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Abstract We investigate the problem of binary opinion aggregation in a social
network regarding an objective outcome. Agents receive independent noisy signals
relating to the outcome, but may converse with their neighbors in the network
before opinions are aggregated, resulting in incorrect opinions gaining prominence
in the network. Recent work has shown that, in the general case, there is no
procedure for inferring the correct outcome that incorporates information from
the connections between agents (i.e. the structure of the social network).

We develop a new approach for inferring the true outcome that can benefit
from the additional information provided by the social network, under the simple
assumption that agents will more readily convert to the true opinion than to a
false one, generating a homophilic effect for voters with the correct opinion. Our
proposed approach is computationally efficient, and provides significantly more
accurate inference in many domains, which we demonstrate via both simulated
and real-world datasets. We also theoretically characterize the properties that are
necessary for our approach to perform well. Finally, we extend our approach to
directed social networks, and cases with many alternatives, and outline areas for
future research.

1 Introduction

Social choice is the study of group decision making, a domain with ever increasing
ramifications for artificial intelligence researchers. In this paper, we present a novel
approach to social choice in the presence of a social network that connects agents
together, causing the opinions of agents to change based on those of their peers.
Often, we would like to aggregate the opinions of agents to determine the truth
of some objective proposition, about which the agents have some prior knowledge.
When opinions have propagated through the social network, however, the prior
knowledge of some agents may be discarded in favor of the opinions of their neigh-
bors. We propose a method for recovering the truth of an objective proposition
from agents whose opinions may have been influenced in this fashion.
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Consider for example a soccer game with spectators in the stadium acting as
voters. The spectators are polled to determine whether a ball has crossed a line
during the match. Either the ball has crossed, or it has not, but the opinions of
individual voters regarding the truth of the matter may differ because of their
differing perspectives on the event. Voters positioned far from the event may be
unable to accurately assess the outcome compared to those positioned nearby.
Condorcet’s Jury Theorem [I6] has long established the conditions under which
the truth of such a matter may be recovered: by assuming that individual voters
are more likely to observe the correct answer than the incorrect one, the theorem
shows that as more votes are added, the chances of outcome that received more
votes being correct increase, and that the correct outcome is always more likely
to have received more votes. However, the Jury Theorem relies on the assumption
that voters’ opinions are independently distributed and drawn from a binomial pro-
cess. In practice, however, voters’ opinions may not be independently distributed.
For example, the voters may talk among themselves before their opinions are ag-
gregated, and may be more likely to speak with their friends, or with fans of the
same team. This can distort the distribution of opinions, and introduce correla-
tions into the voters’ reports, preventing recovery of the true outcome. As a more
extreme example, if an announcer states that the ball did cross the line, then vot-
ers who did not observe this may report this authoritative opinion rather than
their own, because of the social interaction they have with the announcer.

Our new approach entails making a modest assumption about the nature of
the process by which opinions spread throughout the social network between when
agents observe the event, and when agents are queried for their opinions. By as-
suming that agents are more readily convinced to switch their opinion to the true
outcome, than to a false one, we are able to produce a computationally efficient,
intuitive, and effective method for inferring the true outcome even after opinions
have been altered throughout the social network. Although this assumption limits the
scope of our proposed model, it still captures a wide range of important processes.
For instance, in scientific discourse it is usually easier to convince a peer of a true
opinion than of a false one, since the arguments for the true opinion tend to be
stronger (e.g. referring to compelling experiments that refute false opinions, but
not true ones). In the sporting event example, agents that are better positioned
to observe the truth have more convincing arguments simply by virtue of their
positioning: one might be more inclined to believe a spectator seated adjacent to
the goal line than one in the most distant bleachers.

The main contributions of this paper are the following:

— We describe and develop a new model for of agent conversations (i.e. opinion
dynamics) in a social network, for which inferenceﬂ is tractable (the Correct
Conversation model).

— We provide a theoretical characterization of the model and investigate its prop-
erties on a variety of simulated and real world datasets and show that our model
can effectively predict the ground truth more accurately than majority voting,
under certain conditions.

1 Throughout, we use inference in the sense of its common usage in statistics: inferring the
value of a variable or parameter on the basis of a given set of data. For us, the variable of
interest is usually the winner of an election, while the data are usually the votes.
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The paper begins with a formalization of the problem domain, as well as a
discussion of relevant background information and recent work on the topic in
Section [2} Sections [3] and [ present our new approach and formally characterize
the problem domains for which it offers an advantage over existing approaches.
Sections [fl extends the model to the cases of a directed or hierarchical social net-
work. Finally, Sections [7] and [§] provide a complete discussion of related work,
conclusions, and future directions.

2 Background

Differences of opinion or judgement can be settled by having the affected parties
cast votes. There are many ways of combining votes, but in this paper we require
only the familiar concept of plurality voting, in which voters consider a set of
alternatives, and each casts a ballot for the single alternative they prefer most.
The alternative with the most votes is declared the winner. Voting problems can be
viewed on a continuum between objective and subjective extremes, corresponding
respectively to voters expressing their observations of some objective truth about
the world (e.g. whether a ball crosses a line or not), and voters expressing their
subjective preferences (e.g. favourite colors).

In this paper, we focus on applications that lie toward the objective side of
voting on decisions. The objective of a voting system in this domain is to infer the
true outcome from the observed votes.

Perhaps the best known example of objective voting for preference aggregation
is Sir Francis Galton’s work in 1906, eliciting the weight of an ox by asking villagers
to speculate on it. There has been considerable work since then, culminating in
the recent developments in online systems such as Robovote.org [10].

However, The earliest research concerned with objective voting was that of
the Marquee de Condorcet, summarized and translated into its modern form by
Black [5]. Condorcet’s Jury Theorem considered the problem of inferring the in-
nocence or guilt of a defendant at trial via the votes of the jury. In Condorcet’s
model, each member of the jury observed the truth of the matter with a fixed
probability p > 0.5.lead to more accurate predictions The Jury Theorem shows
that, as the number of aggregated votes increases, the probability that the alter-
native receiving more votes is the true outcome will increase as well. Condorcet’s
model is readily represented as a Bayesian Network, shown in Figure[I] Individual
voters are more likely to vote for the true outcome than the other outcome, but
the voters do not influence each other, because there is assumed to be no social
network in this model, or at least, no way for opinions to spread along such a
network.

Inference in Condorcet’s model is straightforward: a count of the votes for al-
ternative ¢ is a sufficient statistic for P(W = c¢). However, real voting problems
often do not conform to Condorcet’s model. In particular, in real voting prob-
lems, voters often interact with one another, and influence each others’ votes. If
interactions between the voters have taken place, then the votes (i.e. V1...V;,) will
no longer be independently and identically distributed. Instead, they will exhibit
some degree of correlation, depending on the exact nature of the interactions that
took place between them.
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Fig. 1 A Bayesian Network showing Condorcet’s model for the generation of votes. Votes (V)
are observed (grey), and are influenced by the unobserved “true” outcome W. Votes do not
influence each other.

Conitzer [14] proposed a model in which voters did influence each others’ opin-
ions. In this model, the probability of a voter expressing the correct opinion is
proportionate to the product of the probability of voting a certain way given
which outcome is correct, g(V|W), and the probability of voting a certain way
given the votes of ones’ neighbours A(V|N(V)). The central result of this initial
work by Conitzer was that a sufficient statistic for the likelihood of a given can-
didate being the winner, based on the observed votes and the interactions between
them, L(W = ¢|V) is in fact [], g(Vjlc), exactly the same as the sufficient statistic
for Condorcet’s model (where g(V; = c|c) = p). The proof of this follows directly
from the observation that A does not depend on W, and so will contribute an iden-
tical quantity to the likelihood of both alternatives, allowing it to be factored out
and discarded when maximizing the likelihood. This result is surprising because,
intuitively, one might suppose that a known model for correlations between the
votes would provide some predictive power. However, because the only assump-
tion is that neighboring opinions are related to each other (and not necessarily to
the truth), neighborhoods with many incorrect nodes are just as likely as those
with many correct nodes, and so the composition of neighbourhoods conveys no
additional information. Ultimately, our contribution takes the form of a refine-
ment of this model, maintaining the intuitively nice model of opinions depending
on the opinions of ones’ neighbours and showing that under a modest additional
assumption those interactions can offer additional information that leads to more
accurate predictions.

2.1 Opinion Dynamics

The discussions of our model in subsequent sections depends to a large degree on
the nature of the opinion dynamics present on the social network. Opinion dynamics
describe the fashion in which opinions spread throughout a given social network.

Early work in opinion dynamics finds its roots in Granovetter’s [22] study of
weak ties . In this paper, he finds that many important social processes propa-
gate through more casual associations within one’s social network, the so-called
weak ties. Opinion dynamics models the propagation of information through such
networks. Early work in this field examine the penetration of novel ideas through
specialized communities: for example, with the introduction of hybrid corn in ru-
ral communities [36] and the practice of prescribing antibiotics among physicians
[13]. In these scenarios, agents are individual decision makers embedded in a social
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network. Each agent has a binary state: either they have adopted an idea (denoted
+1), or they have not (denoted -1). Initially, agents in a social network begin in
the -1 state, with a handful chosen as early adopters whose states are fixed at +1
and do not update. Each agent can observe the states of her neighbors. Because
novel ideas are viewed as risky or costly, agents are reluctant to adopt an idea
unless a certain fraction of their neighbors have also adopted the idea. As the sim-
ulation proceeds, each agent may choose to update their state from -1 to +1 if the
adoption rate among her neighbors rises above a threshold; thus, an innovation
diffuses throughout the social network. The process continues until agents cease
updating their statues (i.e. reaches a stable state).

