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e study a problem where a new, unfamiliar group of agents has to decide how a joint reward should

be shared among them. We focus on settings where the share that each agent receives depends on the
evaluations of its peers concerning that agent’s contribution to the group. We introduce a mechanism to elicit and
aggregate evaluations as well as for determining agents” shares. The intuition behind the proposed mechanism
is that each agent has its expected share maximized to the extent that it is well evaluated by its peers and
that it is truthfully reporting its evaluations. For promoting truthfulness, the proposed mechanism uses a peer-
prediction method built on strictly proper scoring rules. Under the assumption that agents are Bayesian decision
makers, we show that our mechanism is incentive compatible and budget balanced. We also provide sufficient
conditions under which the proposed mechanism is individually rational, resistant to some kinds of collusion,

and fair.
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1. Introduction

Understanding how agents can work together to
achieve some common goal is a central research
topic when dealing with multiagent systems (Shoham
and Leyton-Brown 2009). Questions that are typi-
cally analyzed include how and which groups of
agents should form (Rahwan et al. 2009); how agents
should coordinate their actions once they have agreed
to work together (Grosz and Kraus 1996); how to
ensure that the group, once formed, does not disinte-
grate (Conitzer and Sandholm 2006); and how a joint
reward should be divided among the group mem-
bers (Moulin 2004). It is this last question that we
address in this paper.

Commonly called fair division, the problem of divid-
ing one or several goods among a set of agents, in
a way that satisfies a suitable fairness criterion, has
been studied in many literatures. In decision analysis,
several fairness factors and practical issues are taken
into account before constructing a decision analysis
model for allocating goods (Keller et al. 2010), e.g.,
how uniform the allocation is, its impact on future
generations, etc. In economics, the collective welfare
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approach is arguably the most influential application
of the economic analysis to fair division. It uses the
concepts of collective utility functions, in its cardi-
nal interpretation, and social welfare orderings, in
its ordinal interpretation, for deciding what makes
a reasonable division (Moulin 2004). In computer
science and, more specifically, artificial intelligence,
the fair division problem is traditionally studied
in settings where the underlying agents not only
have preferences over alternative allocations of goods,
but also actively participate in computing an alloca-
tion (Chevaleyre et al. 2006).

In this paper, we propose a game-theoretic model
for sharing a joint, homogeneous reward based on
the idea of peer evaluations. In detail, we consider sce-
narios where an unfamiliar group has been formed
and has accomplished a task for which it is granted
a reward, which in turn must be shared among the
group members. In some sense, our work can be
seen as a complement of the ongoing research on ad
hoc teams (e.g., Stone et al. 2010). In such ad hoc
team settings, an agent must be prepared to cooper-
ate with previously unfamiliar teammates. Thus, team
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strategies cannot be developed a priori. Rather than
focusing on the formation process of ad hoc teams, we
propose a way of sharing rewards that might result
from that collaboration.

After observing the individual contributions of the
peers in accomplishing the joint task, each agent
in the group is asked to evaluate the others. These
evaluations are elicited and aggregated by a cen-
tral, trusted entity called the mechanism, which is also
responsible for sharing the joint reward. The share
received by each agent from our proposed mecha-
nism has two major components. The first one reflects
the evaluations received by that agent. The second
one is a truth-telling score, which is used to encour-
age agents to truthfully report their evaluations. For
computing such scores, the mechanism uses a novel
peer-prediction method built on strictly proper scor-
ing rules. Under our method, truth-telling maximizes
agents’ expected scores when they do not have infor-
mative prior knowledge about the capabilities of
their peers.

Thus, the intuition behind the proposed mechanism
is that each agent has its expected share maximized
to the extent that it is well evaluated and that it is
telling the truth. Under the assumption that agents are
Bayesian decision makers, we show that our mech-
anism is incentive compatible and budget balanced,
and we present sufficient conditions under which it is
individually rational, resistant to some kinds of collu-
sion, and fair.

The rest of this paper is organized as follows. We
review the literature related to our work in §2. In
§3, we describe the basic model and concepts used
throughout the paper. In §4, we introduce our mech-
anism and show that it satisfies important properties.
In §5, we investigate the influence of the mechanism’s
parameter on agents’ shares. In §6, we discuss some
practical issues regarding our model and mechanism.
We conclude in §7.

2. Related Work

Several resource allocation models have been pro-
posed in the decision analysis literature, ranging from
resource allocation in the development of military
countermeasures (Golany et al. 2012) to resource allo-
cation in healthcare (Griffin et al. 2008). A well-
known resource allocation model is attributable to
Pratt and Zeckhauser (1990). They described how to

fairly divide a number of silver heirlooms among
agents, where each agent’s preferences for objects
are represented by its utility function. Then, alloca-
tions to different agents are made as they would
be in a market for probability shares in the objects,
where each agent is assumed to have a fixed and
equal budget for making purchases, and the objects’
prices are the market-clearing equilibrium prices in
a second-price auction. We observe that such an
auction-based approach is unfeasible in our setting
because the underlying object (reward) is homoge-
neous and divisible.

Several fairness factors and practical issues are
also studied in decision analysis. Questions concern-
ing whether or not it matters what different agents
get, or how uniform the allocation is, are often
taken into account before constructing decision anal-
ysis models and processes for allocating resources
(Keller et al. 2010).

From a more theoretical perspective, the concept
of fair division has long been studied in cooperative
game theory. The Shapley (1953) value is a key con-
cept in this field used to distribute a joint surplus (or
cost) among a set of agents. Roughly speaking, the
Shapley value assigns a share to each agent equal to
that agent’s marginal contribution to the group. We
note that sharing schemes based on marginal contri-
butions, like the Shapley value, are not appropriate in
our setting. The idea of marginal contribution is not
objectively defined in our model because individual
contributions are subjective information.

Recent work in microeconomics has addressed the
issue of sharing a value based on peer evaluations.
Slightly different from our model, agents are asked
to report the relative contributions of their peers in
accomplishing a joint task; e.g., agent 1 might report
that agent 3 deserves 10 times as much as agent 2.
Three properties of mechanisms are very often stud-
ied: budget balance, impartiality, and consensuality.
A mechanism is budget balanced if it neither takes
a loss nor makes a profit. A mechanism is impar-
tial if the amount paid to every agent is independent
of that agent’s report. A mechanism is consensual if
the amount paid to agents respect the peer evalua-
tions whenever they are consistent. With exactly three
agents, de Clippel et al. (2008) show that there is a
unique impartial and consensual mechanism, and that
it is only budget balanced when agents” evaluations
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are consistent. Those authors also propose a family
of mechanisms that satisfies the aforementioned prop-
erties whenever there are four or more agents. The
follow-up paper by Tideman and Plassmann (2008)
elaborates on the numerical and statistical properties
of that family of mechanisms. Knoblauch (2009) deter-
mined the extent to which an impartial, budget bal-
anced mechanism must deviate from consensuality in
the three-agent case.

A crucial assumption in the aforecited works is that
the underlying agents are not strategic. The ratio-
nale behind such an assumption is that because the
evaluations reported by an agent do not affect its
share of the joint reward (impartiality), then that
agent should have no incentive to lie. First, we note
that this assumption makes the resulting mechanisms
extremely susceptible to collusive behavior. Further-
more, it does not help to prevent situations where
agents are not willing to exert the required effort to
evaluate their peers, or when agents’ evaluations are
biased.

This last point is illustrated in the work done by
Kaufman et al. (2000). These authors use a peer-
rating system to account for individual performance
in teams of students. In detail, each team member ini-
tially receives a common grade as the result of a joint
academic work. Later, each grade is weighted by a
weighting factor, which is equal to the average evalu-
ation received by the underlying student divided by
the team average. This peer-rating system was used
in assignments of two sophomore-level courses. The
results strongly suggest that both gender and racial
bias might influence the reported ratings. Further-
more, several cases of collusion between students are
reported, i.e., team members agreeing to give each
other identical ratings.

We believe that the above-mentioned problems
might be even worse in our scenario because the joint
reward must be shared among the agents. Hence,
the truth-telling score is an essential component of
our mechanism because it encourages rational agents
to truthfully reveal their evaluations. To the best of
our knowledge, the first mechanism that explicitly
deals with strategic agents when sharing rewards
based on peer evaluations is attributable to Carvalho
and Larson (2011). For promoting truthfulness, they
use the “Bayesian truth serum method” proposed
by Prelec (2004). This method brings two major

drawbacks. First, it requires the population of agents
to be large. Second, besides reporting evaluations,
agents must also make predictions about how their
peers are evaluated.

In this work, we eliminate both problems by using a
novel peer-prediction method built on strictly proper
scoring rules. The first of such methods is attributable
to Miller et al. (2005). In their work, a number of
agents experience a product and rate its quality.
A mechanism then collects the ratings and makes
the payments based on them. This method makes
use of the stochastic correlation between the signals
observed by the agents from the product to achieve a
Bayes—Nash equilibrium where every agent tells the
truth. Jurca and Faltings (2009) extended the original
method by also considering several kinds of collusion.

