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Abstract. We present a graph-based heuristic approach for reducing
the number of communities that are queried, when communities share
information about their agents, in multiagent settings. In particular, our
approach exploits the consistency among the advice of the queried com-
munities resulting in a more competitive environment in which com-
munities are inclined to be honest. As argued in this paper, providing
a method for communities to obtain sufficiently valuable information
about agents with a reduced number of queries is an important element
of many systems. Exploiting consistency among good advisors will fur-
ther promote honest behaviour since fewer communities will be consulted
and thus resources will be restricted to only the most reliable sources. As
a result, our proposed selection process contributes to the development
of an effective overall framework for sharing agent reputation ratings in
community-based environments.

1 Introduction

Consider the scenario where there are agents representing the interests of users
and there are multiple communities that an agent can join (e.g a P2P file shar-
ing system). By community, we mean a collection of agents that co-exist for a
specific purpose. Consider as well that agents may be participating in multiple
communities simultaneously and/or may be migrating from community to com-
munity. Our aim is to design an efficient framework that enables communities
to share information about the reputability of their agents. The key idea of our
research is to promote truthfulness amongst agents and communities with the
ultimate goal of increasing the social welfare of each community that partici-
pates in the mechanism. Agents should be inclined to be good citizens within
their communities because their reputation will be shared; communities need to
be inclined to honestly share the reputation ratings of their agents in order to
be able to benefit from the information provided by the other communities in
the system.

Given that communities are primarily self-interested in some cases they have
incentives to misreport the evaluation of their agents. For example, a community



C can be reluctant to provide a truthful evaluation for one of its very good
agents to another community C ′. This is due to the fact that if the community
C ′ accepts the agent then C might have to share the resources, that the agent
contributes, with C ′. Given that the agent’s resources can be limited, this can
result in a decrease of the agent’s contribution to C.

To address this problem and promote truthfulness, we propose the use of a
graph-based heuristic which exploits the consistency among the advice of candi-
date advisors and reduces the number of communities that are queried each time
a community seeks information about a prospective agent in such a way that all
the communities are inclined to provide truthful reports. Reducing the number
of communities that are queried is important since each time a community re-
quests information from another community it has to provide some resources.
We argue that exploiting consistency among good advisors will further promote
honest behaviour since fewer communities will be consulted and thus resources
will be restricted to only the most reliable sources. This will create a more com-
petitive environment between the advisor communities which will be inclined to
be truthful in order to increase the probability of being asked in the future.

2 Model

Let Ci denote community i and let aj denote agent j. We assume that if aj is
a member of community Ci then Ci can observe and judge the quality of agent
aj . In particular, we assume that community Ci maintains a reputation model
for all member agents, and is able to assign a reputation rating ri

j to agent aj ,
where ri

j ∈ {Good, Poor}. If agent aj wishes to join community Ci, then before
welcoming aj , community Ci will contact the communities in which aj is cur-
rently, or was previously, a member, and will request information regarding aj .
We denote the set of these communities as S(aj). We will refer to the commu-
nity Ci as the recipient community and the communities in S(aj) as the advisor
communities. We assume that the set S(aj) is provided by the agent aj .1

In this paper we aim to identify a subset, S′, of a set of candidate advisors in
a way that will not compromise the quality of information Ci receives regarding
the reputation of an agent, while at the same time provide strong incentives
for all the participant communities to be truthful. We argue that this can be
achieved by exploiting the consistency among communities which provide good
quality of information.

In order to exploit the consistency among the advice of the advisor commu-
nities we consider a graph-based heuristic. First, for each community C ∈ S(aj)
we identify the set of communities with which it appears to be consistent in pro-
viding advice and which also appear to be consistent with each other, then we
select the community with the ‘strongest’ set, and finally from this set we select
1 In the future we plan to develop a reasoning mechanism that will reward truthful

agents to a certain extent, even if they had an apparently justified poor contribution
in a percentage of communities in which they have been members, and it will penalize
agents that appeared to have not disclosed some of these communities.



Fig. 1. An example of a Consistency Graph GCi with its weights.

the ‘strongest’ community. The latter community is the first candidate commu-
nity to ask. Then we remove it and repeat the procedure in order to select the
second candidate and so on.