While the examples above depict the adoption of innovation as an irreversible
choice, the same model can be extended to capture the dynamics of choice. For
instance, consider a community of agents that are choosing to adopt one operating
system or another. There is a benefit to having the same operating system as
your friends, due to interoperability and compatibility issues. Each agent then, is
playing a coordination game with her neighbors in the social network, with positive
individual payoffs when two neighboring agents agree on choice A, a different
positive payoff for converging on choice B, and the poorest payoff when they
disagree. These payoffs may vary between agents. It can be shown that each agent’s
choice reduces to the threshold strategy above, and the social network may settle
in a variety of stable states (equilibria) where agents may all converge on a single
choice, or may remain split between the choices. In particular, this model is used
to explain why some innovations which offer objectively better performance over
their competitors can nonetheless still fail to achieve market dominance [33]. The
abstract model underpinning these processes was also studied by Kempe et al. [29],
who examined the problem of finding a minimal “target set” of vertices that, once
activated, are sufficient to cause activation of all other vertices through a threshold-
based process.

This process can be seen, then, as a proxy for voting. Agents in the network
communicate and exchange information as they seek to coordinate on an outcome.
Each agent acts on private information in the form of individual coordination pay-
offs, but also signals and reacts to information from neighbors. If we assume, in
the spirit of Condorcet, that agents’ pieces of private information are correlated
as noisy signals drawn from an underlying truth, then as each agent acts in the
coordination game to maximize her own utility, the community is also attempting
to uncover the ground truth. The problem we study differs from innovation adop-
tion in the particulars of how individual agents revise their states. While agents
in innovation diffusion adopt simple threshold strategies, our agents act according
to the Correct Conversation Model, detailed in the section below. This is because,
while threshold strategies model the idea of adopting a new concept, the process
we aim to model involves competing opinions that may be swayed though social
interactions. In particular, we allow agents to switch from the “old” or “wrong”
opinion to the “new” or “correct” one, as in threshold models. Moreover, we also
allow agents to switch in the opposite direction from a “correct” opinion to an
incorrect one, at a different rate, as might be expected in social discourse on a
minor political issue, for example.
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Symbol Meaning
G The social network.
\% The set of vertices (i.e. agents) in the social network.
E The set of edges (i.e. connections) in the social network.
n V|, the number of agents in the social network, who participate in the vote.
m E, the number of edges in the social network.
E; ; An indicator variable for the presence of an edge between i and j in G.
X The initial opinion assigned to an agent i.
Vi The final (report) opinion of a particular agent i.
C The set of alternatives {¢,w}.
A A particular element of C'.
N; The neighbors of V;; i.e. the set of vertices V; such that E; ; is true.
W The correct alternative, an element of C' (i.e. the ground truth).
g(VIW) The probability distribution of a vote, conditioned on W.
h(V,N) The joint probability distribution of a vote and the votes of its neighbours.
h'(V;, V;|W) | The joint probability distribution of two votes, conditioned on W.

Table 1 The summary of the notation used in this paper.

3 Model

To capture the idea of interactions between voters, we model voters as vertices in
a social graph. An edge between two vertices indicates that the voters in question
may influence each others’ opinions about the event of interest. Formally, we de-
note by G = {V, E} a graph representing a social network with |V| = n vertices
(corresponding to voters in an election), and |E| = m undirected edges. An edge
E; ; between vertices V; and Vj indicates that opinions can propagate between vot-
ers i and j. We will frequently treat E; ; as an indicator variable, true if and only
if vertices ¢ and j are connected. This is a shorthand for I(E; ; € E). Similarly,
we will frequently treat V; as a variable taking on values in the set of alternatives
or alternatives C = {¢,w}, representing the observed vote of voter V;. The true
winner is represented by a random variable W, which takes on values from C. The
related variable X; is used to refer to the initial opinion of the agent corresponding
to vertex V;, which may be changed by social interactions prior to the reporting
stage, and adopts values from the same set as V;. We denote by N; the set of
neighbors of vertex Vj, that is: N; = {V; € V|E; ;}. The process we model is a
vote held over the set of alternatives C' = {¢,w} with true winner W € C, with
voters V', connected by edges E is the social network G. We assume that voters
are honest, and report their true opinions without strategic behaviour. Table
summarizes our notation. Note that throughout, random variables and sets are
represented by capital Latin letters, while the values a random variable may take
on are represented by lowercase Greek letters. Constants and function names are
represented by lowercase Latin letters

3.1 State of the Art

Conitzer [14] studied the question of whether inference along the lines of Con-
dorcet’s model could be conducted when voters had talked among themselves,
provided that the set of interactions between each voter was known, and the social



Inferring True Voting Outcomes in Homophilic Social Networks 7

dynamics of the interaction were known. This assumed that the probability of an
observed vote could be expressed in terms of two functions g(V;|W) (the proba-
bility distribution of a vote given the correct alternative) and h(V;, N;) (the joint
probability distribution of a vote and its neighbours).

Using this model, Conitzer showed that if h does not depend on which outcome
is correct, then the Maximum Likelihood Estimator (MLE) for a given outcome
being correct is proportionate to the fraction of votes cast for the outcome —
exactly the estimator used by Condorcet, which does not depend on knowledge of
the social network structure at all. This in turn [I5] led to the proposal of a more
complex model where opinions were not distributed at random among agents,
but among edges (conversations) between agents in the social network. Although
this second model produced a tractable estimator, the assumption of opinions
arising from conversations independently of each other, even when the same agent
participates in them, does not seem to be a natural representation of the spread
of opinions in a social network.

We propose a model in the same spirit as Conitzer’s original model, but with
an h function that does depend on the correct outcome. The model we propose is
termed the “Correct Conversation” (CC) Model, and makes a mild, and realistic,
assumption that pairs of adjacent agents in the social network agree on the correct
opinion more often than pairs of adjacent agents agree on an incorrect opinion,
after opinion propagation has taken place. In the remainder of this section, we
derive the Maximum Likelihood Estimator for this model, and provide several
examples showing how the estimator works in practice, and how it can recover the
correct opinions even after an unknown process has caused opinions to propagate
through the social network.

3.2 Formal Statement of the Model

We now propose a formal statistical model for domains where voters’ conversa-
tions are more likely to lead to the discovery of truth than of falsehood. Suppose,
following Conitzer [14] that the likelihood function for the alternatives, given the
votes, can be factored independently for each voter and into two functions, one
representing the voter’s innate or initial tendency to identify the truth (g), and the
other representing the tendency for voters to agree with their neighbors (h). In our
model, h as well as g is dependent on W, and the likelihood function L(W = A|V)
for an alternative A € C being the winner, given observed votes V is given by:

L0V = V) ox [T o(VilW = DA(Vi, Vi [IW = 2) (1)

7

with strict equality holding when a uniform prior over the candidates is as-
sumed (as is usual in voting). Note that voters’ differing Vy, values account for
social network connections, even though the equation may at first appear simi-
lar to an i.i.d. distribution, and that this function describes the joint likelihood,
and not a probability density function for individual opinions. Additionally, we
suppose that the tendency for voters to agree with their neighbors in general can
be factored into a tendency to agree with each neighbor individually. This makes
the implicit assumption that social pressures are log-linear, meaning that agreeing
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with two neighbors should be a constant factor more likely than agreeing with one.
Formally, this means h factors as:

h(Vi, Vi W =X o [ P (Vi, V;IW =) (2)
V;€VnN,

Finally, we place some constraints on the functions g and h’ so that there
is a bias toward the correct outcome both in terms of voters’ innate opinions,
and tendency to agree with their neighbors. The former is essentially identical to
Condorcet’s requirement, that is each voter’s innate opinion must be right more
often than not, while the latter represents our “Correct Conversation assumption”
(voters who talk to one another are more likely to agree on the truth than on a
falsehood):

g(Vi = AW = X) > g(Vi # AW = X) (3)

W(Vi= XV =AW =X0) > B(V; # A,V £ AW = 2) (4)

Note that we do not require any constraint on the likelihood that adjacent
voters will disagreeEl

As an additional explicit assumption, we require that these functions are iden-
tical for every voter. That is, the functions’ results depend only on what the votes
of an agent and its neighbors are, not which agents cast them.

The constraints implied by our model imply a certain set of assumptions about
the nature of the opinions and the social network underlying them. If these as-
sumptions hold, the model will work well. If they do not, it will not. As outlined
above, the main assumptions are:

1. The correct conversations assumption, which states that voters who are adja-
cent in the social network who both have the same opinion are more likely to
have the correct opinion than the incorrect one.

2. Condorcet’s correctness assumption, which states that voters are more likely
to have a correct opinion than an incorrect opinion.

3. Voters’ opinions are distributed identically, though not necessarily indepen-
dently. That is, a single, homogeneous, process is at work producing driving
voters’ opinions, but this process may take the opinion assigned to one voter
into account when assigning opinions to other voters.

