Learning When to Take Advice:
A Statistical Test for Achieving A Correlated Equilibrium

1

Greg Hines
Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada
ggdhines@cs.uwaterloo.ca

Abstract

We study a multiagent learning problem where
agents can either learn via repeated interactions,
or can follow the advice of a mediator who sug-
gests possible actions to take. We present an al-
gorithm that each agent can use so that, with high
probability, they can verify whether or not the
mediator’s advice is useful. In particular, if the
mediator’s advice is useful then agents will reach
a correlated equilibrium, but if the mediator’s ad-
vice is not useful, then agents are not harmed by
using our test, and can fall back to their original
learning algorithm. We then generalize our al-
gorithm and show that in the limit it always cor-
rectly verifies the mediator’s advice.
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gestions. Even if a mediator tries to make good suggestions
it may be prevented by coding errors, memory limitations,
etc. For an agent to accept a mediator’s suggestions, there
must be some way for the agent to verify that the sugges-
tions are reasonable. A mediator might not be willing to
share its code with the agents, or be aware of its own lim-
itations. Therefore, for a truly robust system, the agents
themselves must have a way of checking the mediator’s
suggestions.

Thus, this paper introduces a statistical test based on hy-
pothesis testing that, with high probability, can verifgth
mediator’s suggestions. While hypothesis testing has been
proposed in the multiagent learning literature as a todl tha
agents might use to learn how to play Nash equilibria [5], to
the best of our knowledge it has never been applied for val-
idating a mediator’s advice. Based on our test, we propose
an algorithm that allows agents to converge to the medi-
ator’s suggestion if it is a correlated equilibrium and oth-
erwise, in the limit, be no worse off for having used our
algorithm. We then generalize this algorithm to a more the-

In settings where agents repeatedly interact with eaclr othé@retical setting where we show that with probability one, in
(for example, through a repeated game), there are great oﬁ’le limit, our test will always be able to correctly verifyeth
portunities for learning since agents are able to adapt theinediator’s suggestions. This provides a method for achiev-
strategies given the history of play. This problem has garing convergence to a specific correlated equilibrium.
nished a lot of attention from several research communities

including the Al community and the game theory commu-
nity. While many criteria have been proposed for measur

2 Background

ing the success of learning approaches, one commonly used

measure is whether the agents learn how to best-respond bo this section we introduce the key concepts and assump-
the strategies being played by the others. That is, does th®ns used in this paper.

learning process converge to an equilibrium.

In this paper we study the problem of agents interacting . .

A n-agentstage games a tupleG = (N, A = A; x
X Ap,ui,...,uy), whereN = {1,...,n} is the set

with each other in a repeated game setting, but we introef agents,A; is the set of possible actions for agergnd
duce a third partynediatoror advisorwho makes strategy A is the set of possible joint actions, and: A — R is
suggestions to the agents. Ideally, by following the sugthe utility function for agent. Without loss of generality,
gestions of the mediator, agents will be able to learn howve assume that all utilities are greater than or equal to 0. A
to play against each other, possibly even reaching mutuallgpecific action for agenitis a; € A;, and a joint action is

beneficial outcomes which would not have been possible = (a4, ...,

an). We assume that is public knowledge

without the mediation. That is, our goal is for the agentsbut the agents’ utility functions are private.

to learn and adapt so that they find a correlated equilib

rium [1].

Each agent chooses its actions according to sstnagegy
A strategy for agent, o;, is a probability distribution over

However, a mediator is only useful if it can make good sug-A4;, stating with what probability the agent will play each



possible action. The set of all possible strategies for agen
iis ¥;. The vectorc = (o1,...,0,) iS a strategy pro-
file which specifies a strategy for each agent ani$ the

set of all possible strategy profiles. We use; to denote
(0’17 ey 03—1,0441, .- .,O’n).

