Using performance profile trees to improve deliberation control

Kate Larson and Tuomas Sandholm
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213
{klarson,sandholm} @cs.cmu.edu

Abstract

Performance profile trees have recently been proposed as a
theoretical basis for fully normative deliberation control. In
this paper we conduct the first experimental study of their
feasibility and accuracy in making stopping decisions for
anytime algorithms on optimization problems. Using data
and algorithms from two different real-world domains, we
compare performance profile trees to other well-established
deliberation-control techniques. We show that performance
profile trees are feasible in practice and lead to significantly
better deliberation control decisions. We then conduct exper-
iments using performance profile trees where deliberation-
control decisions are made using conditioning on multiple
features of the solution to illustrate that such an approach is
feasible in practice.

Introduction

In many AI applications, bounded rationality is simply a
necessary evil that has to be dealt with. The realities of
limited computational resources and time pressures caused
by real-time environments mean that agents are not always
able to optimally determine their best decisions and ac-
tions. The field of artificial intelligence has long searched
for useful techniques for coping with this problem. Her-
bert Simon advocated that agents should forgo perfect ra-
tionality in favor of limited, economical reasoning. His
thesis was that “the global optimization problem is to find
the least—cost, or best-return decision, net of computational
costs” (Simon 1982).

Considerable work has focused on developing normative
models that prescribe how a computationally limited
agent should behave (see, for example (Horvitz 2001;
Russell 1997)). In particular, decision theory has proved to
be a powerful tool in developing approaches to meta-level
control of computation (Horvitz 1990). In general this
is a highly nontrivial undertaking, encompassing numer-
ous fundamental and technical difficulties. As a result,
most of these methods resort to simplifying assumptions
such as myopic search control (Russell and Wefald 1991;
Baum and Smith 1997), assuming that an algorithm’s
future performance can be deterministically pre-
dicted using a performance profile (Horvitz 1988;

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Boddy and Dean 1994), assuming that an algorithm’s future
performance does not depend on the run on that instance so
far (Zilberstein and Russell 1996; Zilberstein et al. 1999;
Horvitz 2001), resorting to asymptotic notions of
bounded optimality (Russell and Subramanian 1995),
or using myopic approaches for decision mak-
ing (Breese and Horvitz 1990). While such simplifications
can be acceptable in single-agent settings as long as the
agent performs reasonably well, any deviation from full
normativity can be catastrophic in multiagent systems. If a
multiagent system designer can not guarantee that a strategy
(including deliberation actions) is the best strategy that an
agent can use, there is a risk that the agent is motivated to
use some other strategy. Even if that strategy happens to be
“close” to the desired one, the social outcome may be far
from desirable. Therefore, a fully normative deliberation
control method, which considers all possible information
and ways an agent can make a deliberation decision, is
required as a basis for analyzing the strategies of agents.

Recently, a fully normative deliberation control method,
the performance profile tree, was introduced for making
stopping decisions for any anytime optimizer (treated as
a black box) (Larson and Sandholm 2001). This delibera-
tion control method has been used to analyze (deliberation)
strategies of agents in different bargaining and auction set-
tings in order to understand the repercussions that limited
deliberation resources have on agents’ game-theoretic be-
havior. However, a weakness of this work is that it has been
highly theoretical. While the full normativity provided by
the performance profile tree is required theoretically, it has
been unclear whether the performance profile tree is of prac-
tical use.

In this paper we experimentally study the use of perfor-
mance profile trees to determine their practicality and use-
fulness for helping a single agent decide when to stop its
anytime optimization algorithm. On data generated from
black-box anytime problem solvers, we illustrate that it is
feasible to use performance profile tree based deliberation
control in hard real-world problems. We also show that this
leads to more accurate deliberation control decisions than
the use of the performance profile representations presented
in prior literature. Furthermore, we demonstrate that the per-
formance profile tree can easily handle conditioning its de-
cisions on (the path of) other solution features in addition to

solution quality.

The paper is organized as follows. In the next section we
provide an overview of deliberation control along with de-
tails of the different methods used in the experiments. After
this we provide a description of the setup of the experiments.
We describe the problem domains which we use and explain
how the performance profiles are created. This is followed
by the presentation and discussion of the results, after which
we conclude.