Note that our model makes no assumptions at all regarding time, and in fact,
has no temporal component. We require only that the assumptions above hold for
a particular set of opinions, and a particular social network, at the time that the
opinions were gathered. Many possible processes can produce data consistent with
these assumptions, but not all standard opinion dynamics processes will generate
such data.

2 Note also, that if other inequalities are known (e.g. h/(V; = A\, V; = AW = A) < B/(V; #
A, V; # AW = X), our techniques can often be naturally extended to infer the true outcome
by changing the interpretation of the counts described below. However, we believe these other
cases are less likely to arise in practice.
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3.3 Finding the Most Likely Alternative

Having described the likelihood function for the simplest version of the Correct
Conversation model, we now explain how it may be used to infer the winner of
a vote on the basis of the votes cast, and the observed social network structure.
Finding the most likely winner of the election (i.e. the alternative most likely
to be correct.) reduces to finding arg maxycc L(W = A|V). To facilitate this, we
adopt the notation that g(V; = A|W = \) o« p, g(V; # AW = A) x 1 —p = p,
W(Vi= ANV = AW = X) o q, (Vi # AV 2 AW = X) o< g, and B (V; = A, Vj #
MW = \) < r, where ¢ + ¢ +r = 1. We can then write a more compact likelihood
function as:

LW = AIV) o p7p" 72220 )

where n is the total number of voters, m is the total number of edges between
voters in the social network, x is the number of votes observed for the alternative
whose likelihood is under consideration, y is the number of concordant edges (i.e.
edges between two voters that both vote for the same alternative) belonging to
the alternative whose likelihood is under consideration, and z is the number of
discordant edges (i.e. edges between voters who disagree). Note that r?* has an
identical value in the likelihood functions of both alternatives, and so can be
ignored in most cases, though we will use it in some subsequent derivations.

It is clear that the alternative that maximizes this function will be the one with
the highest values of x and y, but note that we do not know the precise values
of p and ¢ (if we did, we would already know which alternative was victorious,
since these variables will have higher values for the true winner). We do have
constraints on the values of p and ¢, which are embodied by Equations 3 and 4.
Based on our assumptions we know that p > p and that ¢ > ¢. Therefore, there

is an unambiguous winner when =z > % and y > ™5%. That is, an alternative

2
that captures both a majority of the votes and a majority of the concordant

edges, is certain to be the most likely winner.

m—z

In the cases where z > 5 and y < ™5%, or where z < § and y > 5%,
however, identifying the winner will be more complex. Our Correct Conversation
assumption was that p > p and ¢ > ¢, so one of the observed counts represents the
unlikely event that more votes (or more concordant pairs) were observed for the
incorrect alternative. Thus, we need to determine whether it is more likely that
p>pbut x < & or g > ¢ but y < mFE. Put another way, we should award that
the election to whichever alternative is more likely to have lost one of the counts
by a statistical fluke. Assuming without loss of generality that the true winner W
has won a majority of concordant edges, but not of votes, and the existence of a
uniform prior over parameter values, what we want to know is whether or not

P(p > plz,n,A=W)P(q > qly,z,m,A=W) >

6
P(p> plesn A £ W)P(g > dly. z.m, A £ W) (©)

Both values can be expressed without difficulty for A = W, and are symmetric
for A # W (i.e. the values of z and n — z will be swapped):
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Fig. 2 A Bayesian Network showing a simple generative process for which the CC model gives
a consistent estimate of the true winner, W. Votes (V') are observed (grey), and are influenced
by the unobserved initial opinions X, which are in turn, influenced by W. Neither votes nor
initial opinions influence each other directly. Note the similarity to Conitzer’s independent
conversations model.

_ f01.5 p*(L—p)""dp
J) pr(1 —p)n—=dp

P(p > pla,n, A = W)

P(g>qly,z,mA=W) =
f(;m f(? ndq dq + fol.s fol_q ndqdq
o7 findg dg+ [y 5 fo " ndd da+ [y [dndg dq+ [y o ndq dq

where

n=Plgdy,zm)=q¢"¢(1-q—9)" """ 9)

3.4 Example Processes

While we have described a general class of models, in keeping with Conitzer’s
approach, we now provide a specific example of a process that satisfies the con-
straints associated with the Correct Conversation (CC) model. The initial model
we consider is a generative process, which can be represented by the Bayesian
Network depicted in Figure 2] In this process, each voter is assigned an initial
opinion X;, which depends on the true outcome W, and which represents their
unaltered observation of the event. These initial opinions then propagate to their
neighbors. The process appears similar to Conitzer’s independent conversations
model, but note that each X influences many final votes (all the neighbors of node
V; in the social network), whereas each edge F; ; in the independent conversations
model influences exactly two final votes. The proposed process represents a situ-
ation where voters independently observe an event, discuss it with each of their
neighbors (once, and simultaneously), and then arrive at a final opinion based on
both their opinions and those of their neighbors.



Inferring True Voting Outcomes in Homophilic Social Networks 11

We parametrize the model so that

PX; =AW =)\ =g

and
T(Xi = N) + X exey, (X =)
[Ng| +1

where I is an indicator function (that is, P(V; = A\| Xy, X;, W = X) is the frac-
tion of V; and its neighbours that agree on \). Although direct inference for W in
this process is possible, along much the same lines as in the independent conver-
sations model, we will show that the process satisfies the assumptions of the Cor-
rect Conversation model, and thus, that the maximum likelihood estimator for the
Correct Conversation model is a consistent estimator for W in this process. Specif-
ically, we will show that using g(V;|W) = P(V;|W), and h(V;, V;|W) = P(V;, V;|W),
a consistent estimator is obtained.

First, it is straightforward to show that the probability of any given voter
expressing the correct final opinion is equal to u (i.e. P(V; = W) = u). This
follows from the fact that

P(V;=XXn,,X;, W=\ =

E[I(Xi =X + 2 x,exy, (X =A)]
[N +1

(INil + D)p
P(Vi=XMNXnN,, X, W=A) = ——— =
(2 | va (2l ) |Nz|+1

PV =XNXnNn,, Xi, W=X) =

In turn, this implies that the expected fraction of voters who express the correct
opinion will also be u:

1
~E I(Vi=XN)]=—u=unp
ALY 100 =)=

Therefore, the proposed generative process satisfies the Correct Conversation
model’s constraint that g(V; = A|W = X) > ¢(V; # A|W = ) in expectation if
n>0.5.

It is similarly straightforward to show that the constraint »'(V; = A=
MW = X) > K(V; # X\, V; # AW = )) is satisfied. Here it will be convenient to
adopt the notation that B; = I(X; = W), as an indicator for whether voter i’s
initial opinion was correct or not.

Bi+ Y x;exy, Bi  Br T Xxexy, Bi

E[I(V; = W) x I(V;, = W)] = E[B; B, + B} + > BB | +rB
X1€Xn, \ X

+ Z ByBj | + Z B3| + Z Z B;B;

XjEXNi\Xk XwEXNkaN,i XjEXN,i XlinXNk\XNi
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+ D Y. BB - > Y. BBl

XlEXNk, innXNi\XNk XZEXNk\XNj innXNi\XNk

Observing that the expectation of B? = p (The indicator variable has value 1
a fraction p of the time), and assuming that nodes are connected with probability
r, and have an expected number of neighbors d, we derive:

E[1(Vi = W) x I(Vi, = W)] =p® + pr + dp® + pr + dp® + rdp
+d* (L= r)p® +d* (1 —r)p® = d* (1 —r)?p?
E[I(Vi = W) x I(Vjy = W)] =u(2r + rd) + p* (1 4 2d 4 24> (1 — r)r)

By identical derivation,
E[I(V; # W) x I(Vi, # W)] = (1 = p)(2r + rd) + (1 — p)*(1 + 2d + 2d*(1 = r)r)

It follows that, if © > 0.5, then in expectation there will be more correct con-
cordant edges than incorrect ones, so g > ¢, as required by the CC model. However,
as we show in the next section, although this process satisfies the motivational re-
quirements of the CC model, the CC model would not outperform a direct count
of the votes in expectation on problems generated from this process (it would per-
form approximately identically). In the next section, we characterize the processes
for which the CC model does provide more accurate inference.

4 Characterization of the CC Model’s Inference Advantages

In the previous section, we introduced the Correct Conversation model, and showed
how a consistent estimator could be derived for the winner of a vote that incor-
porates social network structure. A key feature of the CC model is that it makes
assumptions about the types of network dynamics that are present: adjacent voters
must be more likely to agree on the correct alternative than not, after the opinion
dynamics have taken place.

In this section we will provide a precise specification of situations in which
social network structures will provide additional information, and thereby allow
for more accurate inference of the correct outcome than a simple counting of votes.