Given a strategy profile, we define thexpected utilityfor
agent; as

u(o) = Z ui(a)ll}_ o (a;). 1)
a=(ay,...,an)EA Figure 1: A graphical representation of our setting
with 2 agents at time t.
Each agent’s utility is dependent not just on its own actions
but also on the actions taken by all other agents. We assume
agents areational, i.e,, giveno_;, agenti will choose a In this paper, we are interested in a setting where agents
strategy which maximizes its expected utility. have the ability to learn and adapt to the actions taken
by others. Thus, we study repeated games. A repeated
gameG"™ = (G',G?,...) is an infinite sequence of the

meditr ks he ity nctons ol agets, 5119 30 amey e pediody Agens acion i e
y 9 : { is a! and the joint action at timeis a’. The history of

Suggeslons 0 e agent o 1o et o L oul Byt actons/ (1) (o ..} 15 arecora of e
99 int action taken at each iteration until time The em-

strategy. pirical, or observed, percentage of play of joint actions,
D_efir_1iti0.n 1. A correlated strategy 4, is a.probat.)ili.ty Uzist(t), is the percentage of time each joint action has
distribution overA. We lets € A denote an instantiation peen played as of timé Agents may learn from previ-
of 04. Theconditional correlated strategya ,(s—i[si)  ous iterations of the game to try and improve their strategy.
is the conditional probability of the joint signdk;, s_;) Specifically, we assume that agenhas a learning algo-

given the signak;, ando4_, (s;) is the set of all condi-  rithm L, : hist(t) — %;, that helps agenitselect a strategy
tional probabilities givers;. for timet.

In our model we introduce a third-party mediatén,. The

Note thato; is a probability distribution overl; while s,  Let o4 be the actual correlated strategy at timei.e.

is a probability distribution oves. the one agents are actually using and not necessarily the
, . _ one based onM’s suggestions. We say that, con-

We assume thabt’s correlated strategy is public knowl- yerges to a correlated equilibrium if for somg € C(G),

edge, but the actual instantiatios, is not. In p.artlcular lim_..o o', = o%. Thus, our algorithm is differentiated

we assume that{ sends each agen private signals;,  from algorithms that achieve convergence to the set of cor-

based ors. related equilibrium, for example [4, 8].

The agents are under no obligation to follow the media-
tor's signals. It is up to the mediator to pick a correlated Setup
strategy that a rational agent would be willing to follow.
Note that our type of a mediator is different than Monderer.
and Tennenholtz’s, where agents must agree to follow thé

mediator’ ion fore knowing what th re”.. X on e . -
[1(13? ator's suggested actions before knowing what they a , time ¢ will begin with the mediator giving each agent
' a suggested actiors!. Agents will then simultaneously

Definition 2. A correlated strategyy = {oa(a)la € A} choose their actiong!, which may or may not ba. If
is a correlated equilibrium if for every agemtand every  agenti chooses not to followM'’s signal, it can instead use

he setting for our paper is a repeated garievith a me-
iator, M. As illustrated for the two agent case in Figure

si € Ay, a learning algorithm[;, which we assume is independent
of M'’s signals, to select an action. Based on the actual
> oh (silsiui(si, s i) (2) joint action, each agent will then receive some utility and
s_i€A_; the process repeats. The mediator’s signal to each agent is
. NN (o private information, known only to that agent and the me-
= z;{ oa_, (s-ilsi)uilas, s—i), diator, as is the agent’s utility function. However, the ac-
S_i€A_;

tion set for each agent is public knowledge, as is the action

for all a € A, [1]. The set of all correlated equilibria in taken by each agent during a turn.