More specifically, each community Ci constructs a graph GCi that main-
tains partial information regarding the consistency among the information that
other communities have provided to Ci in the past. In particular, we refer to
the graph GCi = (V,E, Pr+(V ), P r−(V ), P r+(E), P r−(E)) as the Consistency
Graph of the community Ci. Each vertex vk of the Consistency Graph GCi

represents an advisor community Ck from which the community Ci has re-
quested information in the past. Each vertex vk ∈ V is described by a tuple
(Pr+(vk), P r−(vk), Expr(vk)), where Pr+(vk) represents the probability an
agent a will be a ‘Good Contributor’ in Ci given that Ck characterized it as
a ‘Good Contributor’, Pr−(vk) represents the probability an agent a will be a
‘Poor Contributor’ in Ci given that Ck characterized it as a ‘Poor Contributor’,
and Expr(vk) represents the total number of times the community Ck was asked
by Ci. An example of a Consistency Graph is depicted in Fig. 1. For instance,
the community which owns the graph in Fig. 1 has received information in the
past from the communities {Ca, Cb, Cc, Cd, Ce, Cf , Cg}.

The existence of an edge e ∈ E, e = (vj , vk), indicates that in the past the
community Ci has requested simultaneously and received information from the
communities Cj and Ck regarding at least one agent. Each edge e ∈ E is de-
scribed by a tuple (Pr+(e), P r−(e), We) (Fig. 1), where Pr+(e) represents the
expected probability the communities Cj and Ck will provide consistent informa-
tion regarding a ‘Good Contributor’, Pr−(e) represents the expected probability
the communities Cj and Ck will provide consistent information regarding a ‘Poor
Contributor’, and We represents the degree the amount of information that is
available based on past reports is sufficient to reason about the consistency of
the reports of the communities Cj and Ck and can be determined based on the
number of times the community Ci has requested information simultaneously
from both the communities Cj and Ck. The latter probabilities are based on



past experience and get updated each time an interaction, that involves the
communities the vertices and/or the edges are associated with, takes place.

We consider that two or more communities provide consistent information
regarding a ‘Good Contributor’ (‘Poor Contributor’) if they have characterized
an agent as ‘Good Contributor’(‘Poor Contributor’) and the agent proved to
be a ‘Good Contributor’ (‘Poor Contributor’) inside the advisor community.
As we discuss in Section 3, we distinguish the case of ‘Good Contributors’
and ‘Poor Contributors’ and in each case we consider only the probabilities
(Pr+(E), P r+(V )) and (Pr−(E), P r−(V )), respectively. Thus, for simplification
reason, we provide the following definitions based on a 4-tuple graph.

Definition 1 Given two graphs G(V,E, Pr(V ), P r(E)) and G′(V ′, E′, P r(V ′),
P r(E′)), where Pr(V ), Pr(V ′), Pr(E) and Pr(E′) are probability distributions
over V , V ′, E and E′, respectively, the graph G (ε, µ)--dominates the graph G′

if there is at least one subgraph Gsb(Vsb, Esb) of G isomorphic to G′ such that:

average(Pr(Vsb)) + ε ≥ average(Pr(V ′)) (1)

and
average(Pr(Esb)) + µ ≥ average(Pr(E′)) (2)

In case (ε, µ) = (0, 0) we will say that G strongly−dominates the graph G′.

This definition determines whether the information a graph G(V,E, Pr(V ), P r(E))
depicts is equal to or richer than the information a graph G′(V ′, E′, P r(V ′),
P r(E′)) depicts. For example, consider two basketball teams, A and B, which
have 7 and 5 players, respectively. Assume now that you have to select the better
of the two teams. If team A has a subset of 5 players that are ‘equally’ good as
the 5 players of team B, then selecting the team A appears to be a better choice.

Definition 2 The External Maximum Clique (EM-Clique(v)) of a vertex v in-
side a graph G(V,E, Pr(V ), P r(E)) is the clique in G with the largest order in
which the vertex v participates and which (ε, µ)-dominates all the other cliques
of equal or smaller order that the vertex v participates. In case there is more
than one clique that satisfies the above requirement, the EM-clique(v) will be the
clique with the largest set of external edges.

Definition 3 Given a clique Q of a graph G, the set of external edges of the
clique Q is the set of all edges e, e = (v, w), in E(G) such that v ∈ V (Q) and
w ∈ V (G)− V (Q).