4.1 Preliminaries
Throughout this section, for the sake of brevity, it will be useful to refer to indicator
variables taking on the values {—1,1} in response to an agent’s opinion being

respectively incorrect or correct. We therefore define B; as an indicator over voter’s
final (reported) opinions V;:

1 fv,=w
B; = .
—1 otherwise

and Z; as an indicator over voter’s initial opinions X;:
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1 if X; =W
Z; = .
—1 otherwise

We also refer throughout to two random processes, Mz (W), which makes prob-
abilistic assignments to voters’ initial opinions X;, and M (X, E, W), which makes
probabilistic assignments to voters’ final opinions V;, incorporating their initial
opinions and the social network structure. These are generalized random processes
which do not necessarily satisfy the correct conversations assumption required by
our model, and do not refer to any particular system. We will characterize family
of models under which our model performs well, and show that it is exactly those
which satisfy the correct conversations assumption. Note that, as in Section 3.4,
we use X; to refer to the initial opinion of an agent, but the process described in
that section is not used here. A social planner’s goal is to recover W, the original
parameter of Mg, and the correct alternative, by examining the votes V.

4.2 A Formal Characterization of the Effect of Counting Votes

The voting rule suggested by Condorcet’s analysis is a simple majority rule: the
true outcome is the one the largest number of voters voted for. Underlying this
rule is the assumption that E[B;] > 0 for every agent. That is, regardless of how
votes are correlated, a randomly selected voter, ceteris paribus, must be more likely
to vote for the correct outcome than not.

Provided that M, generates a final set of B; values such that individuals in
distant parts of the network have opinions that are independent from each other,
and that the network is sufficiently large (i.e. |[V| — oo, from the central limit theo-
rem for weakly dependent random variables [4], we have a formula for distribution
of the sum of a set of random variables, which follows a normal distribution. The
mean of ), B; is given by

py = Z E[B;]

and the variance is given by
2 _ 2
oy = Oij
i€V jEV

where o;; is the covariance between the two votes. A tolerance interval parametrized
by « for this value is then given by

py faoy

and the majority rule will fail when the model returns a negative value, which,
following from the above tolerance interval, happens with probability ! («a)
wherP}

py —aoy <0

1 . e a2
3 @~1 being the inverse of the CDF of the normal distribution: ¢(y) = \/% Y e /2t
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by < aoy

HY
ov
It follows that, if applied to graphs and vote assignments that were drawn
uniformly at random from a class where P(E; ;) was constant, and P(V; = A\|W =
A) was also constant, the fraction of instances where Syotes Will give the incorrect

answer is given by

P(Majority(V) # W | W) = 4571(%)

4.3 A Formal Characterization of the Effect of Counting Both Votes and
Concordant Pairs

The CC Model assumes that P(V; = A|W = \) > P(V; # AW = )), and also that
if the edge E(i,j) exists, then

P(Vi=\V; =AW =) > P(Vi £\, V; £ AW =)

Again, the model does not assume that the votes are uncorrelated (in fact, it
explicitly assumes they are correlated). Inference for this model will first compute
Majority(V'), which will behave in exactly the same fashion as was described in the
preceding subsection, but also computes a second function under the assumption
that each alternative is correct:

2

Edges(V, E) = sign(z (Bi + Bj)Ei ;)
J

allowing the determination of the alternative with the larger number of con-
cordant pairs in the network (i.e. the one on whom the largest number of pairs of
voters agree). The CC model returns the alternative suggested by Majority (V) if
that alternative also has Edges(V, E) > 0. Otherwise, it declares a tie, and decides
using the MLE procedure discussed in the Section 3.

The key feature of the CC model is that it sums over the edges of the graph,
which, if the CC assumption holds, should give an estimate of the truth in much
the same way as the majority rule does for the votes, but incorporating information
about the structure of the social network.

Edges(V, E) effectively sums up some subset of the random variables B;; there-
fore, like in the majority rule, we can derive a distribution for this sum, a tolerance
interval for the distribution, and thus determine the fraction of instances where it
is greater than zero for the correct alternative. As with the majority rule, the sum
will be distributed according to a Normal Distribution, such that:

up = ZZE[Ei,j(Bi + Bj)])
]

and
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0B =233 Ei;jEx0h).am
i 7 k1

where U(Qiﬁj))(lyk) is the co-variance between the pairs of nodes (4, ) and (k,1).
The derivation of the tolerance interval and fraction of correct recommenda-
tions for Edges(V, F) is then identical to that of the majorty rule.

4.4 Counting Edges is Often an Affine Transformation of Counting Votes

In this subsection, we will derive the surprising result that, for a substantial family
of graph and vote generating processes, the statistics computed by the majority
rule and Edges(V, E) are in fact affine transformations of each other, and have
functionally identical probabilities of producing the correct answer. The proofs of
our lemmas and theorem are found in Appendix

We rely on the idea of anonymity for the processes Mz and M,,. That is respec-
tively: changing the enumeration of the voters must not change the probability of
any particular assignment of the initial opinions X; and changing the names of
the voters, but leaving the values of X and E unchanged, must not change the
probability of any particular assignment of final opinions V. More formally, for an
anonymous Mg, then for any permutation over the numbers from 1 to n, w([n]),
P(X; = MW = \) = P(Xy¢;y = AJW = \), and likewise for M,. That is, changing
the names of voters must not change the probabilities of them ending up with a
given opinion. We first show that the mean of Edges(V, E) can be expressed as a
function of the mean of the majority rule.

Lemma 1 When averaged over the set of all possible graphs (or all permutations of a
given graph), ug < py, provided that Mgz and My are anonymous.

We now consider the relation between the co-variances Ufyj and O'(Qi ), (kD)

Lemma 2 When averaged over the set of all possible graphs (or all permutations of a
given graph), og «x oy, provided that My and My are anonymous.

This leads in turn to the theorem:

Theorem 1 When averaged over the set of all possible graphs (or all permutations of
a given graph),
Y HEY L1 (MY
(LE) w071 (A1)
provided that Mg and My are anonymous.

Proof Let 0 be the expected number of neighbours for a voter. From the proofs of
the two preceding lemmas, we have that

nE = 20py (V] - 1)

and,

op =200y /(|[V]-1)|V]
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It follows immediately that

lim HE - #V

[V|—oo OF oy

Thus, for large enough |V,

-1/ MEN . 5—1 KV
o (g) ~ P (;) U

The implication of this theorem is that, when applied to a randomly sampled
social network generated such that any two voters have a constant probability
of being linkecﬂ where voters were randomly assigned initial opinions via some
process M, independently, and then reached a final opinion that incorporates the
initial opinions of their neighbors according to a process M,, counting concordant
edges has exactly the same chance of selecting the correct outcome as simply
picking the winner by counting the votes, and ignoring the social network structure
entirely (discounting the decisions made during ties, for now).

Although this theorem characterizes a class of problems for which social net-
work structure does not matter, it also points the way toward problems where
it does. In particular, as shown in the proof in the appendix, the theorem holds
only when two voters are equally likely to be connected whether their opinions
are correct or not, that is, when the generated graph has an equal degree of ho-
mophilia for voters holding each opinion. However, there also exists a large class
of problems for which this assumption need not hold. We now characterize this set
of problems.

4.5 Homophily and the CC Model

A key simplifying assumption in our analysis so far was the idea that voters are
just as likely to be neighbors whether they ultimately end up agreeing on the
correct answer or not. Even if voters aggregate their opinions on the basis of their
neighbors, with a positive bias, the chance of both votes being correct is simply a
function of either vote being correct in the first place.

However, Theorem 1 does reveal an important feature that would differentiate
between the performance of the CC model and more straightforward approaches:
homophily in the social network. It must not just be more probable that two neigh-
bors agree than that they disagree, but that nodes agreeing are disproportionately
likely to be clustered together and tightly connected with each other. There are
many generative processes which are capable of producing highly homophilic vote
distributions on a social network, and we turn our attention to these now.

An example homophilic process for generating votes is given by Figure [3] In
this process, each voter is assigned an initial opinion, X¢ ; which is correct with
probability p. Then, a voter, Swap, is sampled from the set of voters with proba-
bility proportionate to

4 Note, this class is not limited to problems where linkages do not depend on other linkage
decisions that have been made. Scalefree networks, for example, have the same probability of
any two agents being connected in the final graph a priori, before any connections have been
added. This is all that is required.
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©

Fig. 3 A Bayesian Network showing a simple generative process for which the CC model gives
a more consistent estimate of the true winner, W, than simply counting the votes. Votes (V)
are observed, and are influenced by a series of unobserved sets of intermediate opinions X,
which are in turn, influenced by W and by the social network structure (implicit in each X).

P(Swap =1i) o< 1+ Z I(Xo,; =W AXgs #W)
JEN;

and the opinion Xg swap of the sampled voter is flipped to the opposite alter-
native. This leads to a new profile of opinions X;, and a new swap is sampled
according to this new profile, and flipped as well. The process continues until k
swaps have been made in total.

It is easy to see that this process will produce highly homophilic graphs, and the
mechanism has strong parallels with innovation diffusion mechanisms mentioned in
Section [2 insofar as agents with neighbors who have “adopted” the correct opinion
are more likely to “adopt” it themselves. The voters who currently have the wrong
opinion, but have many neighbors with the correct opinion will be sampled prefer-
entially. While flipping the opinion of such a node will increase the discriminatory
power of the majority rule by |—‘1/‘, it also increases the discriminatory power of

counting the concordant edges by far more than % For example, in a scale free

network, flipping a hub with many neighbors who are already voting for W would
generate many new correct and concordant edges.