GisC(G). The mediator’s signals are based on a selected correlated
strategy,o*, which is constant throughout the repeated

If all of agenti’s opponents are following a correlated equi- game. Although ideally the mediator will suggest a cor-

librium ¢, it is rational for agent to also follows. related strategy that is also a correlated equilibriumheac



agent still needs to verify that the mediator has actuallySince the utilities for each agent, as well as the signais the
done so. receive each turn, are private, there may be no way to prove
or disprove Condition 2 with absolute certainty at any finite
point during the game. The best can do is reach a prob-
abilistic conclusion. Since joint actions are public knowl
edge,A; can compare the empirical percentages of play
Firstgoal: If o' is a correlated equilibrium thea’;,  for the duration of the sampling test against the percent-
the actual correlated strategy which is not necessarilges predicted by If the difference between these two
o, will converge tooy". values is statistically significant, there is a high probigbi

) o that at least one agent has stopped following the mediator’s
Second goal: If o4' is not a correlated equilibrium, signals.

agents should be no worse off, in the limit, for hav- . _ _ _
ing used our algorithm. Totest if there is a difference, agergssumes there is some

fixed but unknown correlated strategy, that all agents
were actually using for the sampling test, whéremay or
may not ber}*. We are now able to use hypothesis testing,
where our null hypothesis is that}! is equal to5 4, i.e.,

Our aim is to design an algorithm that achieves the follow-
ing goals.

In Section 4, we present an algorithmi, that achieves
these goals with high probability. In Section 5, we gen-
eralize A so that, with probability one, in the limit, it will
achieve both goals. Since each agent will be ugdirigde- Hy : o‘ﬁ/l =64, (3)
pendently, we refer td\; as the instance of the algorithm

being run by agentandA as the joint algorithm. and our alternative hypothesis is that! is not equal to

&A' i.e.,

The algorithm is based on the concept of givikgthe ben- Hy:o)' #64. (4)

efit of the doubt; until Fhere is reason to k_)gllgve other\lee,-I-he test statistic used is Pearsop’stest,

agents assume thaf" is a correlated equilibrium and fol-

low M’s signals. Specifically, agents will assume that the iy (X(a) — E(a))? (5)
E(a) ’

following conditions hold.
acA’

/A o _
Condition 1: The correlated strategy)" is a correlated where A is SQ%’(ZSUbset ofd such thatd’| = |4| -1,
T)

equilibrium. X(a) = lpo, (a) is the actual frequency of play of
a € A’ during the sampling test(a) = lro’*(a) is the
Condition 2: All other agents are following the signals expected frequency of play according4d!, and where
based onr}!. I is the length of the sampling period [12]. Note that
oﬁ”“m is based on a sampling frofy of sizelr. For
Agents test whether these conditions hold during an ininow we assume thaty"(a) > 0 for all a € A. We re-
tial period of play called aampling testvhich has a fixed lax this assumption later. The Pearsog’stest has (in the
length ofi. If, at the beginning of the sampling test, agent limit) a probability distribution function of
1 decides that one of the conditions does not hold, it will 2+ 2 6)
not follow M’s signals and instead will use an individual @ T ANCRL
“fall-back” strategy,;, chosen uniformly at random. At Where the first distribution ha# = | A|—2 degrees of free-
the end of the sampling test, all agents who still believedom, and the second distribution has 1 degree of freedom
that both conditions hold will continue to follow’s sig-  and a non-centrality parameter 81C'P [9].

nals. All other agents will start using their original leeg ¢ Hy is true, NCP = 0. Assuming thatfl, is true, we

algorithm. The algorithm; is correctif and only if, atthe  cpqose a significance level for rejection of the null hypoth-
end of the sampling test, it correctly determines whetheggjs of, < 1 and a corresponding critical value efa),
both conditions hold. The joint algorithm,, is correct if i.e.,we reject the null hypothesis whéh > c(«). In this

and only ifA; is correct for alk. case, the probability of incorrectly rejectidd, (known as
a Type 1 error) i, = «. If Hy is actually true, we err
4 The Initial Algorithm when7 < c¢(a) and we do not reject,, (a Type 2 error).

