaluation scheme
was round-down. Similarly, we also showed in Theorem 2
that CWCM with top-truncated votes is NP-complete for all
3-candidate scoring rules except plurality when the evalu-
ation scheme was average-score. Based on these two theo-
rems it is easy to see that we can make similar ‘splitting’
arguments as in Theorem 9 to prove these results hold true
even for CWCM’. As a result, we can state the follow-
ing results which can be proved by using a reduction from
CWCM’ similar to the one shown in case 2 of Theorem 10.

Theorem 11. For any 3-candidate scoring rule X that is
not isomorphic to plurality or veto, in single-peaked elec-
torates, weighted-bribery with top-truncated votes in X is
NP-complete.

Theorem 12. For any 3-candidate scoring rule X that is
not isomorphic to plurality, in single-peaked electorates,
weighted-bribery with top-truncated votes in X, is NP-
complete.

Note that we can prove the corresponding results for
nearly single-peaked electorates as well.

Weighted-Bribery in Eliminate(veto)

Here we look at the problem of weighted-bribery in elim-
inate(veto). First, we study the problem in single-peaked
electorates and following that we look at the nearly single-
peaked case. In both cases, yet again, we observe that al-
lowing top-truncated voting increases the complexity of
weighted-bribery from being in P to being NP-complete.

Theorem 13. In single-peaked electorates, in the unique

winner model, for 3-candidate eliminate(veto),

1. weighted-bribery with complete votes is in P.

2. weighted-bribery with top-truncated votes is NP-
complete.

Next we look at the complexity of bribery for elimi-
nate(veto) in 1-maverick single-peaked electorates.



Theorem 14. In 1-maverick single-peaked electorates, in
the unique winner model, for 3-candidate eliminate(veto),

1. weighted-bribery with complete votes is in P.

2. weighted-bribery with top-truncated votes is NP-
complete.

Is Weighted-Bribery for Weak-Condorcet
Consistent Rules Always Easy?

Brandt et al. (2015) showed that in single-peaked electorates
weighted-bribery is in P for all weak-Condorcet consistent
voting rules (see (Brandt et al. 2015, Theorem 4.4) for a
more general result). The P results in their theorem and the
reason why it was possible to consider all weak-Condorcet
consistent voting rules together was because of the well-
known property of single-peaked electorates where it is
guaranteed that there is always at least one weak-Condorcet
winner (the top choices of the “median” voters are always
weak-Condorcet winners). However, this property no longer
holds when top-truncated votes are allowed. As has also
been pointed out by Cantala (2004), it is not even neces-
sary that a weak-Condorcet winner exists in such settings.
We illustrate this with the following example.

Example 2. Let C' = {a,b,¢,d, e} and aLbLcLdLe the lin-
ear ordering. Let there be 5 voters with votes a >, b >, ¢,
b >y, ¢, ¢y, d,d >=,, e, and e =, d, respectively. Now,
it is easy to see that in the pairwise majority relation, a and b
lose to d, c loses to b, and both d and e lose to c. Since every-
one loses at least once, there is no weak-Condorcet winner.

Because of the above we can no longer consider all
weak-Condorcet consistent rules together like in (Brandt
et al. 2015) and exploit the connection between the weak-
Condorcet winner(s) and “median” voters to come up with
polynomial time algorithms for weighted-bribery. In fact,
next we show that for 3-candidate Baldwin’s rule (also
known as Fishburn’s version of Nanson’s rule (Niou 1987)),
which is a weak-Condorcet consistent rule in single-peaked
electorates (Brandt et al. 2015), weighted-bribery is NP-
complete when top-truncated ballots are allowed. To show
this we use an idea similar to the one used in Theorem 13.

Theorem 15. In single-peaked electorates, weighted-
bribery with top-truncated votes is NP-complete for 3-
candidate Baldwin’s rule.

5 Is Allowing Top-truncated Voting in
Single-Peaked Electorates Always
Beneficial?

Although we have seen instances like in 3-candidate scoring
rules with round-up evaluation scheme where the complex-
ity of manipulation decreases as a result of moving from a
purely single-peaked setting to a setting where top-truncated
votes are allowed, we haven’t really seen examples of any
other voting rule which shows this behavior. Moreover, we
also know that with a different evaluation scheme like round-
down or average-score this behavior is no longer seen for
even 3-candidate scoring rules. Therefore, a natural ques-
tion one could ask is: “What role does the evaluation scheme
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play? Is it possible that given a voting rule one can always
construct an evaluation scheme so that it will be beneficial
to allow top-truncated voting in single-peaked electorates?”.
Alternatively, one could also ask: “Is there a voting system
for which it is always easy to manipulate when top orders
are allowed?”. We answer the former question in the nega-
tive and the latter one in the affirmative. We show that, as
long as all the unranked candidates are assumed to be tied
and are assumed to be ranked below the ranked candidates
(which is the natural definition of a top-truncated vote), there
is at least one voting system for which, irrespective of how
the top-truncated votes are dealt with, it is NP-hard to ma-
nipulate in purely single-peaked settings, but is easy to ma-
nipulate when top-truncated votes are allowed.

Theorem 16. There exists a voting system for which, in
single-peaked settings,

1. CWCM with complete votes is NP-complete.
2. CWCM with top-truncated votes is in P.

6 Conclusion and Future Work

The central theme of this paper was the reinstatement of
combinatorial protections in single-peaked and nearly-single
peaked electorates by allowing top-truncated voting. We ob-
served this behavior first in the case of manipulation and
showed how for different voting protocols manipulation
with complete votes was in P whereas manipulation with
top-truncated votes jumped to being NP-complete. These re-
sults were followed by the results for bribery where, again,
similar behavior was observed. In studying the above two,
we note that, to the best of our knowledge, we are the first to
systematically look at the impact on complexity of manipu-
lative actions when the electorate is single-peaked or nearly
single-peaked and when top-truncated preferences are al-
lowed. In addition to the above results, we also showed an
instance of a natural voting system (eliminate(veto)) where,
contrary to intuition, the complexity of manipulation, when
top-truncated ballots are allowed, actually increases from
being in P in the general case to being NP-complete in the
single-peaked case. Finally, we concluded our discussion by
proving the existence of a voting system where allowing top-
truncated voting isn’t beneficial in the sense that it actually
results in a decrease in the complexity of manipulation.
There are many possible avenues for future work. Fore-
most would be look at some other interesting voting rules
and also consider other types of partial preferences (like bot-
tom orders, weak orders etc.) to try and see if similar be-
havior is observed in them. Second, in this paper we have
considered only manipulation and bribery, but not control.
Therefore, we feel that it would be worthwhile to see if
similar observations can be made for the problem of con-
trol as well. Third, while considering nearly single-peaked
preferences in this paper, we have essentially talked about
only one notion of nearness, namely, the k-maverick no-
tion. However, there are several other notions of nearness
(see (Erdélyi, Lackner, and Pfandler 2013)) and seeing if we
can obtain similar results for them as well would be inter-
esting. Finally, we have considered only weighted elections
in this work, but we believe that looking at the unweighted



case would be very interesting and it is definitely something
we consider as a future research direction.
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