5 Asymmetric Influence in Social Network

A natural extension of our Correct Conversation model with symmetric social
influence (i.e. V; and V; mutually influence each other if adjacent) is to consider
social structures wherein individuals may have one-sided, non-reciprocal social
influence over their associates. These may include boss-employee relationships,
the reach of popular media, and unusually stubborn and steadfast individuals.

In this setting, we need to expand the social network model since pairwise
interactions are not necessarily symmetric; that is, for each pair of nodes v and
in graph G = (V, E), (u,v) € E represents a directed edge from u to v, and does
not imply (v,u) € E. Let the in-neighbors of v be N, = {u | (u,v) € E} and the
out-neighbors of v be JVU) = {u | (v,u) € E}. The sets of votes by in- and out-
neighbors of v are represented by A« and AF respectively. The in-neighbors
of v represent those individuals who are influenced by v’s opinion, and the out-
neighbors of v represent the individuals who influence v’s opinion; these sets need
not be disjoint.
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Incorporating the objective truth of voters’ opinions into their ability to influ-
ence their in-neighbors, function f(Av, Ay, |W) is decomposed into three compo-
— —
nents: g(Av|W), h(Ay, Ag~|W), and h (Ao, AV|W) Expanding the social influ-
ence model to independent pairwise factors, we have
< ’
h (Av, A W) = I 7 (A Auw)
Au€Ag

and,

_>
WA, A W) = [ #(Av, AuW)
i A“EAN—:}

Here, h/(Ay, Ayu|W) represents the probability that the configuration A, and
A, was achieved after v attempted to influence w’s opinion ((u,v) € E), given
the correct choice W. Based on the pairwise interactions, we define the following
distinct interaction cases:

I Enlightened pair: Let ¢ = h'(4y = Ay = AW = )) be the probability that
two vertices with an interaction agree on the correct outcome.

II Unenlightened pair: Let ¢ = h/(Ay = Ay # A\|W = )) be the probability that
two vertices with an interaction agree on the incorrect outcome.

IIT Successful Resistance: Let r = h/(AU # X, Ay = AW = )\) denote the prob-
ability that node u was unconvinced by the arguments of node v toward the
incorrect alternative.

IV Failed to Enlighten: Let 7 = h'(A, = A\, A; # A|W = X) denote the proba-
bility that node u was unconvinced by the arguments of v toward the correct
alternative.

If we make the CC assumption that interactions increase the likelihood of
finding the correct outcome, then it follows that ¢ > ¢, and r > r. We can calculate
the probability of a voting profile, proportionate to:

(avw) o< TT gaow) [ TTA (Av, Aul) TTH (Au, 40l)]

iy
veV weN, weN,

And selecting the most likely winner is equivalent to:

L(Ay|W = A
arg max L(Ay| )

Then, let z be the number of votes for ¢, y be the number of edges where both
end points voted for ¢ (case I), ¥ be the number of edges where both endpoints
voted for ¢’ (case II), and z and # be the number of edges that disagree according
to case III and case IV respectively. Then, the likelihood for ¢ is maximized as

T -N—T Y- Y Z-Z

pp qaqrT

5 Despite the state of a node being influenced only by its out-neighbors, we need to examine

both h and h, because we are evaluating the likelihood of observing the configuration of the
entire directed graph.
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Conversely, the likelihood for ¢’ is

N—T T Y- Y 22

p paqgqgnrr

Therefore, ¢ wins if following holds true:

T N—T Y Y Z-Z N—T T Y- Y Z-.2

pp g g Tt >p paqgqgnrr

Which can be simplified to

pZ;c—nqy—y'rz—.é > p2x—nqy—y7;z—z'

This rule unambiguously selects a winner if 2z > n, y > g and z > z; or 2z < n,
y < y and z < 2. That is, when one alternative has a majority of votes, a majority
of both Case I over Case II, and a majority of Case IIT over Case IV edges. Again,
this can be computed in time proportional to the size of the social network.

If the counts of votes and the counts of edges suggest different winners, the
ambiguity can be resolved by determining whether it is more probable that the
estimators an alternative has not won are incorrect, or that the estimators an
alternative has won are. This is accomplished using approximate numeric methods,
but with a joint estimate over the probabilities of r,r, ¢ and ¢ together, since these
four values must sum to one, and so are interdependent.

Empirical results demonstrating the effectiveness of this model are shown in
the next section.

6 Empirical Evaluations on Common Networks

We empirically evaluate the performance of the Correct Conversation model that
we have described on simulated elections held within various social networks. We
focus on scenarios with binary outcomes, but evaluate our model against a naive
voting process, across several families of random graphs, including both directed
and undirected graphs.

To generate a problem instance, we generate a social network with n vertices
(the voters), according to one of several (parameterized) graph generation algo-
rithms. We then assign an initial opinion to each voter, with n. of the n voters
starting with the correct opinion, and the remainder receiving the incorrect opin-
ion. A model of influence dynamics (described below) is then applied to the graph,
so that opinions of voters tend to change to match those of their neighbors. The fi-
nal product is a social network where each vertex is assigned a vote, and where the
votes are the result of initial opinions modified by discussion between the voters.

Unless otherwise specified, we examine our models on graphs of sizes n = 40,
with n¢ € [0,n/2] and k € [0,3n/4] (where k is the number of Markovian steps in
the opinion propagation process). The ranges of n. and k were chosen to highlight
regions of interest; higher values of n. and k produce situations where most of the
population already agree on the correct opinion and no performance gain can be
achieved. While we do not vary the number of voters n, we do not expect it impact
the qualitative results. The specifics of the graph models are described below. The
simulation was implemented using Python version 3.3.2. Each data point (i.e. each
separate shaded region in each figure) is the result of 1,000 replications at the
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corresponding combination of parameter settings, with a new randomly generated
graph, and new randomly simulated opinion dynamics.

The integrals involved in computing the probabilities in the event that the
counts of votes and concordant pairs do not agree do not have a closed form solu-
tion. This need not preclude a principled tie-breaking as both equations (|7|and
are readily solved via Markov-Chain Monte-Carlo methods. The implementation
used to break ties is a simple Metropolis-Hastings algorithm [241[30], with likeli-
hood functions z log p+ (n—z) log p, and ylog g+ zlog ¢+ (m—y—=z)log (1 — ¢ — q),
and rejecting any invalid parameter values automatically. Subsequent points in the
chain are sampled from a Gaussian with mean equal to the current point, and vari-
ance of 0.1. We use a burn-in period of 1,000 steps, and an average computed from
every 20th step in the chain, with 10,000 points used in the average. In practice,
a tie-breaking system could sample until sufficient precision to separate the two
probabilities has been obtained. The source code is provided in Appendix [A] It is
essential to handle tie-breaking correctly, because the marginal cases are the ones
where using a more sophisticated inference algorithm is most likely to provide an
advantage. In cases where a large majority favour a particular alternative, it is
essentially certain that there will be a greater proportion of concordant pairs for
that alternative as well.

6.1 Influence Dynamics

Let N(V;) denote those voters whose opinions have a direct influence on v when
the latter updates. In undirected graphs, N(V;) is the neighbors of V;, and V; itself
(i.e. N; UV;). In directed graphs, N(V;) is the in-neighbors of V; and V; itself.
The inclusion of V; in N(V;) models a memory effect in the voters, similar to the
Friedkin and Johnsen’s [20] model of interpersonal influence.

We consider a process by which voters revise their opinions one by one, with
parameter k controlling the total number of voters whose opinions have changed
and/or changed back (i.e. the total number of Markovian steps in the opinion prop-
agation process). The process also incorporates the idea of Correct Conversation,
where each discussion has a higher chance of swaying a voter toward the correct
state than the incorrect state. Voters who hold an incorrect opinion are more likely
to be swayed to the correct position when many of their friends already hold the
correct opinion. On the other hand, a voter who already holds the correct opinion
is unlikely to be swayed away from that position (independent of the number of
friends with incorrect opinions).

This simulation models situations where voters are convinced only by argu-
ments for the truth (or, with some small constant probability, may revert to a
false viewpoint), and where the probability of an interaction with any given neigh-
bor is constant and independent over time (so voters with more neighbors that
vote correctly wait less time to talk to someone with the truth). These dynamics
are captured by the process by which we select the voters whose opinions will be
changed — voters who currently hold the incorrect opinion are more likely to be
picked (proportionally to the number of correct neighbors they have), while voters
who currently hold the correct opinion are selected with some constant probability.

Formally, our influence dynamics iteratively picks k voters whose opinions will
be changed by flipping the candidate they support. Let P(V;) denote the proba-
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bility a voter V; is selected:

mmz{

where Z is a normalization constant such that the probabilities over all voters
sum to 1. These probabilities are recomputed after each voter opinion update, and
so a voters’ opinion may change multiple times over the course of a simulation.

We selected this process because it is a very simple model that satisfies the
asymmetry requirement of our correct conversations assumption. The theoretical
results of the previous chapter suggest that we should observe an advantage for
our inference method on any data generated by a process which satisfies this
assumption, so the experiments serve primarily as a “sanity check” in support
of our theoretical results. By comparison, many other opinion dynamics processes
treat all opinions symmetrically. In these cases, our MLE should return the correct
result exactly as often as a simple counting of the votes when no such bias is
present.