The major problem with the original peer-predic-
tion method when applied to our setting is that it
depends on previous, historical data. In detail, after
agent i reports its evaluation of agent j, say s/, the
mechanism estimates agent i’s prediction of the eval-
uation reported by another agent k, P(s] | s/), which is
then evaluated and rewarded using a scoring rule and
agent k’s actual reported evaluation. The mechanism
needs to have a history of previous evaluations for
computing P(s; | s!). In our scenario, this is unreason-
able to assume whenever an agent is being evaluated
for the first time.

Witkowski and Parkes (2011) proposed a way to cir-
cumvent this problem by removing some crucial com-
mon knowledge assumptions. In their model, agents
possess private beliefs regarding both the quality of
the product and the likelihood of a positive experi-
ence given a particular quality. Agents are required
to report their beliefs before and after experiencing
the product. A mechanism estimates the perceived
quality from the direction of the belief change. Each
estimation is used as the observed outcome (“ground
truth”) when rewarding another agent’s report. This
approach might create many practical problems in
our setting. First, it implies that agents have to eval-
uate their peers before working together, which is
a troublesome situation whenever they are working
together for the first time. Furthermore, they have
to report their entire beliefs (probability distribu-
tions) twice. Finally, the estimated perceived quality
is binary, which implies that an agent could only do
a good job or a poor one.
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We balance the budget of our peer-prediction
method by using an adaptation of the technique pro-
posed by Goel et al. (2009), which in turn is based on
competitive scoring rules (Kilgour and Gerchak 2004).
Goel et al. (2009) also proposed a peer-prediction
method called the “collective revelation mechanism,”
which not only admits a truth-telling Bayes—Nash
equilibrium, but also weights agents’ ratings by their
relative information content. The major drawback of
that mechanism is that agents must provide an extra
piece of information for the mechanism, namely, their
willingness to update their believes in light of hypo-
thetical new evidence.

Finally, we note that our setting bears a ten-
uous relation to bargaining games (Nash 1950),
cost-sharing schemes from the mechanism design
literature (Moulin 1999, Moulin and Shenker 2001),
and the cake-cutting problem (Brams and Taylor 1996,
Robertson and Webb 1998), where different fairness
criteria are studied (e.g., proportionality, equitability,
and envy freeness).

3. Model and Background

A set of unknown agents! N ={1,...,n}, for n >4,
has accomplished a task for which it is granted a
reward V € R*. Every agent is assumed to want more
of the reward. Therefore, we can identify an agent’s
share with its welfare. We are interested in settings
where the share of V that an agent receives depends
on the evaluations of its peers concerning that agent’s
contribution to the group.

We model the private information of each agent as
n — 1 private signals that that agent observes from
its peers. These signals are direct assessments of the
peers’ performance in accomplishing the joint task. We
call them truthful evaluations. To avoid a biased self-
judgment, agents do not do self-evaluations. Formally,
given a positive integer parameter M > 1 and for each
agent j € N, let Q; be a multinomial distribution” with

! Because agents are not necessarily human beings (e.g., computa-
tional agents), we refer to a single one of them as it.

2 We use the term multinomial distribution (also known as a categor-
ical distribution) for the generalization of the Bernoulli distribution
for discrete random variables with any constant number of val-
ues. The parameter of that distribution is a probability vector that
specifies the probability of each possible outcome.

unknown parameter w; € AM (a unit simplex in %")
that represents the truthful evaluations for agent j. The
signals observed by agent i are represented by the vec-
tor t;=(t},... t1, ¢, ..., t"), where tf ell,..., M}
represents the signal observed by agent i coming from
agent j, ie., tlj ~ ;. Therefore, t; is the vector with
the truthful evaluations made by agent i regarding
the contributions of its peers in accomplishing the
joint task.

The parameter M represents the top possible evalu-
ation that an agent can give or receive, and we assume
that its value is common knowledge. Intuitively, as M
increases, the evaluations might be more fine grained
in that small differences between agents can be recog-
nized by their peers. However, this increased expres-
sivity might be burdensome for some agents because
they will have more freedom to evaluate their peers,
which can make the evaluation process more chal-
lenging. We argue that the underlying application
might help to determine appropriate settings for M.
By assuming that the lowest possible evaluation that
an agent can receive is equal to 1, we implicitly assume
that every agent contributed to the task. Thus, agents
who did not contribute at all must not participate in
the sharing process. We make the following additional
assumptions in our model:

1. Self-interest. Agents act to maximize their ex-
pected shares.

2. Common prior. For all j € N, there exists a com-
mon prior distribution over ®;, P(w;). We assume
that this distribution is a noninformative Dirichlet
distribution.

3. Rationality. Every agent i € N, with truthful eval-
uation tf , forms a posterior by applying Bayes’ rule to
the common prior P(w)), i.e., P(; | t,])

4. Independent signals. The signals observed by an
agent are independent of each other. Formally, given
i,j,keN, and x,y €{1,..., M}, P(t = x|tF = y) =
P(t =x).

The first assumption means that agents are risk
neutral (Mas-Colell et al. 1995). The second assump-
tion implies that agents have common prior distri-
butions over distributions of truthful evaluations. We
discuss the meaning and validity of the assumption
of noninformative Dirichlet priors in §3.5. The third
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assumption means that the posterior distributions are
consistent with Bayesian updating, i.e.,

P(w;|t) = KP(t]| 0,)P(w)), (1)

where K is a normalizing constant that ensures that
the posterior adds up to 1. The first three assump-
tions are traditional in both game theory and mul-
tiagent systems literature (Osborne and Rubinstein
1994, Shoham and Leyton-Brown 2009). Together,
they imply that agents are Bayesian decision makers.
Finally, the last assumption implies that the truthful
evaluation of an agent for a peer does not influence
that agent’s truthful evaluation of other peers.

A consequence of self-interest is that agents may
deliberately lie when reporting their evaluations.
For example, an agent might intentionally give all
other agents a low evaluation so that, in compari-
son, it looks good and receives a greater share of
V. Therefore, we distinguish between the truthful
evaluations made by each agent ie N, t;, and the
evaluations that agent i reports, s;(t;) = (s (t}), ...,
siTL(tY), s, L., sP(EY). We call s;(t;) the strat-
egy of agent i. For clarity’s sake, we use s; to repre-
sent agent i’s strategy when t; is irrelevant or clear
from the context. S; is the set of strategies available
to agent i, and S=S; x --- x S,. Each vector s =
(s1(ty), ..., 8,(t,)) €S is a strategy profile.

As customary, let the subscript “—i” denote a
vector without agent i’s component, e.g., s_;(t_;) =
(s1(t1), - sia(tine), Sipa(tipe), -, 8,(t,)). If the eval-
uations reported by agent i are equal to its truthful
evaluations, i.e., s;(t;) =t;, then we say that agent i’s
strategy is truthful. If for all i € N,s;(t;) =t;, then
we say that s is the collective truth-telling strategy pro-
file. We represent it by s. Evaluations are elicited
and aggregated by a central, trusted entity called the
mechanism, which is also responsible for sharing the
reward among the agents. Formally:

DeriNITION 1 (MECHANISM). A mechanism is a
sharing function, I': S — %", which maps each strat-
egy profile to a vector of shares.

Given the strategy profile s, we denote the share
of V given to agent i by I’(s). We use I’ when s is
either irrelevant or clear from the context. Throughout
this paper, we use the solution concept called Bayes—

Nash equilibrium.

DEerINITION 2 (BAYES-NAsH EQUILIBRIUM). A strat-
egy profile s is a Bayes—-Nash equilibrium if for each
agent i and strategy s; #s; € S;, E[I(s;(t;), s_;(t_;)) | t;]
> E[L(si(t), s_i(t_)) [ £].

In words, for each agent i € N, s,(t;) is the best
response, in an expected sense, that agent i has to
s_;(t_;) given its truthful evaluations t;. The expecta-
tion is taken with respect to the posterior predictive
distributions, discussed in §3.5. When the inequal-
ity in Definition 2 holds strictly (with “>" instead of
“>"), then we say that the strategy profile s is a strict
Bayes—Nash equilibrium.

3.1. Numerical Example

In this subsection, we illustrate some of the concepts
defined so far. The same example will be extended
in subsequent sections to illustrate new concepts and
results. Consider four agents indexed by the letters
A, B, C,D, ajoint reward V =100, and the parameter
M =10. Furthermore, suppose that the truthful eval-
uations are the ones shown in Table 1, where each
numeric cell can be interpreted as the signal observed
by the agent in the row coming from the agent in
the column, e.g., the emphasized number 2 represents
th, i.e., the signal observed by agent A coming from
agent B. Now, suppose that agent A wants to down-
grade others’ contributions. Hence, it could report the
vector s, = (1,1, 1) instead of telling the truth and
reporting s, =t, = (2,9, 6).