Very briefly, the above definitions find the clique in a graph G with the biggest
order that appears to be a better choice among the other cliques of G of equal
or smaller order.2 For example, in Fig. 2 the set of external edges of the clique
{a, b, c} of the graph G∗ is {cf, cd}. The reason why we are interested in finding
the largest clique that satisfies the domination condition and not simply finding
2 The order of a graph is equal to the number of its vertices.



Fig. 2. (ε, µ)-domination example

the maximum clique can be well understood by finding the EM - Clique(v) of the
vertex γ in Fig. 2. Clearly, the largest clique the vertex γ participates in clique
G1 which consists of the vertices (α,β, γ) but the quality of information of the
clique G2 which consists of the vertices (γ, δ) might be more valuable. For this
reason, the selection of the EM - Clique(v) should also consider the probability
distribution both on the vertices of the consistency graph and on the edges. For
instance, the average probability distribution of the vertices in G1 is 0.703 and
of the vertices in G2 is 0.755, while the average probability distribution of the
edges in G1 is 0.633 and of the edges in G2 is 0.67. As we can see, although the
graph G2 has smaller order it appears to be a better choice with respect to both
the probabilities over its edges and its vertices.

Proposition 1 A graph strongly dominates all of its induced subgraphs.

Proof: A graph G strongly dominates a graph g if it has a subgraph g′ isomorphic
to g such that:

average(Pr(Vg′)) ≥ average(Pr(Vg)) (3)

and
average(Pr(Eg′)) ≥ average(Pr(Eg)) (4)

Given that g is an induced subgraph of G, we can simply select for g′ the graph
g itself.

As we will explain in detail in Section 3.2 the reason we defined the EM-Clique
of a node vC is because we are interested in identifying the set of communities
S that tend to provide consistent information with the community C, while
at the same time provide consistent information with each other. Asking one
community in S provides the same value of information as asking any community
in S. For example, if Nick and George tend to agree with each other, George
and Helen also tend to agree with each other, and in addition Helen and Nick
tend to agree with each other, then instead of asking all of them we can simply
randomly select one of them and ask him/her instead.

Now, assume that George and Mary were asked a set of questions and they
appeared to agree in the majority of the cases. Now assume that we want to
ask one question to George, Nick, Helen and Mary. Assume that for each person
we ask we have to pay an amount of money and we can only afford to ask one.
Clearly, based on the information we have, our best choice is George, since the



probability he will agree with Nick, Mary and Helen is higher than anyone else.
This information is what we aim in capturing with the following definition of
the Coverage Graph of a community.

Definition 4 A vertex v covers a vertex w, where v, w ∈ V (G), if v participates
in w’s EM -clique.

For example, in Fig. 2 the EM-Clique of the vertex a is {a, b, c}, thus the vertices
b and c cover the vertex a.

Definition 5 The coverage graph Ĝv of a vertex v in a graph G is the graph
that occurs from the union of all the EM -cliques of the vertices in G the vertex
v covers.

For instance, consider the graph G∗ in Fig. 2, for (ε, µ) = (0.04, 0) c’s EM-Clique
is {b, d, f}. Given now that c covers a and b and that a and b have EM-Cliques
the {a, b, c}, the graph G∗ is the coverage graph of a vertex c.

3 Selection Procedure

In this section we describe our procedure for finding the set of advisors L. Al-
though our main aim is to identify the communities which provide accurate
information regarding agents who are ‘Good’ contributors (i.e. agents that the
recipient community is more likely to accept) we are also interested in asking a
small number of communities that provide consistent information about agents
who are ‘Poor’ contributors. This is due to the fact that communities might be
interested in misreporting good agents in fear of losing them or misreporting
poor contributors in an effort to get rid of them.

The list L+ consists of the communities that tend to provided consistent
information about agents who are ‘Good’ contributors while the list L− consists
of the communities that tend to provide accurate information about agents who
are ‘Poor’ contributors. Obviously, L = L+ ∪ L−. In the following sections we
will provide the way that L+ is decided. The list L− can be decided in a similar
way.