WhenH; is true, NCP > 0. Since the non-centrality pa-

In this section, we describe how our initial algorithm rameter determines how much the probability distribution

works. As a first step in\;, agenti will check to see if In Equatlon 6 gets .a.djusted, determinihg P helps de-
Equation 2 holds for alk; € A;. If Equation 2 does not termine the probability of a Type 2 error.

hold, agent will know that Condition 1 cannot be true. In  The equation foNCP is NCP =t % §, whered, the sen-
this case, agentwill use a “fall-back” strategyy; € ¥;,  sitivity parameter, is a measure of the difference between
picked uniformly at random, for the rest of the sampling 0’;/4\/1 andag 4 given by

test. If Equation 2 does hold, agenmust check to see if . Moy o2

Condition 2 is true and will continue to follow1’s signals §(oM,54) = Z (6a(a) — 04" (a) @)
throughout the sampling test. ’ o' (a)

a€A



For a given value of, says, if aﬁiSt(lT)(a’) > 0 while 04'(a’) = 0, the alternative hy-
pothesis must be correct. Hence, both of these cases do not

S(oNt,54) >0, (8)  present problems.

then the probability of a Type 2 error is bounded by some! € only other case isif forail ¢ A such thav " (a) = 0,

A . . hist(l
value3($) < 1, whose value is normally found via numer- 7" (7)(a) = 0 but, unknown to the agents, the alterna-

ical computation [9]. Sincé is also a function of; and  tive hypothesis is correct. In this case, a Type 2 error may

o, we refer to it as3(I7, a, 8). occur. To find the probability of this case happening, we
) ) first determine the probability aft € ¢. Since any agent

Since agents do not know whether their opponents are foly g rejectsM’s suggested strategy chooses its new strat-

lowing the mediator's suggestions, agents do not know theqy uniformly at random, the probabilit2, thata! € ¢

exact value fof 4, and therefore, itis impossible to choose 5,4 < /.. is

an appropriate value farso that Equation 8 is guaranteed -

to hold. Instead, agents can consider a different question: P> Z

what is the worst case situation under which Equation 8 =

does not hold? To answer this question, consider the set of

all ag(i[l\ts for whom Equation 2 does nothalls © V. \yhereminyc v is considered since agents do not know
Let (JA—NB ,Yn ) be the actual correlated strategy for the Ng. Therefore, the probability that ¢ ¢ for all ¢ < Iz is

duration of the sampling testge., a combination of those gt most(1 — P)r and the overall probability of a Type 2
agents who will followM'’s signals and those who will rely  error is at most

on their fall-back strategy. Lefy,, be the set of all possi-
ble joint strategies for agents g, and pe < (1 =P)T[1 =) -B+]. (14)

(13)

W oA (O Go
acl

SN (04!, 0) To accommodate the worst case, we assume equality holds
_ € S [6(aM, (oM | <8 (9 in_E_quation 14. Note thagt; has not changed. For sim-
s € Bnp 0037 (047, 70 ) < 0 (9) plicity, we assume that; = p, = p, and refer to as the

be the set of all possible joint strategies for agentd/jpn ~ Overall probability of error.

which would ffASU“in Equation 8 notholding. LetX~,) 1t is possible to rearrangé(ir, o, §) to expresdr as a
and p(Xn gglA ,0)) be the Lebesgue measuresXf,,  function ofa, 8 andé, i.e ir(a, 3,6). As a resultls is
and Xy, (0", 0), respectively. Then, since; is cho-  the sample size needed to perform the test with at most a
sen unl/l‘/c[)r(rsnly at random, the probability ofy,, being in  probability of error (of either Type 1 or Type 2) pf
Ying (ot 0)is
N5 (747 9) If all agents are to use the same valuelfarthey must also
w(En, (eM, 6 have the same value fat. This in turn requires them to
Y(ENg) = %- (10)  have the same value far. To achieve this, in Equations
No 11 and 13, agentwill consider all possibléV’, including
Since agents do not knal;, they consider the worst case those containing agent
scenario,
Y = nax P(XN). (11) 4.1 Examples
If we assume that whenever Equation 8 does not hold anth this section we provide two examples to illustrate how
G4 # o', a Type 2 error is always made, then the proba-our test would work.
bility of a Type 2 error is at most Example 1: Consider the game in Figure 2.