3.2. Properties
There are several key properties we wish mechanisms
to have. We introduce them in this section.

DerINITION 3 (FAIRNESS). Consider any strategy
profile s € S, where s{ > s, for every agent k # i, j,
and s]? > s!. Then, we say that a mechanism is fair if

Ii(s) > Ii(s).

Table 1 Truthful Evaluations

Reported evaluations

Agent A B c D
A — 2 9 6
B 8 — 10 9
c 7 5 — 6
D 7 1 10 —
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In words, if an agent unanimously receives bet-
ter evaluations than a peer, then that agent should
also receive a greater share of the joint reward than
its peer.

DerINITION 4 (BUDGET BALANCE). If Vs € S,
Y. Ti(s) = V, then the mechanism is budget-
balanced.

In words, a budget-balanced mechanism allocates
the entire reward V back to the agents. As stated,
this is a strong definition because we do not put con-
straints on s, e.g., we do not require s to be an equi-
librium strategy profile.

DErFINITION 5 (INDIVIDUAL RATIONALITY). A mech-
anism is individually rational if Vi € N, Vs € S,
I;(s) > 0.

This condition requires the share received by each
agent to be greater than or equal to zero. In other
words, all agents are weakly better off participating
in the sharing process than not participating at all.

DEFINITION 6 (INCENTIVE COMPATIBILITY). A mech-
anism is incentive compatible if collective truth-telling
is an equilibrium strategy profile.

Because we are working with Bayes-Nash equilib-
ria, an incentive-compatible mechanism implies that
it is best, in an expected sense, for each agent to tell
the truth provided that the others are also doing so.

DEerINITION 7 (COLLUSION RESISTANCE). A mecha-
nism is collusion resistant if agents have no incentive
to enter into a priori agreements to undermine the
mechanism.

In the following subsection, we extend our discus-
sion on collusions. By no means do we argue that
the properties defined in this section are exhaustive.
However, we believe that they are among the most
desirable ones in practical applications.

3.3. Collusion

We consider that collusion occurs when a group of
agents agree to deliberately lie about their evaluations
of each other. Formally:

DEerINITION 8 (CoOLLUSION). Consider a group of
agents G so that |G| =x, for 2 <x <n. We say that
an (x,y)-collusion occurs when Vi,je G,Vk,I ¢ G,
sl=y, foryefl,...,M}, s/ =t], sk =tf, and sf =tf.

In words, an (x, y)-collusion means that x agents
deviate from the collective truth-telling strategy pro-
file by giving the evaluation y to each other. For the
discussion in this section, let § be the strategy pro-
file after a collusion among a group of agents G C N.
Because of the self-interest assumption, an agent will
only collude if its expected share increases by doing
so. Consequently, a collusion will only happen if
E[>icc Ti(8)] > E[Xicc Ti(8)]- Now, we are ready to for-
mally define the collusion-resistance property.

DEFINITION 9 (COLLUSION RESISTANCE). Let s be the
collective truth-telling strategy profile, and let § be
any strategy profile resulting from an (x, y)-collusion
among a group of agents G, for x = |G| and y €
{1,..., M}. We say that a mechanism is (x)-collusion
resistant if E[Y;.c [,3)] < E[Ziec T (9)].

We can strengthen the above definition by say-
ing that a (x,y)-collusion, for any y € {1,..., M},
will never be profitable, i.e., >, [i(8) < X [i(8).
If a mechanism satisfies this inequality, then we say
that it is ex post (x)-collusion resistant. There is an
interesting relationship between budget balance and
ex post collusion resistance, as shown in the following
proposition.

ProrosiTiON 1. If a mechanism is budget balanced,
then it is ex post (n)-collusion-resistant.

Proor. If a mechanism is budget balanced, then
Vs € §,> ", Ti(s) = V. Consequently, a budget-
balanced mechanism is trivially ex post (1)-collusion
resistant because no strategy profile different from the
collective truth-telling strategy profile can make some
agent better off without making some other agent
worse off. O

Incentive compatibility and collusion resistance are
complementary to each other: whereas the former
deals with single agents deviating from the collec-
tive truth-telling strategy profile, the latter deals with
groups of agents. When collective truth telling is a
Bayes—Nash equilibrium, our definition of collusion
resistance is similar to the concept of resilient equilib-
rium, e.g., we say that an equilibrium strategy profile
is k-resilient if it tolerates deviations by collusions of
up to k agents (Halpern 2008). In this paper, we focus
on collusions of size 2 because they are more tractable
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(from a mathematical point of view) and, arguably,
more likely to occur than bigger ones.

An interesting point to discuss is the relationship
between the collusion-resistance property defined in
this paper and the group strategy-proof concept from
the mechanism design literature (e.g., Moulin and
Shenker 2001). Roughly speaking, a group strategy-
proof mechanism in our setting implies that there is
no collusion G, of any size, such that every agent in
G is at least as well off as when it truthfully reports
its evaluations, and at least one agent in G is strictly
better off. Although both concepts deal with a group
of colluders deviating from the collective truth-telling
strategy profile, group strategy-proofness is stronger
in a sense that a group strategy-proof mechanism pre-
vents any coalition of agents to gain by lying.

3.4. Scoring Rules

A crucial component of the proposed mechanism is
a scoring method for promoting truthfulness, which
is based on strictly proper scoring rules. Consider an
uncertain quantity with possible outcomes o, ..., 0y,
and a probability vector q = (q;, ..., gu)- A scoring
rule R(q, e) is a function that provides a score for the
assessment q upon observing the event o,. A scoring
rule is called strictly proper when an agent receives
its maximal expected score if and only if its stated
assessment q corresponds to its true assessment z =
(21, ---,zy) (Savage 1971). The expected score of q at z
for a real value scoring rule R(q, ¢) is

M
C(alz)=2_zR(q,¢), )
e=1
and the expected score loss is defined by the equation

L(q|2z) = C(z]z) - C(q]2). ®)
Arguably, the best-known strictly proper scoring
rules, together with their scoring ranges, are

logarithmic: R(q, i) =logg; (—o0,0];
M
quadratic: R(q,i)=2q;— > ¢ [-1,1];
e=1

Raa.n =
Ze:l 113

A well-known property of strictly proper scoring
rules is that they are still strictly proper under positive

affine transformations (for example, see Gneiting and
Raftery 2007).

)

spherical: [0, 1].

LemMma 1. If R(q,e) is a strictly proper scoring
rule, then a positive affine transformation of R, i.e.,
YR(q, e) + ¢, for y >0 and ¢ €N, is also strictly proper.

3.5. Dirichlet Distributions

An important assumption in our model is that agents
have noninformative Dirichlet priors over distributions
of truthful evaluations. A Dirichlet distribution can
be seen as a continuous distribution over parame-
ter vectors of a multinomial distribution. Because w is
Vje N,is the unknown parameter of the multinomial
distribution that describes the truthful evaluations for
agent j, then it is natural to consider a Dirichlet dis-
tribution as a prior for w;. Let w; = (w; 1, ..., 0; ).
Given a vector of positive reals, o = (o, ..., o)), that
determines the shape of the Dirichlet distribution, the
probability density function of the Dirichlet distribu-

tion over ; is

P I s PO 5
("J]‘|U)—mk1:[1wj,k , ©)
where
nkM=1(0'k_1)!
Z =
= 1)

Figure 1 shows the above probability density when
M = 3 for various parameter vectors o. For the
Dirichlet distribution in Equation (5), the expected
value of, say, o, ; is E[w; ;| o] =0,/ > M, 0y The prob-
ability vector (E[w; 1 |0], ..., E[w; | 0]) is called the
expected distribution regarding o;.

An interesting property of the Dirichlet distribu-
tion is that it is the conjugate prior of the multi-
nomial distribution (Bernardo and Smith 1994), i.e.,
the posterior distribution P(coj|0',tf), for i #j, is
itself a Dirichlet distribution. This relationship is often
used in Bayesian statistics to estimate the hidden
parameters of a multinomial distribution. To illus-
trate this point, suppose that agent i observes the sig-
nal # =1 from agent j. After applying Bayes’ rule
to its prior (Equation (1)), agent i’s posterior distri-
bution is P(w; | o, tH=1)= P(w;|(oy+1, 05, ..., 04)).
Consequently, the new expected distribution is

@J_( o +1 o, om )
RN B2 S/P A B2 D1 R B S W

We call the above probability vector agent i’s pos-
terior predictive distribution regarding o; because it
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Figure 1

provides the distribution of future outcomes given
the observed data t{ . In this way, we can regard
the parameters oy, ..., 0y as “pseudocounts” from
“pseudodata,” where each o} can be interpreted as
the number of times that the w; ;-probability event
has been observed before. We say that the Dirichlet
distribution is noninformative (or uniform) when all of
the elements making up the vector o have the same
value (for simplicity’s sake, we assume that this value
is equal to 1). Noninformative priors are used when
there is no prior knowledge favoring one probability
event over another.