3.1 Filtering the Consistency Graph

The filtering step in the Selection Procedure refers to removing the nodes that
represent communities that either the community Ci would like to ask anyways
or represent communities that provide insufficient information. For example,
if a community provides accurate information with probability 0.1 then this
community would be a bad choice, thus it should be removed from the candidates
list. We refer to the graph that is created as the Consistency SubGraph and we
represent it by G+

cg(i). In particular, the Consistency SubGraph G+
cg(i) is created

by removing:



Fig. 3. The Consistency Subgraph CGCi of the graph GCi

– the vertices which represent communities that do not belong to S(aj) or
represent communities whose probability of telling the truth regarding ‘Good
Contributors’ is less than an acceptable threshold θ+

v , or represent commu-
nities for which there is no sufficient experience and thus their Expr(v) is
less than an acceptable threshold θexpr

v .
– the edges which connect communities whose probability of agreeing about

‘Good Contributors’ is lower than an acceptable threshold θ+
e , or edges for

which there is no sufficient experience and thus their wcf
e is less than an

acceptable threshold θexpr
e .

An example of a Consistency SubGraph is depicted in Fig. 3. More specifically,
the latter graph is created from graph Consistency Graph GCi in Fig. 1 if we
consider that the candidate advisor list is S(aj)={a,b,c,d,f,g}, θ+

v = 0.65, θexpr
v =

0.6, θexpr
e = 0.5, and θ+

e = 0.6. As we can see the vertex e is removed since it does
not belong in S(aj), while the edge e1 = (vf , vg) is being removed because there
is no sufficient previous experience (i.e. wcf

e1
< 0.5) and e2(vb, vg) is removed

since the probability of Cb and Cg to agree is below the threshold θ+
e (i.e. w+

e2
=

0.55 < θ+
e = 0.6). At this point we need to mention that in order to accumulate

experience for the above nodes, each time a number of ‘unexplored’ nodes can
be selected to be asked with some probability p each time.

3.2 Exploiting Consistency When Selecting Advisors

The next step is to exploit the consistency in advice that the communities in the
Consistency Subgraph provide. In order to achieve this we need to identify the
Dominant Coverage Graph. This is a graph that contains the set of communities
that tend to provide the best quality of information while at the same time are
consistent with each other. To identify the Dominant Coverage Graph we first
need to find the EM-Clique of each community in the Consistency Subgraph.
The EM-Clique of a community C consists of the set of communities that are
consistent not only with the community C but with each other as well. Our goal
is to identify the set of communities that C belongs and which has the following
property: asking one of the communities in the latter set to be ‘equivalent’ to
asking all of them, since if everybody tends to agree with everybody else in the
set then simply asking one of them is sufficient.



Fig. 4. The set of EM-Cliques of the Graph G

Fig. 5. The set of Convergence Graphs of Graph GCi

For example, the cliques the community C, which is represented by the ver-
tex vC in the consistency subgraph in Fig.3, participates are {{vb, vc}, {vc, vf},
{vc, vg}, {vb, vc, vf}}. As we can clearly see, the cliques {{vb, vc}, {vc, vf}} are
induced subgraphs of the clique {vb, vc, vf}, and thus the only candidate EM-
cliques are: {vb, vc, vf} and {vc, vg}. In order to choose between the above two
cliques we will use the (ε, µ)-domination condition. The EM-cliques of each of the
nodes in Fig. 3 for (ε, µ) = (0, 0) are depicted in Fig. 4. In particular, the node va

participates in the following three cliques: {{va, vd}, {va, vc}, {va, vc, vd}}, and
thus the EM-clique of the va is {va, vc, vd}, since the other two are its subcliques.
Similarly, the cliques for vd, vf and vg can be found. Regarding the node vc, its
EM-clique is {vc, vg} since the clique {vb, vc, vf} does not have any subclique
that can (0, 0)-dominate the clique {vc, vg}. In a similar way, the EM-clique of
the node vb is determined.



graph G avg(Pr+(VG)) avg(Pr+(EG))

G1 = {va, vb, vd, vf} 0.7 0.825
G2 = {va, vc, vb, vg} 0.7175 0.7625
G3 = {va, vb, vc, vf} 0.715 0.7375
G4 = {vb, vc, vd, vf} 0.6975 0.7125

CGvc
Ci

0.7175 0.7125

Table 1. The isomorphic to CGvc
Ci

(Fig. 5) subgraphs of CG
vb
Ci

and the average Pr+ probability of

their edges and vertices.