p2 < (1—9)-B(G) + . (12)

Agent 2
That is, Equation 8 holds with at least a probabilityof d2,1 022
and when it does, the probability of a Type 2 error is at Agent 1 1.1 01 |25
most3(d) and with a probability of at most, Equation 8 arz | 52 | 1,0

does not hold. Figure 2: A simple game

If we do not assume that)!(a) > 0 for all a € A, then

Equations 5 and 7 may contain division by zero. To deal

with this, we ignore allz € A such thatr™(a) = 0. If  Letd= {(a1,1,a2,1), (01,1, 02,2), (a2,1,02,1), (a1,2, 02,2}

¢ = {a € Alo™(a) = 0}, then the summations in Equa- Skl/lppose that M announces a correlatedMsyrategy,
tions 5 and 7 need to exclude alk ¢, anddf in Equation 4 = {1/18,5/18,2/18,10/18}. Note thatoy" is a

6 now equalgA| — 2 — |¢|. If the null hypothesis is cor-  correlated equilibrium.

rect theno){!(a) = 0 implies thataZ’St(lT)(a) = 0 for  Suppose the agents chogse- 0.1 andd = 0.01. Agents
all @ € ¢. Alternatively, if there exista’ € A such that must now determine the critical value for rejectiaf),



and the length of the sampling te¢};. Sincep; = o, 1 2 3 4 5 6 7

a = 0.1. For 3 degrees of freedom(a) = 6.25. Since Y . : | ! | :
; I I |
o’'(a) > 0 for all a, we can calculated by Equation I T,
12. We calculate Equation 11 by numerical computation Figure 3: An example of repeated testing.

to find ¢ ~ 0.09429. Therefore3 = 0.0063. In practice,
Ir(a, 8,6) would now be solved by some method of nu-

merical computation [9]. For simplicity, we used the tableswhereRj = {br.,lr,}, bg, is the first time period i,

in Cohen to obtain a value ¢f = 2100 [2]. andl, is the length ofR;. The instance of\; during test
Suppose that after 2100 iterations, we have ob-R; is denoted by\/. The repeated tests are not contigu-
tained an empirical frequency of p|agzlst(2101) — ous. A simple example is shown in Figure 3, where the

{96,601,224,1179}. Using Equation 5, we obtain a test timeline represents a repeated game up to 7 iterations. The
statistic value of 4.678. Since this is lower than the criti-grey areas represent sampling test iterations. For example

cal value, both agents do not reject the null hypothesis andtz = {br,,lr,} = {4,2}, meaning that the second test
continue to use\'’s signals. iteration begins at time period 4 and lasts for 2 iteratidns o

i ) the repeated game.
Example 2: Consider a different example based on the

same game wher@{ announces a correlated strategy of The parameters) andp, can be set to depend on the test
oM = {2/18,10/18,1/18,5/18}. In this caseo®! is  iteration,i.e. 5(R;) andp(R;). Each test period must be
not a correlated equilibrium. Specifically, while Equation identical for each agente. R; must be the same for all
2 is satisfied for Agent 1, it is not satisfied for Agent 2. agents. This means th&tR;) andp(R;) must be the same
Hence, Agent 2 will use a random fall-back strategy. Supfor all agents. The parameters are chosen such that

posey; = (3/4,1/4).