) fv,=w
(Hulu € N(v), Va = WH+1), i V; #W

N= N=

6.2 Aggregation

Aggregation occurs after influence dynamics have had a chance to affect the opin-
ions of k voters. We consider two methods of aggregating opinions from nodes
in a social network: (1) The naive model, in which the aggregated opinion is the
majority opinion from the votes at the vertices, and (2) the Correct Conversations
model, where we examine both the majority opinion from the vertices, and the
distribution of opinions along the edges of the network, as described above. We are
interested in comparing the fractions of simulations where each model produces
the correct opinion (i.e. the recall rates of each model).

We measured the performance of our models in terms of the improvement
in ability to accurately predict the correct winner. We compare performance of
our model to the performance of the naive model, by defining accyqive to be the
accuracy of the naive model, accrq to be the accuracy of our model, and Agg pgive =
accrq — ACCnaive t0 be the Performance Improvement from using our model instead
of the naive model. For instance, a value of 0.05 indicates that our model is 5%
more accurate (in absolute difference) in deciding the outcome of the election.

6.3 Results

We first examine the performance of our models on two undirected graph models.
In undirected graphs, an edge (u,v) represents ongoing communication between
voters u and v, which can allow them to influence each others’ opinions. The Erdos-
Rényi (RE) random graph [I7] is a model that incorporates a minimum number
of assumptions. Given a connection probability pr, an Erdos-Rényi random graph
is generated by connecting distinct vertices u, v with probability pr.

Many human generated networks exhibit a property called scale-free. They are
characterized by an exponential distribution on node degrees: this leads to a net-
work having very few distinctively high-connected “hubs” and numerous sparsely



22 John A. Doucette, Alan Tsang, Hadi Hosseini, Kate Larson and Robin Cohen

connected nodes. Scale-free networks can be generated via preferential attachment
mechanisms such as the Barabdasi-Albert (BA) random graph [2]. In this model,
new vertices are added to an existing graph in a way so that they are ‘drawn’
toward high-degree vertices. A Barabéasi-Albert random graph with attachment
parameter m is generated by repeatedly adding vertices to a network, and con-
necting the new vertex with m existing vertices, each chosen with probability
proportional to their respective degrees.

Figure E| shows a heat map of the Performance Improvement Ay ;450 between
our Correct Conversation model and naive voting, on both the Erdés-Rényi (a)
and the Barabdsi-Albert (b) random graphs. Darker regions correspond to data
points where our model performs better than the naive model. The data points
where the Correct Conversation model performs worse than the naive model by
more than 0.0 are marked with a red X.

In both scenarios, the lighter region in the top left of each plot represents
scenarios where neither model gives the correct answer, because almost all voters
begin with the incorrect opinion and have little opportunity to change. In this case,
the performance of both models is exactly zero. In the lower right portion of each
plot (i.e. for large values of n. and k) similar region exists where, after opinion dy-
namics, most voters in the network have the correct opinion, so both models almost
always give the correct answer. In some of the more extreme parameter settings
the Naive model actually performs better, but this effect is very small (typically
around 1-2%), and not significantly different from zero. In between however, there
is a critical band where the Correct Conversation enjoys a considerable advantage:
around 15% in ER graphs, and up to 24% in the more structured BA graphs. The
results in the ER graphs is more scattered, likely owing to its absence of struc-
ture compared to the BA graphs. Interestingly, in the bottom left, just beside
the critical band are several scenarios that elicits the worst performance from our
model. In these scenarios, almost half of the voters initially begin with the correct
opinion, and just enough opinions are revised to produce a small majority. This
allows naive voting to produce the correct result, but does not produce sufficient
structure in the edges (i.e. concordant edges) for our model to exploit to greater
effect, since the correct voters are essentially randomly distributed throughout the
network.

Next, we investigate the performance of our models on directed graphs. In
a directed graph, a directed edge (u,v) represents the ability for v to affect the
opinion of u; however, the reverse is not necessarily true. The Erdés-Rényi random
graph [I7] extends naturally to the directed case. Given a connection probability
pr, any directed edge from u to v exists with probability pr. The Barabasi-Albert
model, however, is more challenging to extend to directed graphs. Each new edge
added to the graph may be oriented one of two ways: they may allow influence
to flow from the older vertices to the new vertex, or the other way around. The
first case is more natural, as new vertices represent less experienced members of
the network, and it stands to reason they will be influenced by the more well
connected, older members. The result is a strongly hierarchical network; it is an
acyclic, connected directed graph, with the first node as the sink.

Figure[f[(a) and (b) show the Performance Improvement on the directed Erdés-
Rényi and the hierarchical Barabdsi-Albert graphs respectively. Performance on
directed ER graphs qualitatively mirrors that of undirected ER graphs, with a
slightly higher improvement peaking at 18%.
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Fig. 4 Performance Improvement of Correct Conversations on Undirected Graphs. (a) Erdos-
Rényi random graph with connection probability pr = 0.1, and (b) Barabdsi-Albert random
graph with connectivity parameter m = 4.

Performance on the hierarchical BA graph, however, tells an entirely different
story. In this plot, the Correct Conversation model peaks at a mere 3% improve-
ment, with the majority of the data points reporting a win for naive voting, by as
much as 12%. It is the strict hierarchical nature of the dBA network that causes
this unfortunate effect. The earliest vertices in the network are preferentially ad-
mired by new vertices, and if they are seeded with the incorrect opinion, they can
have a magnified effect on the remainder of the graph. Even worse, these early
vertices themselves are influenced by few others (with the earliest vertex having
no out-neighbors). Therefore, even under the Correct Conversation model, these
vertices are unlikely to be revised to the correct opinions. This explains the poor
performance seen on the strongly hierarchical graphs. It also explains why we gain
a small advantage in the upper left region: In this region, it is unlikely any reason-
able model will aggregate and produce the correct opinion. However, because of
the magnified influence of earlier vertices, a fortuitous seeding of correct opinions
to them may cause herding to produce a correct aggregate opinion by chance.

To test this hypothesis of the detrimental effect of a strongly hierarchical net-
work, we decide to reverse the orientation of this directed BA model to produce
the reversed BA model. Each newly added edge will be oriented toward the newer
vertex, meaning that new vertices will influence earlier ones. Under this scheme
preferential attachment is preserved, but perversely, highly connected hubs will be
sources rather than sinks. Rather than being influential, they will be influenced
by numerous other vertices, aggregating their opinions locally. It bears remarking
that such a network is quite artificial. These “upper aggregation hubs” do not have
a natural counterpart in networks (excepting perhaps for surveillance authorities).

Figure c) shows the effect of the reversed BA model. Qualitatively, it repli-
cates the pattern we have seen so far, but with vast improvement in performance.
Performance improvement peaks at an astounding 86%, with a thicker critical band
than any of the preceding (or indeed, succeeding) models. Only a few data points
(once again in the lower left region) report performance loss. The presence of the
aggregation hubs vastly improves the performance of the Correct Conversation
model, while the dominance of sink nodes do the opposite.
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Real social networks, however, are neither strongly hierarchical, nor reversed.
But rather, they are a mix of the two types. Bollobas et al. [7] modified the prefer-
ential attachment model to produce this type of hybrid directed scale-free graph.
In this model, a new vertex may be added to the graph as an in-neighbor or out-
neighbor of one existing vertex. Moreover, the existing graph may be made more
dense by adding a new directed edge between existing vertices — the head of the
vertex is sampled with weight according to out-degree (plus a small fixed value);
the tail is similarly sampled with respect to in-degrees. Graph parameters control
the frequency with which each of the three steps occurs. The process continues
until a desired number of vertices have been added to the graphﬂ The authors
provide parameters that fit their model to the graph of the internet, and we utilize
these parameters for simulating a real social network. Figure d) contains the
results of this experiment.

Once again, we observe the similar division into three regions: the upper left
and lower right showing a tie between the models, and a critical band in between
showing improvement for our model, peaking at 22%. Real social networks avoid
the “sink” node pitfall of strongly hierarchical model, and behave more like the
BA or ER graphs that we have observed before. It should be noted that the critical
band is thinner than in previous models, meaning while the performance gain is
significant, it occurs in a slightly more restricted set of conditions.

Finally, we also test our model using a real physical social network. The
Kapferer Tailor Shop dataset [27] is a series of observations gathered in a tai-
lor shop in Zambia (Northern Rhodesia) by Bruce Kapferer, an early pioneer in
social network analysis. The data describes the shift in worker interactions dur-
ing a series of negotiations for higher wages. This represents the sort of scenario
where social network structure may have a profound effect on the outcome of social
choice mechanisms. The dataset is divided into four sections, accounting for two
time periods (spaced 7 months apart), and contain both “instrumental interac-
tions” (based on work and aid rendered) and “social interaction” (friendship and
socioemotional). The former is described as a directed network, while the latter is
described as an undirected network; both are rendered as separate adjacency ma-
trices. We focus on the data gathered in the second time period, near the climax
of the negotiation period. The data corresponding to these two networks are la-
belled KAPFTI2 and KAPFTS2 respectively in the original dataset. We combine both
datasets into one network by taking the union of edges from both sets. However,
since the meaning of edge orientation is not described in the dataset, we consider
both the described directed graph, and the directed graph with edges reversed.
Figure [6] outlines our results.