The next step is to construct the Coverage Graph of each community C
in the Consistency Subgraph. We will call the community C the ‘owner’ of the
Coverage Graph. This can be done by merging all the EM-Cliques the community
C participates in. If a community C participates in Ca’s EM-Clique then asking
C or Ca’s is ‘equivalent’. Thus, if the community C also participates in Cb’s EM-
Clique then asking Cb is equivalent to asking C. Consequently, in order to find
how many communities each community ‘covers’ the Coverage Graph is created.
For example, consider the EM-cliques in Fig. 4, the node vb participates in vf

clique thus, its Coverage Graph is created by merging the its EM-clique with
node’s vf EM-clique. The Coverage Graphs for the nodes in Fig. 3 are depicted
in Fig. 5.

A first approach to identifying the first candidate advisor community could
be to simply select the community whose Coverage Graph has the biggest order.3
Assume now that the largest clique is G1 and has order n and the second largest
clique is G2 and has order n − 1. Furthermore, assume that the average vertex
probability of G1 and G2 is 0.6 and 0.78, respectively, while the minimum prob-
ability of a vertex in G1 is 0.5 and the minimum probability of a vertex in G2 is
0.65. Obviously, although the order of graph G1 is bigger than the order of G2,
the graph G2 appears to be a better choice. For this reason, we choose to find
the largest Coverage Graph that dominates all the Coverage Graphs of equal or
smaller order, and thus we choose to apply the (ε, µ)-domination condition. We
refer to the winner Coverage Graph as the Dominant Coverage Graph.

In order to determine the Dominant Coverage Graph between the Coverage
Graphs of Fig. 5, we first examine the graph with the largest order which is
CGvb

Ci
. Clearly, since CGva

Ci
, CGvd

Ci
and CG

vf

Ci
are induced subgraphs of CGvb

Ci
,

the graph CGvb
Ci

strongly dominates them. The first graph which we choose
to check whether CGvb

Ci
(ε, µ)-dominates is CGvc

Ci
. For simplicity reasons we

consider (ε, µ) = (0, 0). In order to decide whether CGvb
Ci

(ε, µ)-dominates CGvc
Ci

we have to identify the subgraphs of CGvb
Ci

that are isomorphic to CGvc
Ci

. These
subgraphs are G1 = {va, vb, vd, vf}, G2 = {va, vc, vb, vg}, G3 = {va, vb, vc, vf}
and G4 = {vd, vb, vc, vf}. Table 1 summarizes the average probability of the
edges and the vertices of each of the above subgraphs as well as the average
probability on the edges and vertices of the graph CGvb

Ci
. In the case of the

graph G2 we have Pr+
v (G2) = Pr+

v (CGvc
Ci

) while Pr+
e (G2) > Pr+

e (CGvc
Ci

), and
thus CGvb

Ci
(0,0)-dominates CGvc

Ci
. Now, we discard CGvc

Ci
and all the coverage

3 Recall the order of a graph G is equal to the number of G’s vertices.



Fig. 6. ε-domination example

graphs that CGvc
Ci

(0,0)-dominates. In this particular case, given that the CG
vg

Ci

is an induced subgraph of CGvc
Ci

, CGvc
Ci

strongly dominates it and there is no
other subgraph to be checked. This means that CGvb

Ci
is the Dominant Coverage

Graph.
The algorithm for finding the Dominant Coverage Graph is as follows:

Algorithm 1 Finding the Dominant Convergence Graph
Input: Set S∗ of coverage graphs,ε, µ
Output Dominant Convergence Graph if the set S∗

1: Sdisc ← empty
2: FIND g ∈ S∗ with MAX Order4

3: if g (ε, µ)− dominates all the graphs in S∗ then
4: if g is an induced subgraph of a graph G′ ∈ Sdisc then
5: RETURN G′

6: else
7: RETURN g
8: end if
9: else

10: REMOVE g from S∗

11: ADD g in Sdisc

12: REMOVE all the graphs g′ ∈ S∗ that g (ε, µ) − dominates and add them in
Sdisc

13: GOTO Step 2
14: end if

Considering the selection of which node in the Dominant Coverage Graph to
ask, in an initial approach we could consider the selection of the community to
which the Dominant Coverage Graph belongs. However, this is not always the
best choice since the community that owns the Dominant Coverage Graph could
be a community with one of the lowest probability among the other communities
in this graph. For example, assume the Dominant Coverage Graph among the
graphs in Fig. 5 is the graph CGvb