. lim 6(R;) =0, (15)
For this example, the length of the test has not changed. j—o0
Suppose we find an empirical frequencyddf* *'*") = >
{1050, 350, 525, 175} after 2100 turns. Since Agent 2 al- > p(Ry) < oe. (16)
j=1

ready knows that}! is not a correlated equilibrium, it will
not perform the test. Agent 1 will obtain a test statistic , ,
value of 5953.3. This is well above the critical value andFOr €xample, we can I8(;) = 1/j andp(R;) = 1/2.
so Agent 1 will reject the null hypothesise., it will stop Finally, we assume that each agent’s fall-back strategy is

. . . . - R R/ ..
following the signals of the mediator. fixed. Thatisy;” =+, 7, forall 5, j.

Note that, as we have stated our algorithm, Agent 1 willOur first result is that an agent will not draw the wrong
only know that there is a probability of at most 0.1 of incor- conclusion about the mediator too often.

rectly rejecting the null hypothesis. We have not accountedhegrem 1. In the limit, with probability one, there will
for the fact that the test statistic value is much higher tharyny pe a finite number of tests wheté: is incorrect.

the critical value. An additional test that could be run af-

ter the null hypothesis is rejected is the calculation of th
p-value The p-value is the smallest value that would
still allow us to reject the hypothesis [12]. In the case o
the above example, thevalue would be very small, and 44" is a correlated equilibrium: For testR;, the prob-

Agent 1 could be very certain that}" is not a correlated ability of Afﬂ' making a Type 1 errom;(R;), is equal to

Proof. Let o’" be the correlated strategy suggesteddy
fConsider the following two cases:

equilibrium. p(R;). By the Borel-Cantelli lemma, with probability one,
there will only be a finite number of time‘sff is incorrect,
5 Repeated Testing i.e. makes a Type 1 errot. This reasoning can be applied

to all agents, and therefore with probability one there will

The limitation of our basic test is that there is always someonly be a finite number of time&'% is incorrect.
positive probability of error. This is due to the neeq to pick o is not a correlated equilibrium: If o is not a cor-
values forl —p andd that are both greater than 0. Since we (gj5ted equilibrium, then some subset of ageMtsC N

can pick any such values far— p ando, this is not much i yse their fall-back strategies instead of followingeth

of a practical limitation, however we may wish to achieve yeiator's signals. The resulting correlated strategygter
a stronger theoretical result. Our goal is to have agentgry test iteration will béo . yx).

converge to playing~" if it is a correlated equilibrium. If

o' is not a correlated equilibrium, then the agents’ utility Since~y- is fixed, by Equation 15, there exists a finjte
should be no worse off for having used our algorithm. This——

leads to the idea akpeated testingvhere throughout the 'Borel-Cantelli Lemma: Let {E'}3° be a sequence of in-

repeated game, agents will use multiple iterations of dependent events anfd(E*) be the probability of the everft"
) occurring. Y52 ) P(E*) < oo, then with probability one, only
The set of repeated sampling testslis= {R;, R2,...},  afinite number of the events will occur.



such that for allj > j*, for examplelp, = lQRj. This means that, in the limit, the
length of the sampling periods is negligible compared to

5ok, (oh" ) = 8(Ry). (17)  the length of the free periods. We also require that
Let ¢/(R;) be the value of), according to Equation 11, lim lﬂ - . (23)
during the sampling tesk;. Starting atR;-, we know j—oo j

that, with probability one, Equation 8 holds and therefore
sincey(R;) is the probability of Equation 8 not holding,
Y(R;) = 0, forall j > j*. Therefore, the probability of a
Type 2 error starting ak ;- is

"This means that the length of the sampling tests grows at
faster than a linear rate. The specific valued fgrandir,
would have to be agreed upon by all agents.