In our scenario, a noninformative prior means that
before observing, say, agent j’s performance in accom-
plishing the joint task, the initial belief of each agent i
regarding the evaluation deserved by agent j is unbi-
ased. Mathematically, this means that the expected
distribution, E[w,], is uniform over the set {1, ..., M}.
Consequently, the posterior distribution of agent i,
P(w,|o, tf), indicates that t{ is the evaluation most
likely to be deserved by agent j because

2y +1) i =k,
Elo, o, f]= | /M+D s
’ 1/(M+1) otherwise.

Probability Densities of Dirichlet Distributions When M = 3 for Different Parameter Vectors

o=(2 2 4)

In short, the assumption of noninformative
Dirichlet priors means that each agent’s relevant
information consists exclusively of its assessments
of the peers’ performance in accomplishing the joint
task. Intuitively, this assumption makes sense because
in our model agents are strangers to each other before
working together.

We note that other priors could have been used.
However, the inference process would not necessar-
ily be analytically tractable.’> By using noninforma-
tive Dirichlet priors, belief updating can be expressed
as an updating of the parameters of the prior
distribution. Furthermore, we can estimate agents’
posterior distributions based solely on their reported
evaluations, a point that is explored by the proposed
mechanism when computing truth-telling scores.

®In general, tractability can be obtained by using conjugate
distributions. Hence, another modeling choice is to consider that
truthful evaluations follow normal distributions with unknown
parameters. Assuming exchangeability, we can then use either the
normal-gamma distribution or the normal-scaled inverse gamma
distribution as conjugate priors (Bernardo and Smith 1994). The
major drawback with this approach is that continuous evaluations
might bring extra complexity to the evaluation process.
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4. The Mechanism

In this section, we propose a mechanism for sharing
rewards based on peer evaluations. For each vector
with evaluations, s;, the mechanism creates a sec-
ond vector, §; = (¢}, ..., ¢ ¢, ..., L"), by scal-
ing the elements of s; so that they sum up to V.
Mathematically,

Vv , Vv
gi = (S}—q,...,S;1—q,
Zq#isi Zq#isi
sit 4 s! 4 ) (6)
! S e, St 7 )
2 g4iSi 2 g4iSi

This simple preprocessing step ensures that the sum
of the resulting shares is not orders of magnitude
less (or greater) than the reward V. Furthermore, it
helps to avoid some deceptive strategies, e.g., when
an agent, aiming to look better than its peers and thus
to receive a greater share of the joint reward, always
gives the lowest possible evaluation to the others.
Because the reported evaluations are always scaled
to sum up to V, such a deceptive strategy might be
ineffective.

The share received by each agent i from the mech-
anism has two major components. The first one, ',
reflects agent i’s received evaluations. It is calcu-
lated by summing the scaled evaluations received by
agent i and dividing the sum by the total number of
agents n:

i _ Yz g
f=—— )

The second component of agent i’s share is a truth-
telling score 7;. The intuition behind such scores is
that agents maximize their expected values by telling
the truth. We provide details about how these scores
are calculated in §4.1. Finally, the share of agent i is a
linear combination of ¢’ and T;:

I‘i:Zi—i—aTi, (8)

where the constant «, for a > 0, fine-tunes the weight
given to the truth-telling score 7;. Thus, the intuition
behind the proposed mechanism is that agents have
their expected shares maximized to the extent that
they are well evaluated and that they truthfully report
their evaluations.

4.1. Truth-Telling Scores

Our scoring method is built on scoring rules. As
shown in §3.4, scoring rules require an outcome, or
a “reality,” to score an assessment. If the mechanism
knew a priori agents’ truthful evaluations, it could
compare them to the reported ones and reward agree-
ment. However, because of the subjective nature of
the evaluations, we are facing a situation where this
objective truth is practically unknowable. Our solu-
tion to this issue is to compare reported evaluations
and reward agreement. This type of solution is com-
monly called the peer-prediction method (Miller et al.
2005). In the following subsection, we restrict our dis-
cussion on truth-telling scores to how to compute a
single peer-prediction score, !, for agent i given its
reported evaluation s!. The truth-telling score 7, is just
the arithmetic mean of peer-prediction scores, i.e.,

i
_ Zj;éi M

T; .
n—1

1
4.2. Peer-Prediction Scores
To compute peer-prediction scores based on evalua-
tions for agent j, consider a random ordering of all
agents, except agent j. This ordering is known only by
the mechanism. For ease of exposition, suppose that
agent i is in position i, and that agents i, and i_,
are, respectively, right after and right before agent 7 in
the ordering. Furthermore, consider that agents wrap
around fori+1>n—1and i—1 < 1. Intuitively, we use
the evaluation given by agent i, to agent j as a refer-
ence when computing the peer-prediction score . Let
®! = (¢y,..., dy) be the estimated posterior predictive
distribution of agent i regarding ;. It is calculated by
the mechanism based on agent i’s reported evalua-
tion s/, i.e.,
o = |2M+D if sl =k,
o 1/(M+1) otherwise.

In short, our peer-prediction method uses the eval-
uation given by agent i, to agent j as the real-
ized outcome of an uncertain event (the evaluation
deserved by agent j) and rewards agent i’s estimated
posterior predictive distribution by using a strictly
proper scoring rule, i.e.,

R(®},s] ). )

1
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Technically, R can be any bounded strictly proper
scoring rule. Because it has impact on some prop-
erties of the proposed mechanism, from now on we
assume that R is the quadratic scoring rule* shown in
Equation (4). The final step toward computing u! is
to normalize the score R(®/, s ) by using an adap-
tation of the technique proposed by Goel et al. (2009)
for balancing budgets:

1
R@LS) == ¥ OR@LE); (0

7+1

that is, we normalize agent i’s score by using the orig-
inal scores of other agents that cannot be affected by
agent i’s report (that is why we require n > 4). In some
sense, we are taking into account the group’s perfor-
mance when rewarding agent i. The main reason for
doing this is that we can “balance the budget" of our
peer-prediction method, as proved in the following
proposition.

PROPOSITION 2. For each agent j€ N, 3~ .; ;L{ =0.

Proor. The sum of the peer-prediction scores based
on the evaluations given to agent j is

Sul =Y (r@ s )- 1 ¥ R@s))

i#] i#] Y#i, j, i

_ZR((I)Z,SM)——Z > R(<I>] sﬁﬂ)

i#] ] y#i, i
=0. O

An important property of our scoring method is
that under the assumptions of self-interest, common
prior, and rationality, agents maximize their expected
peer-prediction scores by telling the truth, as proved
in the following lemma.

LeEMmMA 2. Under the assumptions of self-interest, a
common priot, and rationality, each agent i # j strictly
maximizes its expected peer-prediction score, E[u.], when
4
s, =t;.

Proor. Because the term

LIS R(®),s).)

n_3J#l =

* The proof that the quadratic scoring rule is indeed strictly proper
as well as some of its interesting properties can be seen in the paper
by Selten (1998).

cannot be affected by the evaluation s{ , Equation (10)

can be seen as a positive affine transformation of the

strictly proper scoring rule R(®], s/ ). If we take the

expectation with respect to ®{ (agent i’s posterior

predictive distribution), then, according to Lemma 1,

agent i strictly maximizes its expected score when
= @/, which happens when s/ = /. O

Another way to interpret the above result is to
imagine that agent i is betting on the evaluation
deserved by agent j. Because the only relevant infor-
mation available to agent i is the signal tf, its best
strategy (in an expected sense) is to bet on that sig-
nal, i.e., to bet on its truthful evaluation. In what fol-
lows, we provide bounds for the scores returned by
the proposed peer-prediction method. We note that
this result does not depend on the assumptions made
in our model.

ProrosITION 3. Foreachagenti ;éj,uf e[-2/(M+1),
2/(M+1)].

ProoF. See the appendix.

4.3. Numerical Example
Proceeding with the previous example, assume that
a =50. Furthermore, assume that all agents are telling
the truth, i.e., the reported evaluations are the ones
shown in Table 1. The first step taken by the mech-
anism for sharing V =100 is to scale the reported
evaluations of each agent so that they sum up to V
(see Equation (6)). For example, the scaled evaluation
(B =38 xV/(sh+5s§+s8) =2x(100/17) approximately
equals 11.76. The resulting scaled evaluations are
shown in Table 2

After that, the mechanism computes the original,
nonnormalized peer-prediction scores (Equation (9)).
For illustration’s sake, consider the original score
received by agent C, R(tbc,sc ), calculated based

Table 2 Scaled Evaluations

Scaled evaluations
Agent A B c D
A — 11.76 52.94 35.30
B 29.63 — 37.04 33.33
c 38.89 27.78 — 33.33
D 38.89 5.55 55.56 —
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Table 3 Random Orderings
Agent Random ordering
A CBD

B CDA

c ABD

D BCA

on its evaluation of agent D, s2. For computing
such score, the mechanism starts by estimating agent
C’s posterior predictive distribution regarding w, as

follows:
-

which results in the probability vector ®2 = (1/11,
1/11,1/11,1/11,1/11,2/11,1/11,1/11,1/11, 1/11) be-
cause sg = 6. Now, consider the random orderings in
Table 3. Each one is indexed by the agent not included
in the ordering. According to Table 3, the agent right
after agent C in the random ordering indexed by D
is agent A. Thus, the mechanism scores the estimated
posterior predictive distribution ®2 using the evalu-
ation given by agent A to agent D as a reference, i.e.,

2/(10+1) if s =k,
1/(104+1) otherwise,

R(®2, sB) ~0.256,

where R is the quadratic scoring rule shown in Equa-
tion (4). The resulting original, nonnormalized peer-
prediction scores can be seen in Table 4, where each
numeric cell can be interpreted as the score received
by the agent in the row based on its evaluation of the
agent in the column.