Ci
. As we can see the vertex with the highest

probability (0.75) is va while the owner of the graph is the vertex vb.
Another approach we could consider is to select the node with the maximum

probability. Assume now the Dominant Coverage Graph among the graphs in



Fig. 5 is the graph CGvc
Ci

. As we can see the vertex with the highest probability
(0.76) is vg but the vertex vc has lower probability but higher degree. Thus,
given that these two probabilities are close enough, selecting the node vc is a
better choice. Thus, a more sophisticated approach is needed in order to select
the ‘strongest’ node of a Dominant Coverage Graph.

We conclude that the approach we should use is the following: turn the
Dominant Coverage Graph from undirected to directed by giving orientation to
its edges. In particular, for each edge e = (v, w) of the graph give a direction
from w to v if p(v) > p(w), from v to w if p(v) < p(w) and a double direction if
p(v) = p(w), where p is the probability distribution over the vertices, and choose
the node with the highest in-degree.5 For example, assume that the Dominant
Coverage Graph is the graph CGvc

Ci
by adding direction on its edges the graph

in Fig. 6 is created. As we can see the node with the maximum in-degree is vc. If
we consider now CGvb

Ci
as the Dominant Coverage Graph we have three vertices

with in-degree equal to 2 which are va, vb and vc. From these we select the one
with the highest probability which in this case is the vertex va.

The algorithm for finding a list of advisors ordered from the most valuable
to the least valuable is the following:

Algorithm 2 Finding the Ordered list L with the Advisors
Input: G(V, E, Pr∗),ε
Output L

1: for all v ∈ V do
2: FIND the EM-Clique(v) in G(V, E, Pr∗)
3: end for
4: for all v ∈ V do
5: FIND the Coverage Graph Ĝv

6: ADD Ĝv in list S
7: end for
8: Find the Dominant Coverage Graph Ĝw̃(Pr∗) ∈ S
9: for all e = (v, w) ∈ E(Ĝw̃) do

10: if Pr∗(v) < Pr∗(w) then
11: GIVE edge e direction v → w
12: else if Pr∗(v) > Pr∗(w) then
13: GIVE edge e direction v ← w
14: else
15: GIVE edge e directions v → w and v ← w
16: end if
17: end for
18: FIND the node k ∈ V (Ĝw̃) with the maximum in-degree.
19: ADD k at the end of the list L
20: REMOVE k from V
21: IF L not full AND G not empty THEN Go to step 1.

5 The tie breaking policy is to choose the node with the highest probability.



Our approach guarantees that if the node with the highest probability is the
owner of the clique it will be selected, while also guarantees that, in the example
we just provided, the node vc will be selected.

By using our proposed approach, each community is inclined to provide truth-
ful reports. This is due to the fact that if a community chooses to lie this will
decrease the probability of being selected in the future in the advisor list of
other communities. For example, assume that a community Ci is interested in
acquiring information regarding an agent aj from a set of communities S(aj).
Assume now that all the communities in S(aj) besides C∗ are always honest. If
C∗ lies then the Pr(vC∗) which captures the probability of the community C∗

tells the truth will decrease.
If the new Pr(vC∗) drops below the threshold that the Consistency Graph

considers when deciding which nodes to discard, then the community C∗ will
not be included in the future in the Consistency Graph and thus it will not be
asked. This is not desirable since, as we mentioned before, each community is
interested in receiving requests in order to receive a payment which it can later
use for paying other communities to provide information.

If the new Pr(vC∗) is still above a threshold then, even in the best possible
scenario where the community C∗ is still part of the Dominant Coverage Graph,
the probability of getting accepted as the ‘strongest’ community in the Dominant
Coverage Graph, due to the fact that when Pr(vC∗) decreases the probability of
C∗ having the maximum in-degree in the Dominant Coverage Graph, decreases.
Furthermore, given that all the rest of the communities are honest their Pr
increases and thus the probability of C∗ getting selected decrease even faster.

If a subset S′ of the communities in S(aj) also lies then the probability of a
community in S′ to participate in the Dominant Coverage Graph decreases. This
is due to the fact the cliques these communities belongs to become weaker and
thus the chances of participating in the final EM-Clique of a node decrease. This
results in the chances of the communities in S′ participating in the Dominant
Coverage Graph to decrease. Of course, even if they still participate then any
truthful community in the same clique as a lying community will have a bigger
in-degree.