Therefore, we observe that the Correct Conversation performs well on sim-
ulated networks, providing improvements of up to 24% in accuracy over naive
voting in certain scenarios. Moreover, the structure that our model relies on is
also present in real world interaction networks, allowing us to gain up to 37%
increase in accuracy on the Kapferer Tailor Shop dataset.

6 Actually, to generate a graph on n vertices, the process terminates only when we attempt
to add the n + 1th vertex.
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7 Related Work

Our approach to the problem of incorporating information about social networks
structure into voting systems is new, but builds on a rich existing literature study-
ing different facets of the problem.

Our work is most similar to that of Conitzer [I5l[14], which adopts the maximum-
likelihood approach to voting, and attempts to incorporate information about the
likelihood of different local neighborhoods casting certain combinations of final
ballots. The 2012 paper, as discussed earlier, assumes that the probabilities of
observing a set of votes from a given neighborhood are independent of the true
outcome, and shows that no useful information can be derived from network struc-
ture on this basis. We assume the opposite, and find that useful information can
be derived. The 2013 paper proposes the independent conversations model, in
which edges rather than vertices are assigned opinions, and shows that useful in-
ference can be conducted on the basis of the social network structure. However,
the assumption that “opinions” are generated on the edges rather than the ver-
tices causes this model to represent a different class of problems than the ones we
consider.

Other authors have also drawn inspiration from Conitzer’s model. Procaccia
et al. [32] propose an extension of Conitzer’s pairwise conversations model. This
extension allows for the possibility of several alternatives to be modelled by adopt-
ing a random-utility-theoretic system, in which conversations sample a Gaussian
distributed utility for each alternative, and then rank them based on the sam-
ple. In this paper, we argued that the pairwise conversation was not suitable for
modelling some social interactions, and instead extended Conitzer’s earlier vertex-
centric model. Mosell et al. [3I] have considered the closely related problem of
finding aggregation rules for social networks that are generated under conditions
similar to our own. However, whereas we consider a single voting rule, and a
stochastic process for opinion propagation, they consider a deterministic propa-
gation process and characterize voting rules for which the correct answer can be
recovered. Auletta et al. [3] characterize algorithms for a similar process. Elkind et
al. [8] characterize the use of bribery and other manipulations in opinion formation
on similar networks.

Voting in social networks has also been considered by Boldi, Bonchi, Castillo
and Vigra [6]. Here, they focus on offering a pragmatic alternative to direct voting,
made available by the proliferation of social media, called transitive prozy voting.
Motivated by low voter turn out, especially in online environments, their proposed
system allows voters to either vote directly or delegate their ballot to a trusted
associate in their social network. This associate can, in turn, transitively entrust
those ballots to another person in the network. The system may incorporate a
dampening factor that effectively reduces the weight of a ballot with each succes-
sive act of delegation. The authors analyze theoretic and empirical properties of
the system, and compare it to Google PageRank. Tsang and Larson [39] also study
voting on social networks, with a focus on strategic elements, rather than on opin-
ion propagation and recovery. Watts [41] examines models of correct voting, but
assumes subjective correctness (i.e. voting in one’s own interests), rather than ob-
jective correctness (as we do). Homophily, which is central to our results, is shown
to also play a major role when correctness is subjective. Ismaili and Perny [25]
examined multiagent coordination on a social network from a utility-maximizing
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perspective, rather than using the techniques of social choice proper. Fish et al. [19]
examined the problem of extracting the structure of social networks by observing
the votes. Grandi [21] provides an extensive survey of these and other social choice
topics associated with social networks.

Other researchers have also proposed methods for utilizing network analysis
tools for social choice. Tosatto and van Zee [38] propose imputing a social network
between the voters based on similarity between their ballots. They consider an
election where a set of m policies are being voted upon, and each ballot is an m
dimensional vector that votes yea or nay on each issue. Similarity between voters
can be calculated as the number of issues that they agree on. This allows the
authors to impute a weighted social network on the voters. They then propose
using a modified degree centrality metric for obtaining an outcome similar to that
produced by a Median Voter Rule [5]. Wilder and Vorobeychik [42] consider the
question of whether a skilled adversary can manipulate an electoral outcome by
making use of social network information, a compliment to our approach which
could perhaps be extended to uncover such manipulation. Faliszewski et al. [18]
demonstrate a similar capability through a detailed model of the effects of cam-
paigning on the electorate. Izsak et al. [26] use network analysis tools to study the
synergies between candidates rather than between voters.

Other social choice research that incorporate social network components in-
clude Salehi-Abari and Boutilier’s Empathetic Social Choice [34], where an agent’s
utility not only depends on their own intrinsic utility for the elected outcome,
but also on that of their friends. Related work examined this approach for group
recommendation [35]. This body of literature differs from our approach as their
is focused on utility maximization with subjective preferences, where each voter
may have different preferences on the alternatives, while our approach assumes an
objective “best” alternative that is preferred by all voters (noisiness aside).

Another related line of work concerns developments toward expanding the
range of noise models for which voting rules may be applied beyond those consis-
tent with the assumptions of MLE, but without considering social network struc-
tures explicitly [ITL43]. As we have shown, by using information about the struc-
ture of the social network, we are able to improve the accuracy of our voting
mechanism.

Beyond social choice proper, researchers have taken an interest in the question
of opinion formation on social networks. Viswanath et al. [40] consider the use
of machine learning methods to detect the presence of attempts to manipulate
opinions through a social network. Halberstam and Knight [23] use empirical data
to show the importance of homophily and other factors in the formation of opinions
on social networks like twitter. Acemoglu et al. [I] consider a model of dynamic
network formation, and show that the propagation of correct opinions can depend
on the strategic behaviours of the agents, and on the structure of the network.
Katakis et al. [28] develop a system to recommend political votes based on both
user information, and on social connections. More recently, Brill et al. [9] provided
a detailed analysis of the termination conditions of opinion diffusion processes on
social networks with an eye toward applications in social choice.
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8 Conclusions and Future Work

In conclusion, we have proposed the Correct Conversation model of opinion ag-
gregation for agents interacting in a social network: agents formulate some initial
opinion about a proposition — an opinion that either does or does not accurately
reflect ground truth — and then converse with each other within the social net-
work. The central assumption of our model is that it is easier for two agents to
agree upon a truthful proposition than a falsehood, and we show that our model
may be used to recover the ground truth in certain types of networks.

Our work is chiefly motivated by Conitzer’s [14] question in his titular paper:
should social network structure be taken into account in elections? While he shows
that network structure does not matter when using a simplistic model, in a follow-
up paper [15], he proposes an alternative model where individual conversations
(i.e. the edges of the social network) act as noisy, independent samples of the
underlying ground truth. While this conversation based model admits maximum
likelihood solutions, it also permits unnatural configurations. For instance, a voter
may express contradictory opinions in conversations with each of her peers. Our
model makes a more natural assumption that each voter holds some particular
opinion that is a noisy sample of the ground truth, and conversations between
voters may affect this opinion. It is the first model to support tractable maximum
likelihood estimations that incorporate information about the structure of the
social network.

This form of social influence is reminiscent of the field of opinion dynamics.
Early pioneers in this field studied the adoption of new technologies such as hybrid
corn [37] and antibiotics [I2]. While opinion dynamics is concerned with the long
term evolution of opinions in a community, the Correct Conversation model incor-
porates only a single round of conversations between our voters, and a voters’ final
opinion is affected only by her immediate neighbors in her social network. This
represents a relatively limited window of interactions between voters corresponding
to the deliberation period or the lead-up to election day.

In our paper, we have offered both theoretical guarantees on the robustness
and limitations of our mechanism and simulations of its effectiveness on artificial
and real data sets. In particular, when the Correct Conversation model is able
to recover the ground truth even when the majority of agents have been misled
in networks that exhibit homophily — the idea that people tend to connect to
peers that are similar to themselves. Homophily is a natural human tendency
and is present in many social networks. As such, our technique may be useful in
bolstering the performance of social choice mechanisms operating in these settings
of social influence.

As social media becomes a increasingly ubiquitous part of our lives, the need to
quantify the impact of social influence becomes increasingly urgent. While cries of
false representation in news outlets are often exaggerated, the coverage from tra-
ditional media often come from biased (but known) perspectives. By comparison,
the influence of peers in social networks is much more subtle, and their impact,
much more difficult to discern. Our paper offers a tool toward countering these
forms of social influence for a decision making agency, with applications in crowd-
sourcing domains, news reliability verification, and detecting and countering online
bullying, because it provides a way to detect signs that opinions have been influ-
enced by others, even when we do not observe the opinion dynamics directly. Such
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a mechanism may also find use evaluating technologies and reviewing products,
distinguishing fashionable gimmicks from truly innovative developments.