In the following step, the mechanism computes
the peer-prediction scores by normalizing the origi-
nal scores (Equation (10)). The peer-prediction score
received by agent C, u2, based on its evaluation of
agent D, s2, is equal to its original score minus the
mean of the original scores that are based on evalu-
ations given to agent D and whose values cannot be

Table 5 Resulting Shares

Agent [ u )
A 26.86 —0.061 23.81
B 1127 -0.061 8.22
c 36.38 0.061 39.43
D 25.49 0.061 28.54

affected by s2. According to Table 4, the agent right
before agent C in the random ordering indexed by
D is agent B. Consequently, s2 can affect agent B’s
original peer-prediction score because it is used as
a reference when computing that score. In this way,
agent C’s normalized score is

D D

vy’ Sy+1

1
e =R(®C, 53) - —

2

R(®
n—3 y#C,D,B

).
~ 0.182

The resulting normalized peer-prediction scores
are also shown in Table 4. Finally, the mechanism
computes agents’ shares. For doing this, it aggre-
gates the scaled evaluations received by each agent
(Equation (7)), e.g., {* = (29.63 + 38.89 + 38.89)/4 ~
26.86. Thereafter, the mechanism computes agents’
truth-telling scores as the average of their peer-
prediction scores, e.g., 7, = (0—0.182+0)/3 ~ —0.061.
Finally, the share of each agent is a linear combination
of the aggregation of the scaled evaluations received
by that agent and its truth-telling score, e.g., I'y =
{*+ a1, ~23.81. The resulting shares and their major
components can be seen in Table 5.

4.4. Properties
The proposed mechanism satisfies important proper-
ties. We start by stating our main result.

THEOREM 1. Under the assumptions of self-interest, a
common priot, rationality, and independent signals, truth
telling strictly maximizes agents’ expected shares.

Table 4 Original and Normalized Peer-Prediction Scores

Original peer-prediction scores Normalized peer-prediction scores
Agent A B C D A B c D
A — 0.074 0.074 0.074 — 0.000 -0.182 0.000
B 0.074 — 0.256 0.074  —0.182 — 0.182 -0.182
c 0.074 0.074 — 0.256 0.000 0.000 — 0.182
D 0.256 0.074 0.074 — 0.182 0.000 0.000 —
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Proor. Consider the share received by agent i:

j
N R CLL N I )
n-1 j#i

for o > 0. Because of the assumption of independent
signals, we can restrict ourselves to analyze a single
evaluation reported by agent i, say, its evaluation of
agent j. Consequently, we can restrict our analysis to
the expression {' + &/u1). Now, we note that u/ can be
seen as a positive affine transformation of a strictly
proper scoring rule (see the proof of Lemma 2). Fur-
thermore, we observe that agent i’s reported evalua-
tions cannot affect {' (see Equation (7)). Consequently,
{'+ '} can be seen as another positive affine trans-
formation of a strictly proper scoring rule. We show in
Lemma 2 that if we take the expectation with respect
to ] (agent i’s posterior predictive distribution), then
agent i strictly maximizes E[u]] when s/ =], ie,
when it is telling the truth. Because {' + &/u] is a pos-
itive affine transformation of a strictly proper scoring
rule, Lemma 1 implies that its expected value is also
strictly maximized when s/ =+. O

A straightforward corollary of Theorem 1 is that the
collective truth-telling strategy profile is a strict Bayes—
Nash equilibrium. In other words, the proposed mech-
anism is incentive compatible. The theorem itself is
stronger because, under the assumptions of the pro-
posed model, it says that each agent strictly maxi-
mizes its expected share by following the truth-telling
strategy, and the evaluations reported by others do
not matter. However, it is not as strong as ex post
equilibrium, which means that no agent would ever
want to deviate from the collective truth-telling strat-
egy profile even if it knew the truthful evaluations of
its peers.

It is also interesting to note that by setting a =0,
the collective truth-telling strategy profile becomes a
weak dominant-strategy equilibrium, i.e., each agent
weakly maximizes its share by following the truth-
telling strategy. In this case, given a fixed vector s_,,
agent i always receives the same share, no matter
what it reports. In other words, although agents do
not have direct incentives for misreporting evalua-
tions, they also do not have incentives for telling the
truth. Consequently, several problems may arise, e.g.,
collusions, biased evaluations, etc. That is why we

require « to be strictly greater than zero. By doing
this, rational agents are encouraged to disclose their
truthful evaluations. Interestingly, Theorem 1 holds
for any a > 0, i.e., the weight of the truth-telling scores
on agents’ shares does not compromise the incentive-
compatibility property of the mechanism.

ProrosITION 4. The proposed mechanism is budget
balanced.

Proor. See the appendix.

Because agents’ truth-telling scores can be negative
(see Proposition 3), their shares can also be negative.
In the following proposition, we present a scheme for
avoiding negative shares. Intuitively, it means that the
resulting shares can always be positive, regardless of
the reported evaluations, if we reduce the influence
of the truth-telling scores on agents’ shares.

ProrosITION 5. If a < V/(2n), then the proposed
mechanism is individually rational.

Proor. See the appendix.

Related to the fairness criterion (Definition 3), we
note that there are two major issues with our mech-
anism. First, by using truth-telling scores, we employ
part of the joint reward to promote truthfulness. Con-
sequently, an agent that unanimously receives better
evaluations than a peer will not necessarily receive a
greater share of the reward than its peer because that
agent’s truth-telling score can be lower. Intuitively, we
need to reduce the weight of the truth-telling scores
on agents’ shares for making the proposed mecha-
nism fair, so that those shares will depend almost
entirely on the reported evaluations.

The second issue is about scaling evaluations.
Because we take into account the evaluations given
by two agents to each other in our fairness crite-
rion, then an agent that universally receives better
evaluations than a peer will not necessarily have all
scaled evaluations greater than its peer’s scaled eval-
uations. In other words, given two agents i and j,
where s! > sﬁ, for all z #1, j, we can see from Equa-
tion (6) that the scaled evaluation (! is greater than
Zl. However, s > s/ does not imply that {i > Z!. Thus,
an agent that unanimously receives better evaluations
than a peer will not necessarily receive a greater share
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Table 6

A Scenario Where the Proposed Mechanism Fails to Be Fair

Reported evaluations

Scaled evaluations

Agent A B c B c D 7 T I,

A — 3 1 60.00 20.00 20.00 12.24 —0.06 9.24
B 4 —_ 9 — 40.91 40.91 18.85 —0.06 15.84
c 2 1 — 10 7.69 — 76.92 34.46 0.06 37.46
D 2 1 10 7.69 76.92 — 34.46 0.06 37.46

Notes. Agent B receives a greater share of the joint reward than agent A, even though agent A unanimously receives
better evaluations than agent B. The parameters VV = 100, M = 10, and « = 50 are used as well as the random

permutations in Table 3.

of the joint reward than its peer because the aggrega-
tion of the scaled evaluations received by that agent
can be lower.

To illustrate this last point, consider the evalua-
tions shown in Table 6 and the parameters V =100,
M =10, and a = 50. As can be seen, Yz # A, B,
s4 > sB. Furthermore, sj > si. Thus, agent A unani-
mously receives better evaluations than agent B. Con-
sequently, for the mechanism to be fair, the share
received by agent A must be greater than the share
received by agent B, i.e,, I'y > I';. However, if we use
the random orderings in Table 3, I; turns out to be
greater than I';. Because agent A and B’s truth-telling
scores are the same (74, = 73 = —0.06), the major rea-
son for the difference in their shares is that the scaled
evaluation ¢§ =60.00 is greater than the scaled evalu-
ation {# =18.18, even though the reported evaluation
sh =3 is less than sf =4. In what follows, we present a
sufficient condition under which the proposed mech-
anism is fair.

PROPOSITION 6. If M? +2 <n <./V/(4a), then the
mechanism is fair.

Proor. See the appendix.

Next, we propose a scheme to avoid collusions of
size 2. Intuitively, it means that if truth-telling scores
have a high weight on agents’ shares, then those
agents will not have strong incentives to collude.

PROPOSITION 7. If & > V(M +1)%/(2n), then the pro-
posed mechanism is (2)-collusion-resistant.

Proor. See the appendix.