4 Discussion

In this paper we propose a graph-based approach for enabling the exchange of
information between communities in such a way that the participant commu-
nities have strong incentives to provide truthful reports. In particular, we have
developed a novel method for selecting communities to ask, in environments
where communities seek to share information about their agents. The aim is to
strengthen each community by having it retain its most effective contributors
and to encourage agents to be good contributors, wherever they reside, in or-
der to gain the benefits of community membership that their shared reputation
ratings will provide.



Our proposed approach is intended to be used together with a novel pay-
ment mechanism that we developed [6]. In particular, our payment mechanism
rewards honesty and provides fair payments among communities when they pro-
vide information about their agents to other communities. Our next steps will
involve the integration of these two procedures, followed by formal proofs that
the overall mechanism is incentive compatible and fair.

A variety of graph-based approaches have been developed to assist in the
modeling of social networks of agents, in an effort to propose which parties
an agent should consult, when the agent’s own knowledge may be limited [3,
10, 13, 15, 16]. This may arise, for example, in settings where a buying agent
consults other buyers in order to learn about the reputability of a selling agent
[9] or in collaborative filtering based approaches for the design of recommender
systems [11, 12] where an agent needs to determine the other parties whose
recommendations will be taken into consideration. One approach that may be
particularly useful for us to examine for future work is that of Wang and Vassileva
[14]. Here, a Bayesian model is used to allow the trustworthiness of an agent to
be determined on the basis of different capabilities (the variable learned by the
model). In environments such as P2P file sharing, trustworthiness may differ for
different areas of expertise (e.g. music file sharing vs. movie recommendation). It
is important to note, however, that our focus is on modeling the trustworthiness
of communities, not only determining the most trustworthy communities to ask
but also providing them with strong incentives to continue being truthful in the
future.

The issue of using trust and reputation as regulating tools is our primary fo-
cus. We want to share reputation ratings, but also to restrict the extent to which
this information is shared; we provide a framework for making this possible. Ar-
chitectures for social agents is also relevant. Our selection mechanism provides
a method for locating a set of other communities with which information will be
shared and as such determines the overall social structure of the entire collection
of communities. Since the setting for our research is a payment-based framework
for exchanging information about agents, the topic of agent-based communities
and electronic institutions is also quite relevant. Finally, our research fits well
with the theme of practical applications of agent organization systems. As men-
tioned, our approach is particularly well suited for the application of P2P file
sharing, for instance.

In examining current research on trust and reputation modeling, the distinc-
tion of Castelfranchi and Tan [2] is relevant for our work. An agent may be
first of all inclined to be trustworthy simply if agent trustworthiness is being
modeled in the society, with penalties exacted for failing to uphold the neces-
sary trust. This is the perspective adopted in many so-called prescriptive trust
models [7] such as that of BRS [4] or TRAVOS [13], which respectively discard
advice from agents deemed to be untrustworthy or discount the evidence that is
provided. Castelfranchi and Tan [2] then suggest that if there is insufficient trust,
some kind of control mechanism may then be required (for example requiring
letters of credit). Unpredictable behaviour may still occur. In particular Kerr



and Cohen chronicle a series of vulnerabilities that various trust and reputation
modeling systems may exhibit [7] and are even able to demonstrate how well
these vulnerabilities may be exploited by untrustworthy agents [8].

In our approach, we have discussed how the proposed selection procedure
makes communities inclined to be truthful. Lying will make these communities
less likely to be selected; as a result, they will lose the ability to earn payment.
This is an important liability, as payment in our framework is required by each
community in order to acquire new information about agents, in the future. As
such, our approach to ensuring truthfulness is less one of deterrence and penal-
ties, but instead more one of social control and reward – communities cannot
continue to participate in the exchange of information with other communities,
if their behaviour is untrustworthy.

For future research, it would be valuable to explore the possible contributions
from research that is more focused on articulating norms in order to control the
behaviour of information-sharing parties. One possible direction would be to
examine the operationalisation of norms as proposed in [1]. This research aims
to ensure the safety and stability of systems and as such is in the same spirit as
the motivation of our own research, that of providing incentives for honesty in
community-based multiagent systems.