Definition 4. Let fop(tl’“) be the expected frequency of

o . play from timet; to ¢,, i.e., the expected number of times
p2= > (1-P)73. (18)  each joint actiorz € A gets played between timesand
j=J* to inclusive. Ift; is not given, we assume = 1. Similarly,

let ijp(Fj""’Fj/) be the expected frequency of play during

Note thatP, I+ and 3 are all functionsR;, however we . . .
- < J the free period€”; through £}, inclusive.

omit the notatior( R;) for clarity. Sinces is less than 1,
Since the frequency of play depends on the algorithms the

oo . exp(t)
< =PV (1 =) 8+ 19 agents are using, let, (L)_be the expected freque_npy
bz = Z( Tl =9) -6+l (19) of play from time 1 tad assuming that agents use the joint

jz learning algorithmlL for the whole period.
- Z p(£y), (20) For simplicity in all of the following proofs, we assume
=3 thatt always corresponds to the beginning of a sampling

where, as calculated by Equation 11, is also a functionPeriod. Let;(¢) be the index of the last free period before

of R;. Therefore, by Equation 16 and the Borel-Cantelli
lemma, with probability one, there will only be a finite The first step is to show that i1 suggests a correlated
number of times\ [ is incorrectj.e. makes a Type 2 error. equilibrium, agents will converge to it.

Again, this reasoning can be generalized to all agents an'q:'heorem 2. If the correlated strategy Suggested M’

therefore, there will only be a finite number of tima§ ;M is a correlated equilibrium, then with probability one,
is incorrect. O

tlim oty = o (24)
We now examine the behaviour of agents between sampling
tests. The periods between test iterations are cditésa
periods The set of free periods i8' = {F1,...} where
Fj = {bp;;lr,}. ThusG" = {Ry, Fy, Ry, Fb,...}. For ways correctly determine that}" is a correlated equilib-
example, in Figure 3, tge first free periofl;, would be  yiym_ As a result, with probability one, after some finite
{br, lm } = {2,2}. If A} did not reject the null hypoth-  point, all agents will choose to follow the mediator’s sig-
esis, agent continues to followM'’s signals for all ofF};. nals during the free periods. O
If Afﬂ' did reject the null hypothesis, agentelies on its
learning algorithml; for F;. We assume thdt; is flexible ~ Our next result is a technical lemma which shows that in

Proof. If o is a correlated equilibrium then by Theorem
1, with probability one, after some finite point will al-

at the beginning of each free period [3]. the limit, agents are not harmed by taking time out to do
Definition 3. The learning algorithni, is flexible if at the  the sampling tests.
beginning of every free periofl;, Lemma 1. In the limit, there is no difference between the
average utility from agents using for the whole repeated
Li(hist(br;)) = L;(hist(1)). (21)  game and just for the free periods, i.e.,
Therefore, during each free period,; does not base its 605 (L) g FroFio) ()
actions on what has happened before time Jim g n — U 7 =0.

For example L; may be a trigger strategy, but that trigger
may not be based on anything that has happened in a preythermore, this is true even when excluding the first

vious sampling test or free period. j* — 1 free periods, for somg* > 1, i.e.,
We require that exp(Fjx .., Fi(1))
eea:p(t) I 0 PUE G- E () L
Zj l tlim lul (Af() —u; | A ; () =0.
lim 2= (22)



The proof is given in the Appendix. 6 Conclusion

Finally, we need to show thatdf}! is not a correlated equi- ] ) ]
librium, agents are no worse off, on average, for having! he setting for this paper was a repeated game with a me-
usedA. diator. The mediator makes suggestions to the agents as to

what actions to take. We presented a test that agents could
use so that, with high probability, they could determine if
the mediator’s suggestion was a correlated equilibrium. We

Theorem 3. If the correlated strategy suggested By,
a1, is not a correlated equilibrium, then with probability

one, : ) :
then generalized our algorithm to incorporate repeated tes
, 65 (A) 65" (L) ing so that in the limit, with probability one, the test wilta
tlggo Ui ; U > 0. (27) ways correctly determine whether the mediator’s suggested

strategy is a correlated equilibrium. As a result, if the me-
Therefore, in the limit, agentwill be no worse off for using  diator suggests a correlated equilibrium, then agents will
A instead ofL;. converge to it, and otherwise, be no worse off in the long
run for having used our algorithm.
M _
Proof. If o4" is not a correlated equilibrium, by Theorem We envision several directions for future research. HFirst,