Because the proposed mechanism is budget bal-
anced, it is also ex-post (11)-collusion resistant (Propo-
sition 1). From Propositions 5-7, we can see that

there is a major trade-off between individual ratio-
nality/fairness and collusion resistance. Actually, it is
impossible to set « in such a way that the proposed
mechanism always satisfies all properties (we skip the
proof because it can be easily deduced from the proofs
of the aforementioned propositions). In other words,
for any value of @, we can always come up with a sce-
nario (reported evaluations, reward, etc.) in which the
proposed mechanism does not simultaneously satisfy
all properties.

Finally, we note that the proofs of the aforemen-
tioned propositions are based on worst-case scenar-
ios, which we believe are fairly unlikely to happen in
practice. In other words, they provide sufficient, but
not necessary, conditions. We argue that it is possible
to use higher (respectively, lower) values for « than
the ones suggested in Propositions 5 and 6 (respec-
tively, Proposition 7) and still be able to obtain indi-
vidual rationality and fairness (respectively, collusion
resistance) in practice, as we empirically show in the
following section.

5. Simulation Results
The parameter a of the proposed mechanism fine-
tunes the weight given to the truth-telling scores. To
better understand its influence on agents’ shares, we
performed the following experiment. We shared the
reward V =100 among 100 agents using the proposed
mechanism and M =10 as the top possible evaluation
that an agent can give or receive. A large population
was intentionally used to decrease the average share.
We chose values for a from the set {1, 10, 25, 50, 75,
100, 250, 500}.

We ran this experiment 100 independent times. At
each simulation step, we randomly generated permu-
tations of agents and truthful evaluations. In detail,
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for each agent i € N, we drew n — 1 samples from a
normal distribution, and rounded each of them to the
nearest integer. These rounded samples were the sig-
nals (truthful evaluations) observed by agent i’s peers
regarding its performance in accomplishing the joint
task. The mean of each normal distribution was uni-
formly selected from the set {1, ..., M}. The variance
of each of them was set to 1. Each rounded sample
less than 1 or greater than M was discarded and a
new one was drawn.

After generating evaluations, we computed the
resulting shares when all agents were telling the truth
and when there was a (2, M)-collusion between two
fixed agents, i.e., when they always gave the top pos-
sible evaluation to each other. Thereafter, we calcu-
lated the loss by lying, i.e., the difference between
the sum of the shares received by the fixed agents
when they were telling the truth and when they were
colluding. To show the statistical significance of the
obtained results, we performed the directional ¢-test.
Our null hypothesis was that the average joint share
when the fixed agents were telling the truth was equal
to the average joint share when they were collud-
ing. Our alternative hypothesis was that the former
was greater than the latter, i.e., the average loss by
lying was greater than zero. Because each noncol-
luder was always telling the truth, then the joint share
when the fixed agents were telling the truth and the
joint share when they were colluding were correlated.
Because of that, we used the t-test for correlated sam-
ples (also known as paired t-test). This test allowed
us to remove irrelevant, extraneous information from
the analyzed shares.

Table 7 presents the results of the experiment. We
start by noting that if o > 666, then we can guarantee
that the proposed mechanism is (2)-collusion resistant
(Proposition 7). The experimental results show that
even using much lower values for a (e.g., a =25),
the average joint share can be greater when the fixed
agents are telling the truth than when they are collud-
ing. When the value of « increases, the mechanism
becomes stronger against (2, M)-collusions, i.e., the
average loss by lying increases. The standard devi-
ation also increases because the range of the shares
becomes larger.

In our experiments, we also calculated the average
number of negative and unfair shares returned by the

Table 7 Loss by Lying
o Avg. Std. dev. p-value
1 -0.0161 0.0041 1
10  —0.0100 0.0110 1
25 0.0002 0.0316 0.4748
50 0.0172 0.0525 0.0039
75 0.0412 0.0952 0.0011
100 0.0512 0.1050 0.0001
250 0.1531 0.2626 ~0
500 0.3230 0.5254 ~

mechanism when all agents were telling the truth.
An agent’s share is considered unfair if that agent
unanimously receives better evaluations than a peer,
but its share is smaller than the peer’s share. Thus,
a mechanism is fair if it does not return any unfair
shares (see Definition 3). To compute the number of
unfair shares, we made pairwise comparisons at each
simulation step where each returned share was com-
pared to the others for determining whether or not it
was unfair.

Table 8 presents the experimental results related
to fairness and individual rationality. We first note
that we need to set o < 0.0025 to theoretically en-
sure that the proposed mechanism is always fair
(Proposition 6). The experimental results show that
even with much higher values for « (e.g., @ =10), the
mechanism might still be fair. Similar results occur
with the individual-rationality property. Proposition 5
says that we must set & < 0.5 to guarantee that the
shares returned by the mechanism are always greater
than or equal to zero. From Table 8, we can see that
even with much higher values for « (e.g., @ =10), the
shares returned by the mechanism might be nonneg-
ative. As expected, the average number of unfair and
negative shares increase as the value of « increases.

Summarizing, this experiment helps to illustrate
two important points. First, it shows the trade-off
between fairness/individual rationality and collusion
resistance. We show that when « increases, the mech-
anism becomes stronger against (2, M)-collusions, but
at the expense of increasing the number of unfair
and negative shares. Intuitively, this happens because
the mechanism is putting more weight on the truth-
telling scores. Second, because Propositions 5-7 are
based on worst-case scenarios, this experiment high-
lights that we can set values for « in a different way
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Table 8 Average Number of Unfair and
Negative Shares
o Unfair shares Negative shares
1 0 0

10 0 0

25 2.12 1.02

50 45.90 5.96

75 117.82 10.83
100 168.79 15.56
250 311.35 32.12
500 366.42 40.74

than suggested by those propositions and still be able
to obtain the underlying properties. These points are
rather general. They also appear in different scenarios
(i.e., different values for V, n, and M) as well as when
using some other distributions of truthful evaluations
(e.g., U-shaped distributions).

6. Discussion

We discuss in this section some practical considera-
tions regarding our mechanism and model as well
as an extension of them to scenarios where agents
observe their peers’ performance several times before
evaluating them.

6.1. Deployment

The intuition behind the proposed mechanism is
pretty clear: Each agent has its expected share max-
imized to the extent that it is well evaluated by its
peers and that it is truthfully reporting its evalua-
tions. When it comes to the mathematics behind the
proposed mechanism, the first component of agents’
shares (Equation (7)) is also very intuitive: It is a
normalized value proportional to the received eval-
uations. Therefore, agents can be informed that the
higher their received evaluations are, the greater this
first component will be.

However, it might be difficult to explain to the
agents how the peer-prediction scores are calculated.
But if we look closely, Equation (9) works by making
pairwise comparisons between two reported evalua-
tions. Therefore, instead of teaching agents the com-
plex mathematics behind the peer-prediction scores,
one can simply show a flowchart that summarizes
how the method works, as in Figure 2, and honestly
suggest that truthful reporting is the best strategy
for three reasons: (1) the reported evaluations will be

rewarded based on whether or not they are in agree-
ment with other reported evaluations; (2) each agent
does not know against whom its reported evaluations
will be compared to; and (3) even if it knew the iden-
tity of the other agent, the former would not neces-
sarily know about the latter’s reported evaluations.

6.2. Multiple Signals

We consider an extension of our model where agents
may observe their peers’ performance several times
before evaluating them. Let p! € Z* be the num-
ber of signals observed by agent i from agent j.
Instead of a single number, .t,]v is now a vector, i.e.,
t = (t/[1], ..., t/[p]]), where t/[k] € {1,..., M}, for 1 <
k< p?. The basic assumptions (self-interest, common-
prior, rationality, and independent signals) are still the
same. As a way to abstract agents’ private informa-
tion, the mechanism only elicits the most common
signals observed by each agent. In detail, let H(x, k)
be an indicator function, i.e.,

1 ifx=k,

H(x, k)=
(. k) 0 otherwise.

We say that agent i is truthfully reporting its evalua-
tion of agent j when

e}
s/ =argmax Y H(x, t/[k]).
xefl, ..., M} k=1
In words, agent i reports the most common signal
coming from agent ;. Ties are broken randomly. In this
new model, agent i’s posterior predictive distribution
regarding ), G)l]- , is defined as

i : j -
<U1 +Y 0 H(, flj-[k]) o+ X0, HQ, ?f[k])
YL, 0+ )] YL, o+ )]

o j
oy + Z]Cj:l H(M/v t;[k]) ) (11)
Yl o+ p)

Once again, we assume that o, = 1, for k €
{1,..., M} (noninformative priors). For illustration’s
sake, consider that agent i observes five signals
from agent j (p! = 5) and that t\ = (1,5,4,5,5) for
M =5. Consequently, agent i's posterior predictive
distribution regarding ; is @] = (2/10 1/10, 1/10,
2/10, 4/10), and agent i’s truthful evaluation of
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Figure 2 Flowchart of How the Original Truth-Telling Scoring Method Works
Step 1: Step 2: Step 3:
Randomly select a Compare reported Reward agreement
subset of agents evaluations

agent j is 5 because this is the most common signal
from agent j.