Another valuable direction for future research is to examine the concern
raised by Castelfranchi and Tan [2] that virtual communities are faced with the
challenge of coping with agents that leave and return under a new identity – the
issue of anonymity in virtual environments. This issue will be important when
we move forward to formulate a model for representing agent trustworthiness,
as part of the reasoning performed by communities. As discussed in [5] we be-
lieve that the level of participation of an agent within a community will be an
important element to consider, beyond a simple consideration of trust.
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tonio Rodŕıguez-Aguilar, and Carles Sierra. Operationalisation of norms for usage
in electronic institutions. In AAMAS ’06: Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 223–225,
New York, NY, USA, 2006. ACM.

2. C. Castelfranchi and Y. Tan. The role of trust and deception in virtual societies.
In HICSS ’01: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences ( HICSS-34)-Volume 7, page 7011, Washington, DC, USA, 2001.
IEEE Computer Society.

3. Philip Hendrix, Ya’akov Gal, and Avi Pfeffer. Learning whom to trust: Using
graphical models for learning about information providers. In AAMAS ’09: Pro-
ceedings of the Eighth International Conference on Autonomous Agents and Multi-
Agent Systems, 2009.

4. Audun Jøsang and Roslan Ismail. The beta reputation system. In 15th Bled Elec-
tronic Commerce Conference e-Reality: Constructing the e-Economy, Bled, Slove-
nia, 2002.



5. Georgia Kastidou and Robin Cohen. Trust-oriented utility-based community struc-
ture in multi-agent systems. In EDMS 2008: Workshop on Economic Models for
Distributed Systems held in conjunction with the SIGAPP Mardigras Conference,
2008.

6. Georgia Kastidou, Kate Larson, and Robin Cohen. Exchanging reputation in-
formation between communities: A payment-function approach. In Twenty-first
International Joint Conference on Artificial Intelligence, (IJCAI 2009), 2009.

7. Reid Kerr and Robin Cohen. Trunits: A monetary approach to modeling trust in
electronic marketplaces. In In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS’06) Workshop on
Trust in Agent Societies,, 2006.

8. Reid Kerr and Robin Cohen. Smart cheaters do prosper: Defeating trust and repu-
tation systems. In AAMAS ’09: Proceedings of the Eighth International Conference
on Autonomous Agents and Multi-Agent Systems, 2009.

9. Kevin Regan, Pascal Poupart, and Robin Cohen. Bayesian reputation modeling in
emarketplaces sensitive to subjectivity, deception and change. In In Proceedings of
AAAI-06, 2006.

10. Jordi Sabater and Carles Sierra. Reputation and social network analysis in multi-
agent systems. In AAMAS ’02: Proceedings of the First International Joint Con-
ference on Autonomous Agents and Multiagent Systems, pages 475–482, New York,
NY, USA, 2002. ACM.

11. Aaditeshwar Seth and Jie Zhang. A social network based approach to person-
alized recommendation of participatory media content. In In Proceedings of the
International Conference on Weblogs and Social Media (ICWSM), 2008.

12. Xiaodan Song, Belle L. Tseng, Ching-Yung Lin, and Ming-Ting Sun. Personalized
recommendation driven by information flow. In SIGIR ’06: Proceedings of the
29th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 509–516, New York, NY, USA, 2006. ACM.

13. W. Teacy, Jigar Patel, Nicholas Jennings, and Michael Luck. Travos: Trust and
reputation in the context of inaccurate information sources. Autonomous Agents
and Multi-Agent Systems, 12(2):183–198, March 2006.

14. Yao Wang and Julita Vassileva. Trust and reputation model in peer-to-peer net-
works. In P2P ’03: Proceedings of the 3rd International Conference on Peer-to-Peer
Computing, page 150, Washington, DC, USA, 2003. IEEE Computer Society.

15. Bin Yu and Munindar P. Singh. A social mechanism of reputation management
in electronic communities. In CIA ’00: Proceedings of the 4th International Work-
shop on Cooperative Information Agents IV, The Future of Information Agents in
Cyberspace, pages 154–165, London, UK, 2000. Springer-Verlag.

16. Bin Yu and Munindar P. Singh. Detecting deception in reputation management.
In AAMAS ’03: Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 73–80, New York, NY, USA, 2003.
ACM.