1, with prpbab|llty one, starting at some SamAB"F‘g test, Saymight be possible to extend our algorithm to work in radi-
R;-, A will always correctly determine thaty" is not a

N cally uncoupled environments, where agents are not aware
correlated equilibrium. of the existence of others. This would significantly de-
Considerf, with respect to some arbitary € A, de- crease the knowledge requirements of our test. Second,
noted byd,. We start by breaking the game down into we would like to extend our approach so that the media-
the sequence of sampling tests and free periods. That iQr receives feedback from the agents themselves, which
geer(®) (A) = gzxp(Rl,F17~-~7F(t))(A)_ Fort > t(j*), the can be used to help select appropriate correlated strategie
utility can be split up into the utility for the sampling test Ve believe that the incentive issues in such an approach
and free periods befor&;. and for those starting ak;- will be challenging. It may also be interesting to apply our
ie. approach to other solution concepts such as mediated equi-

libria [11].
exp(R1,F1,...,R;

l (9 .,R,*l,Fj*l)(A)> . _ ) ) ) )

lim |u; | = In a more applied direction, it might be possible to general-

feo i ize our approach so it can be used in a stochastic game set-
<€pr(zzj* o ,...,F(t))(A) )1 ting. Thus, our approach could be combined with methods

+ u;

such as Q-learning [7]. Correlated equilibria have alsmbee
t used in graphical games, which can be used to model many
) exp(Ry Fu. Ryx 1 Fpe_1) ) , different settings [10]. Hence, applying our technique to
Since 6, - _ (A) is constant, in the graphical games may yield some interesting results. For
limit, the first term is 0, and so we are interested in examplenetwork gamesise graphical games to help rep-
; <9L(1Rj*,Fj*,---7F(t))(A)) resent a variety of problems, from public good provision
1um u;

and trade to information collection [6]. These models can
be hindered by a “fundamental theoretical problem: even
The expected frequency can be split up into the expectetle Simplest games played on networks have multiple equi-
frequency for the sampling periods and for the free perilibrium[sic] which display a bewildering range of possible
ods. Since\ always determines that}! is nota correlated ~Outcomes” [6]. Our model may help integrate correlated
equilibrium, during all the free periods agents will always €duilibria as a possible solution to this problem.

usel, and so we are interested in

(Rjx,...,R(t)) (Fyx ., F(1))
0y " A 0q° L
tlim [ui <—t ( )) + Uy <—t ( ))
Our thanks to Gord Hines for his statistical advice.

Since we assumed that all utilities are nonnegative, we may
discard the first term, and thus have

t
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Proof Consider@ With respect taw € A, denoted by,,.

.....

will be represented
equally. However smcim lp, < t, eache ) will

lim =0, (28)  be “underrepresented” compared@lﬁgL for any finitet.
However, in the limit, this is not the case since,

PO D o )
= lim

and therefore, Equations 25 and 26 are equivalent.

Since the utility functions are linear transformationg\pr tlim n ; j(t)—
ing the following is sufficient, although not necessary, to - - 1(Ur; +1ry)
prove that Equation 25 holds, _ 1
(t) PP, Fyn) o o ny +1
GEZP L) — 9695 100y J(t) L 7(t)

lim () L _o () =117

t—00 t = 1 (by Equation 22). (34)
Since L is flexible, it will, in expectation, always behave Therefore, in the limith”“ will be represented equally
the same way during each free period. Specifically, compared td" (L). 0

ex ) . . exp(br., ,br., +lF;

Ha p(bF],bFJ +lF])(L) _ Ga D( Fjr:0F; + FJ)(L)7 (30)