Interestingly, the proposed mechanism still satis-
fies important properties under this new model, even
without knowing a priori the number of observed sig-
nals. First, because Propositions 4-6 do not depend
on agents’ private information, the proposed mecha-
nism is still budget balanced, and the sufficient condi-
tions under which it is fair and individually rational
are still the same. To show that each agent strictly
maximizes its expected share by telling the truth, we
can restrict ourselves to show that truth-telling strictly
maximizes the expected peer-prediction scores. By
showing this, the proof of Theorem 1 can be used to
show that expected shares are also strictly maximized.

ProrosITION 8. When observing multiple signals and
under the assumptions of self-interest, a common prior, and
rationality, each agent i # j strictly maximizes its expected
peer-prediction score, E[u)], when

R
sl = argmax y_ H(x, tk]).
xefl, ..., M} k=1

Proor. See the appendix.

Finally, we note that Proposition 7 does not
hold anymore. Collusion resistance depends on the
expected scoring loss when an agent is lying instead
of telling the truth (see Equation (16) in the proof of
Proposition 7). From Proposition 8, we can deduce
that the expected scoring loss is always nonnegative.
However, it is easy to show that the loss can be
arbitrarily small as the number of observed signals
increases. Therefore, an arbitrarily large part of the
joint reward must be used as truth-telling scores to
avoid collusions of size 2.

6.3. Random Orderings

The computation of the peer-prediction scores is
highly dependent on the underlying ordering of the
agents. For example, even though an agent’s reported

evaluation is in agreement with the majority of other
reported evaluations, that agent can receive a low
peer-prediction score because of a single “unlucky”
pairwise comparison. This fact can generate a sense
of unfairness because agents can lose a decent pay-
off due to an unfavorable ordering. A simple way to
circumvent the above problem is by using more than
one agent as reference when scoring a reported eval-
uation. For example, the peer-prediction method can
independently use the evaluations given by agents i_,
and i,, to agent j as the outcomes of an uncertain
event (the evaluation deserved by agent j) and reward
agent i’s estimated posterior predictive distribution as
follows: A o o
il =R@®], 5 )+R(®],5).

Then, the normalized peer-prediction score (Equa-
tion (10)) becomes
p=il- Y
i i . y
n—4 y#L fioa, i

for n > 5. The above change has no impact on Theo-
rem 1 and Proposition 4, i.e., the proposed mechanism
is still incentive compatible and budget balanced. The
mechanism can use the reports from up to k <n/2+1
agents as reference and those properties are still valid.
However, this approach has impact on the range
of the peer-prediction scores (Proposition 3). In the
above example, the new range is [—(4/(M + 1)),
4/(M +1)], i.e., two times the old range. Because the
scoring range has changed, the sufficient conditions
under which the proposed mechanism is individually
rational, fair, and resistant to collusions of size 2 also
change. The new conditions can be easily obtained
by updating both the lower bound and the upper
bound of the peer-prediction scores in the proofs of
Propositions 5-7.

6.4. Scoring Rules Sensitive to Distance
Scoring rules, as defined in §3.4, are used to both pro-
vide an ex ante incentive for truthful reporting and
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to measure how informative the probabilities look
ex post, i.e., after the true outcome is observed. How-
ever, the canonical definition of scoring rules does
not take into account any ordering of the underlying
outcomes. In our setting, this implies that any two
different reported evaluations will receive the same
score from Equation (9) whenever they are not similar
to the evaluation used as reference.

That happens because, as noted before, the pro-
posed peer-prediction method essentially works by
making pairwise comparisons, i.e., an agent’s score is
high when its reported evaluations are equal to the
evaluations used as reference. This approach can be
too restrictive and, to some degree, unfair when the
top possible evaluation is high. For example, when
M =10 and the evaluation used as reference is also
equal to 10, a reported evaluation equal to 9 seems
to be more accurate than a reported evaluation equal
to 1. One effective way to deal with this issue is by
using a strictly proper scoring rule in Equation (9)
that is sensitive to distance.

Using the notation from §3.4, recall that given M
possible outcomes, q = (g, ..., ) is some reported
probability distribution. Given that the outcomes are
ordered, we denote the cumulative probabilities by a
capital letter: Q; =3;_;g;. We first define the notion
of distance between two probability vectors. We say

that a probability vector q' is more distant from the
jth outcome than a probability vector q, for q # q’, if

Q;zQi/
Q:<Q;

(Staél von Holstein 1970). Intuitively, the above
definition means that q can be obtained from q' by
successively moving probability mass towards the jth
outcome from other outcomes more distant from the
jth outcome. A scoring rule R is said to be sensitive to
distance if R(q, j) > R(q’, j) whenever q’ is more dis-
tance from q for all j. Epstein (1969) introduces the
ranked probability score (RPS), a strictly proper scor-
ing rule that is sensitive to distance. Using Murphy’s
(1970) formulation, we have

fori=1,...,j—-1;

fori=j,..., M—-1

j—1 M-1
RPS(q, j) =—3_Qf — >~ (1-Q)"
i=1 i=j

Figure 3 illustrates the scores returned by Equa-
tion (9) for different reported evaluations and refer-
ence evaluations (outcomes) when M =5 and R is
equal to the above equation. When using the RPS as
the scoring rule, agents are rewarded based on how
close their reported evaluations are to the evaluations
used as reference: The closer one reported evaluation
is, the higher its score will be. For example, when the

Figure 3 Scores Returned by Equation (9) When M/ =5 and the RPS Is the Strictly Proper Scoring Rule
0.2 T T T
- B- Reference =1
ol —O— Reference =2 ||
Reference = 3
_o2 | -4 - Reference =4 | |