Future work in this direction could focus on the extension of the Correct Con-

versation model to more complex graph models; ranked voting rules suitable for
use with many alternatives, rather than the binary alternatives case we consider
here; and a wider range of opinion dynamics.
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A Code

import random
import math
import copy

# The metropolis—hastings

algorithm

def metro_hastings_step (num_params, params_list, likelihood_function

, step_.size):

old_p = copy.deepcopy(params_list)
old_1 = likelihood_function (old-p)
for p in range (0, num_params) :

params_list [p] = random.gauss(old_p[p],

new_-1 = likelihood_function (params_list)
if new.l = float(”—inf”) or new.1 >= old_l
params_list = old_p
elsif math.exp(new.l — old_1) <= random.random () :
params_list = old_p

return params_list

#Markov Chain Monte Carlo
def metro_hastings_run(params_list , num_variable_params ,
at_function , burnin_period=1000, samples
=10000, steps-per_-sample=20):
for i in range(0,burnin_period):

params_list = metro_-hastings_step (num_variable_params,
params_list , likelihood_function , 0.1)
for i in range (0, samples):

likelihood _function

for j in range (0,

params_list

, st

steps_-per_sample) :

step-size)

= metro_hastings_step (num_variable_params ,
params_list , likelihood_-function , 0.1)
stat_function (params_list)

#Problem specific likelihoo

# probability that p >
# have seen.

0.5,

d function for estimating
given the observations we

def p_likelihood (params_list):

p = params_list [0]

x = params_list [1]
n = params_list [2]
if p< 0:

p=20

params_list [0] = p
return float ("—inf”)

if p> 1:
p=1

params_list [0] =
return float ("—

return x * math.log

5 # statistics collector

def p_stats_maker () :

p
inf”
(p)

for

# unknown
# number of votes supporting
# number of voters total

)
4+ (n—x)+math.log(1—p)

alternative
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counter =[0]
norm = [0]
def p_stat_func(params_list):
if params_list [0] >= 0.5:
counter [0] 4+=1
norm[0]+= 1
def p-stat_print():
print (counter [0] / norm|[0])
def p-stat_-return ():
return (counter [0] / norm[0])
return [p-stat_func, p-stat_print, p_stat_return]

# Returns the probability that p>0.5 given simulation results

def

probP (numVertexVoteSupport, numVertices):

stats = p-stats_maker ()

metro_hastings_run ([0.5, numVertexVoteSupport, numVertices], 1,
p-likelihood , stats[0])

return stats [2]()

#Problem specific likelihood function for estimating

def

7 # probability that q > gq-bar, given the observations we
s # have seen.

q-likelihood (params_list):

q = params_list [0] # unknown

q-bar = params_list [1] # unknown

y = params_list [2] # number of concordant edges
supporting alternative

y-bar = params_list [3] # number of concordant edges
supporting opponent

m = params_list [4] # number of edges total

if q < 0 or g-bar < 0 or ¢ > 1 or g-bar > 1 or (1—q—qg-bar) < 0:
return float ("—inf”)
else:
return yxmath.log(q) + y-barxmath.log(g-bar) +(my—y-bar)=
math.log(l—q—q-bar)

# statistics collector for q.

def

def

q-stats_maker ():
counter =[0]
norm=[0]
def q_stat_func(params_list):
if (params_list [0] > params_list [1]):
counter [0] 4+=1
norm [0] += 1

def qg-stat_print():
print (counter [0] / norm|[0])
def q_stat_return ():
return (counter [0] / norm[0])
return [q-stat_-func, q-stat_-print, g-stat_-return]

probQ (numConcordSupport, numConcordOppose, numDiscordant) :
stats = q_stats_maker ()

metro_hastings_run ([0.25, 0.25, numConcordSupport,
numConcordOppose, numDiscordant], 2, q-likelihood , stats[0])
return stats [2]()

# Problem specific likelihood function for estimating
101 # the probability that q > gq-bar AND r > r_bar=(l—-q—q-bar—r),
102 # given observations y, y-bar, z, z_bar
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103 def qr_likelihood (params_list):

104
105
106

107

108

112
113
114

115
116
117
118
119
120

121

# statistics

q = params_list [0] #
q-bar = params_list [1] #
r = params_list [2] #
y = params_list [3] #
supporting alternative

y-bar = params_list [4] #
supporting opponent

z = params_list [5] #
supporting alternative

z_bar = params_list [6] #

supporting opponent

unknown
unknown
unknown
number

number

of concordant edges
number of concordant edges
number of discordant edges

discordant edges

if q< 0 or g-bar < 0 or r < 0 or (1—gq—g-bar—r) < 0 or q > 1 or

g-bar > 1 or r > 1 or (1—q—q-bar—r) > 1:

return float ("—inf”)

else:

return ysmath.log(q) + y-barsmath.log(q-bar) + zxmath.log(r)
+ z_barxmath.log(l—q—q_-bar—r)

collector

def qr_stats_maker ():
counter =[0]
norm=[0]

for qr.

def qr_stat_func(params_list):

if ((params_list [0] > params_list [1])

and (params_list [2] >

l-params_list [0] — params_list [1] — params_list [2]) ) :
counter [0] += 1

norm [0] += 1

def qr_stat_print ()

print (counter [0]

/ norm [0])

def qr_stat_return ():

return (counter [0]
[qr-stat_func,

return

/ norm|[0])
qr-stat_print ,

qr-stat_return]

def probQR (numConcordSupport, numConcordOppose, numDiscordSupport ,

numDiscordOppose) :

stats = qr_stats_maker ()

metro_hastings_run ([0.25,

0.25,

numConcordSupport ,

numConcordOppose, numDiscordSupport, numDiscordOppose], 3,

qr-likelihood ,
return stats [2]()

B Proofs

stats [0])

Lemma 3 When averaged over the set of all possible graphs (or all permutations of a given
graph), pg < py, provided that Mz and M, are anonymous.

In expectation, for a randomly generated graph and vote profile according to a process from
the family described above, there are [V|(|V| —1)P(V; = W AV; = W A E; j = 1) concordant
edges in the graph that vote for the correct answer, and |V|(|V|-1)P(V; # WAV; # WAE; j =
1) that vote for the incorrect answer.

It should be apparent then that the expected value contributed to pp by an edge Ej; ; is

given by:

P(Vi=WAV; =W AE; ; =1|W) = P(V; #W AV; # W A E; j = 1|W)

Now, notice that Fj; ; is independent of V' and W (since it is used to generate V, and V is
not used to generate it). Then we can write
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PV, =WAV; =W AE;; =1|W) = P(E;j =1)- P(Vi =W AV; = W|W)

and, by definition of co-variance,

P(Eij=1)-P(V; =W AV; =W|W) = P(E; ; =1) - (P(Vi = WIW)P(V; = W|W) + 03
SO

P(Vi=W AV, =W A Eij = 1{W) = P(E;j =1)- (P(Vi = WIW)P(V; = W|W) + 0%)

and

P(Vi #WAV; #W ANE; ; =1W) = P(E;; =1)(P(V; # WIW)P(V; # W|W) + afj)

From this we can derive the expected contribution of a single pair of voters to the statistic
computed by Scqges-

E[Ei;(Vi+ V)] = P(Eij = )(P(Vi = WIW)P(V; = WIW) — P(V; # W)P(V; # W))

E[Ei ;(Vi+Vj)] = P(Ei; = 1)(P(Vi = WIW)P(V; = WIW)—(1-P(V; = W))(1-P(V; = W)))

E[E:; (Vi +V;)] = P(Ei; = )(P(Vi = WIW) + P(V; = W|W) — 1)

but of course, P(V; = ¢) = EViTL (since B[V;] = (1)P(Vi = 1) + (~1)(1 — P(V; = 1))), so

E[E:,;(Vi + V)] = P(Es,; = 1)(E[Vi] + E[V;])

If the prior probability that P(E;; = 1) = 0Vi,j, (i.e. we consider the expected perfor-
mance of the method over all graphs, or all graphs of a family), then it follows immediately
that

pe =YY E[Ei;(Vi+V;)])
i g

pE =0 E[Vi]+E[V)]
i j#i
If we further assume that the processes M, and M, are anonymous (i.e. they do not assign

especial importance to a particular voter based only on that voter’s name), then E[V;] = E[V]
over the set of all possible social graphs, so:

pe =20(1V| —1) Y _E[V]
i
pe =20V - 1uy
This demonstrates that the means differ by a factor of 20(|V| —1). O

Lemma 4 When averaged over the set of all possible graphs (or all permutations of a given
graph), og « oy, provided that My and M, are anonymous.
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By definition of co-variance, the co-variance between two pairs of votes is given by:

0% 5 ey = El(Vi + V) (Vi + V)] — E[Vi + V3] E[Vi + VI]

Since the sum of expectations is the expectation of the sum, we can rewrite this as

oty k) = EIViVie + ViV + V; Vi + V3 Vi] — (E[Vi] + E[V;])(E[Vi] + E[Vi))

i) ety = EViVi] + E[V;Vi] + E[V; Vi] + E[V; Vi]
—(E[Vi] E[Vk] + E[VA] E[Vi] + E[V;] E[Vi] + E[V;] E[Vi])
but E[V;V;] = E[Vi]E[Vj] + 07 ;, s0 :
Ol k) = Tk T O T 5+ 05

It follows then that

=23 3> EijExi(0, ol +07+07)
i 7 k l

and under the assumptions that the prior probability that P(E;; = 1) = 6Vi,5, and
anonymity, that

oE =023 3 3 D (olk ittt or)
1 J k l
o2 =633 4vI(V] - D)o,
P g
0% = 40%([V| = 1)|V]o?

This demonstrates that the variances differ by a factor of 402(|V| — 1)|V|. Note that this
implies the standard deviations differ by /(402(]V[ — 1)[V]) = 20+/((]V] - D)|V]) O.
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