-04

¢ -

—xx— Reference =5

o -06 -7 - i 4
s | leemTTT - - -
) I S - - —
D 8L im0 9 = — |
O'SB:':' - =®
-~ -—
~~~~ — -—
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il =B _ %
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Note. Each line represents a different evaluation used as reference (outcome).
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evaluation used as reference is equal to 1 (see the dot-
ted line with squares in Figure 3), the returned score
monotonically decreases as the reported evaluation
increases. Because RPS is strictly proper, Theorem 1 is
still valid, i.e., the proposed mechanism is still incen-
tive compatible. It can be easily seen that the RPS
scoring range is [-M + 1, 0]. Because it is bounded,
the proposed mechanism is still budged balanced
(Proposition 4) when using RPS. Furthermore, the
new sufficient conditions under which the proposed
mechanism is individually rational, fair, and resistant
to collusions of size 2 can be easily obtained by updat-
ing the lower bound and the upper bound of the peer-
prediction scores in the proofs of Propositions 5-7.

7. Conclusion

We proposed a game-theoretic model for sharing
a joint, homogeneous reward among an unfamiliar
group of agents based on peer evaluations. We intro-
duced a mechanism to elicit and aggregate evalua-
tions as well as for determining agents’ shares. The
intuition behind the proposed mechanism is that each
agent has its expected share maximized to the extent
that it is well evaluated by its peers and that it is
truthfully reporting its evaluations. For promoting
truthfulness, we proposed a peer-prediction method
built on strictly proper scoring rules. Under the main
assumptions that agents are Bayesian decision makers
and that they do not have informative prior knowl-
edge about the competence of their teammates, we
showed that our mechanism is incentive compatible
and budget balanced. We also provided sufficient con-
ditions under which the mechanism is individually
rational, resistant to collusions of size 2, and fair.

An interesting point regarding our mechanism is
the trade-off between fairness/individual rationality
and collusion resistance; that is, if we overly promote
truthfulness, then the mechanism becomes stronger
against collusions, but at the expense of increasing the
number of unfair and negative shares. A major rea-
son for this fact is that avoiding collusions is expen-
sive, i.e., a large part of the joint reward must be used
to promote truthfulness. Thus, an exciting direction
for extending this work is to study new schemes that
guarantee collusion resistance, but using less of the
joint reward. Another interesting line of research is

to investigate other kinds of collusive behavior that
might arise and how to prevent them.
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Appendix. Proofs

Proof of Proposition 3

By construction, the estimated posterior predictive distribu-
tion @/ contains one element equal to 2/(M +1) and M —1
elements equal to 1/(M +1). Because the original, nonnor-
malized score (Equation (9)) is the result of the quadratic
scoring rule (Equation (4)) applied to ®/, we have that

2 M+3 <R(®! j ) 4 B M+3
M+1 (M+1)?2°~ i ’+1 “M+1 (M+1)?
M-1 3M+1
R(I) .
< e =N 1+1)_(M+1)2

Recall that

1 o
=R(®!,s M)—n— > R(®),s),,)-

-3 YL, i
Consequently,
M-1 3M+1 _ ; 3M+1 M-1
M1z My P =My T M2
2 )
- | < O
@ My M M

Proof of Proposition 4
The sum of the shares received by the agents is equal to

Z(gi‘f‘m’i) = Zfi+aZTi

i=1 i=1 i=1

Z];&l g’ ]#t I"Ll

z ra i

n e oSSy
R

j=1 j=1

g (Z 2w

n j=1i#j

The last equality follows from the fact that the scaled
evaluations sum up to V (Equation (6)). From Proposition 2,
we know that 3, ; w) =0, thus completing the proof. O
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Proof of Proposition 5
We start the proof by observing that ¥i e N, {' > 0 (Equa-
tion (7)). Consequently, if agents’ truth-telling scores are
positive, then their shares will also be positive (recall that
I =/"+a7). In this way, we restrict ourselves to the sce-
nario where the truth-telling scores are negative. In detail,
for the proposed mechanism to be individually rational, the
following inequality must be true for every agent i € N and
7 <0: _
gl
—

In what follows, we compute a lower-bound for the frac-
tion in (12). Starting with the numerator, we have

7= L S;(V/(Zq# S?))
n
i si(V/M(n — 1))
n
Vin-1)
- Mn(n-1)

{tar>0=

> a. (12)

The inequalities follow from the fact that V i,j, s/ €
{1,..., M}. Focusing on the denominator of the fraction
in (12), because 7; is the average of n — 1 peer-prediction
scores, we can restrict ourselves to find the lowest negative
score that can be returned by our peer-prediction method.
From Proposition 3, we know that this value is equal to
—2/(M +1), which is greater than —2/M. Thus, we con-

clude that if
_ViMn) v
o< ——— =,
= Z(=2/M) _ 2n
then the proposed mechanism is individually rational. O

Proof of Proposition 6

Consider a pair of agents i, j € N, and any strategy profile
s € S where s]’f > s/ and, for every other agent z #1, j, s. > sl.
For the mechanism to be considered fair (Definition 3), the

shares I(s) and I(s) must satisfy the following inequality:

57

Fi(s)>l“]-(s)c)§_i+a7,->Zj+a7'j©a< (13)

] 1
In what follows, we compute a lower bound for the above
fraction. Starting with the numerator, we have

i-p
S =DV L) 45V /L) =51 (V[ L]
n

V( n-2 1 M
> — + -
_n((n—l)M (n—1)M (n—l))
v n—2+1-M>?

‘Z( (n-1)M )
Vv

> —

“nn—-1)M

Vv
M’

=

The first inequality follows from the facts that for every
agentz#1i,j, s. > sl and that Vi, j, s € {1,..., M}. The sec-
ond inequality follows from the assumption that M?+2<
n=M < +/n—2. Focusing on the denominator of the frac-
tion in (13), because Vg€ N, 7, is the average of n—1 results
from our peer-prediction method, the difference between 7;
and 7; is always less than or equal to the difference between
the highest and the lowest peer-prediction score. According
to Proposition 3, this difference is equal to 4/(M + 1), which
is less than 4/M. Thus, we conclude that if

- V/(Mn?) V
~ 4/M T 4n?

and M < +/n—2, which is equivalent to say that M?4+2<
n <,/V/(4a), then the proposed mechanism is fair. O

Proof of Proposition 7

Let s be the collective truth-telling strategy profile, where
L(s)=Y.4 g“*z"/n—{—a(zz#,v f3/(n—1)) is agent i’s share when
it is truthfully reporting its evaluations. Furthermore, let
§ be the resulting strategy profile after a (2, M)-collusion
between agent i and agent j, so that I3(8) =3, i+
(X", f;/(n—1)). We show that for certain values of «a,
E[T;(s)] < E[T}(s)], i.e, agent i has no incentive to col-
lude. We start by noting that ¥z #1i,j, (' =i and jif = i
because only agents i and j are colluding, i.e., both the
evaluations given by noncolluders to agent i and agent
i’s peer-prediction scores resulting from its evaluations of
noncolluders do not change because of agent i’s collusive
behavior. Consequently, we can restrict ourselves to the
inequality

2 i 5 y
E é+aL <E ﬁ_ﬁ_aL ,
n n—1 n n—1
which, after some algebraic manipulations, leads to
E[{/-¢1 n—1
a>—

Elm—p] 7
In what follows, we compute an upper bound for the

numerator of (14). From Equation (6) we have that

() -4(ss)
! Zq# §]q ! Zq#i é/q

MV \%4

n—-1 (n-1)M

V(M2 -1)

(n—1)M

V(M —-1)(M+1)
n—1)M

_ v+

- (n=1)

. (14)

E[{ - {1

IA

(15)
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The first inequality follows from the fact that Vi, j, s €
{1,..., M}. Focusing on E[,u,, Nf] in (14), from Equa-
tion (10) we can deduce that

- i ‘
E[i] - 3] =E[R(®], 5] ) —R(®], 5] )],
where @{ = (0y, ..., 0)) is agent i's actual posterior pre-
dictive distribution, and ®/ = (¢, ..., ¢,) is agent i’s esti-
mated posterior predictive distribution when it is lying, i.e.,

and
1/(M+1) otherwise,

{2/(M+1) if 5/ =k,
0k=

b 2/(M+1) if § =k,

o 1/(M+1) otherwise.

In words, E[,&f - ,&,f:] is equal to the expected scoring
loss (Equation (3)) when agent i enters into a collusion
with agent j, instead of following the collective truth-telling
strategy profile. By setting R equal to the quadratic scor-
ing rule (Equation (4)) and taking the expectation with
respect to agent i’s actual posterior predictive distribution,
we obtain the following equation after simple algebraic
manipulations:

—2¢k+§¢§>

x=1

: . M M
Eli] - ) = L0 (20, - 2
x=1

k=1

M
> 0,26, —2¢)

k=1

1 2 4
T M+1\M+1 M+1

n 2 4 2
M+1\M+1 M+1
2

= GLT (16)

The second and third equalities follow from the fact that
there are only two elements in ®/ and in (I>’ that have dif-
ferent values (by construction of the mechanism). Combin-
ing (14), (15), and (16), we have that if

V(M+1)

_ViM+1) (M+1)> n—1
iy - 2n 7

n—1 2 n

then the proposed mechanism is resistant to (2, M)-
collusions. Although we focused on (2, M)-collusions in
this proof, it is easy to see that the same result applies to
(2, y)-collusions, for y € {1, } because (15) is an upper
bound on the difference E[{‘ ?], and E[{) — “i] is not
affected by y. O

Proof of Proposition 8
We show that, when observing multiple signals, agent i
strictly maximizes E[u] by telling the truth, i.e., when
. vl .
s/ =argmax Y H(x, t[k]).
xe{l, ..., M} k=1
Without loss of generality, assume that
7} _
argmax Y H(x, t/[k]) =1,
xell, ..., M} k=1
i.e.,, “1” is the most common signal observed by agent i com-
ing from agent j. Recall that ®/ = (6, ..., 0,,) is agent i’s
actual posterior predictive distribution regarding w; (Equa-
tion (11)) Consequently, 0, > 6y, for 2 <k < M. In this proof,
let <I>] = (¢1/ .. d) M) be agent i’s estimated posterior pre-
d1ct1ve dlstrlbution when it is telling the truth, i.e.,
5 2/(M+1) ifk=1,
¢ 1/(M+1) otherwise.

For contradiction’s sake, suppose that agent i maximizes
E[u)] by misreporting its evaluation. Without loss of gener-
ality, assume that agent i reports s/ = 2. Because “2” is not
the most common signal observed by agent i from agent j,
then 6, > 0,. Let ® = (¢, ..., ¢)) be agent i’s estimated
posterior predictive distribution when it is misreporting its
evaluation, i.e.,

if k=2,
b=

- [+
1/(M+1) otherwise.

It is important to note that q’?k =¢, for3<k<M. A con-
sequence of our assumption that agent i maximizes E[u]]
by misreporting its evaluation is that

|:R((I) zH)_i Z R((I)j,séﬂ)]
_3#13131!1
> E|R(®/, ZH)—i 3 R(®),s),,)
[ =35, ]
& E[R(®], 5, )] > E[R(®], 5] )].

’+1

By setting R equal to the quadratic scoring rule (Equa-
tion (4)) and taking the expectation with respect to agent i’s
actual posterior predictive distribution, the above inequality
becomes equivalent to

M oM M LM
> 0,26~ X(82) = oy (26 - L.
k=1 o k=1 =1
M oM X
< Zzekd)k = Zzgkd)k
k=1 k=1
& 0,0y + 0,0, > 6’1‘1";1 + 02$2

& 0,> 6, dfl_dfl.
— ¢
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The second and third lines follow, respectively, from
the facts that Y (4,)? = Ziwzl(d*)x)z and that ¢, = ¢, for
3 <k < M. Regarding the last line, we have by construction
that dy = 2/(M+1), ¢, = 1/(M+1), by = 1/(M+1), &, =
2/(M +1). Consequently, we obtain that 6, > 6;. As noted
before, because “2” is not the most common signal observed
by agent i from j, then 6, > 6,. Hence, we have a contradic-
tion. So, E[R(ti),/-, SZH)] < E[R(‘i){, s{ﬂ)], i.e., agent i strictly

maximizes E[u]] by telling the truth. O
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