Decision-theoretic deliberation control

We begin by providing a short overview of deliberation
control methods, and then describe in detail the different
methods that are tested in this paper. We assume that
agents have algorithms that allow them to trade off com-
putational resources for solution quality. In particular, we
assume that agents have anytime algorithms, that is, algo-
rithms that improve the solution over time and return the
best solution available even if not allowed to run to com-
pletion (Horvitz 1988; Boddy and Dean 1994). Most iter-
ative improvement algorithms and many tree search algo-
rithms (such as branch and bound) are anytime algorithms,
additionally there has been many successful applications
of anytime algorithms in areas like belief and influence
diagram evaluation (Horsch and Poole 1999), planning and
scheduling (Boddy and Dean 1994), and information gath-
ering (Grass and Zilberstein 2000).

If agents have infinite computing resources (i.e. no dead-
lines and free computation), they would be able to compute
the optimal solutions to their problems. Instead, in many set-
tings agents have time-dependent utility functions. That is,
the utility of an agent depends on both the solution quality
obtained, and the amount of time spent getting it,

Ul(q,t) = u(q) — cost(t)

where u(q) is the utility to the agent of getting a solution
with quality ¢ and cost(t) is the cost incurred of computing
for ¢ time steps.

While anytime algorithms are models that allow for the
trading off of computational resources, they do not provide
a complete solution. Instead, anytime algorithms need to be
paired with a meta-level deliberation controller that deter-
mines how long to run the anytime algorithm, that is, when
to stop deliberating and act with the solution obtained. The
deliberation controller’s stopping policy is based on a per-
formance profile: statistical information about the anytime
algorithm’s performance on prior problem instances. This
helps the deliberation controller project how much (and how
quickly) the solution quality would improve if further com-
putation were allowed.! Performance profiles are usually
generated by prior runs of the anytime algorithm on differ-
ent problem instances.

There are different ways of representing performance pro-
files. At a high level, performance profiles can be classified
as being either static or dynamic.

'In the rest of this paper, when it is obvious from the context,
we will refer to the combination of the deliberation controller and
the performance profile as just the performance profile.

Static performance profiles predict, before the anytime al-
gorithm starts running on the instance at hand, the optimal
stopping time for the algorithm. The performance profile
curve (PPCurve) (Horvitz 1988; Boddy and Dean 1994),
Figure [1(a), is an example of a static performance profile.
It is created by averaging, at each time point, the solution
quality obtained on prior runs (on different instances). Given
the curve, specified as solution quality as a function of time,
q(t), as well as the cost function cost(t), the deliberation
policy of an agent is to allocate time t* to the algorithm,
where

t* = arg max [u(q(t)) — cost(t)].

A potential weakness with static performance profiles is that
the time allocation decision is made before the algorithm
starts. Instead, by monitoring the current run of the algo-
rithm, it may be possible to gather additional information
which leads to better predictions about future changes in so-
lution quality, and thus enables better stopping decisions.

Dynamic performance profiles monitor the run of
the algorithm and make online decisions about whether
to allow the algorithm more time. Dynamic per-
formance profiles are often represented as a table
of discrete values which specify a discrete probabil-
ity distribution over solution quality for each time
step (Zilberstein and Russell 1996), Figure 1(b). The basic
table-based representation (Zilberstein and Russell 1996)
loses some information that can be useful for making stop-
ping decisions. In particular, it cannot condition the projec-
tion on the current solution. Consider Figure [1(b). Once
the shaded cell is reached, it is clear that there should be no
probability mass at cells of lower solution quality at future
steps, but the representation cannot capture that.

To address this, Hansen and Zilber-
stein (Hansen and Zilberstein 2001) proposed a dynamic
programming approach where the projection of solution
quality is conditioned on the current solution quality. In
particular, by defining the utility of having a solution of
quality ¢; at time ¢ to be U(g;, tr) = u(q;) — cost(ty),
a stopping rule can be found by optimizing the following
value function

_ U(qi,t) if d =stop
V<q“ tk) o m(?X { >, Plajlai, At)V (g, ¢t + At) if d =continue

to determine the policy

() t) . U(qi,t) if d =stop
mGi, t) = argmaxq S, P(ajlai, AV (g5, t + At) if d =continue

Throughout the rest of this paper, when we compare our
methods against the table-based approach, we always use
the dynamic program in conjunction with the table in order
to give the table-based approach the best possible chance.
For short, we will call that combination a performance pro-
file table (PPTable).

Even the PPTable approach yields suboptimal stopping
decisions because the representation loses information. In
particular, all information about the path of the run is lost.
In Figure|1(b), the shaded cell could have been reached by
path A or path B. The solution quality projection should be

optimum A 0.0

0.0

0.0 0.0 0.0 0.3

0.0

0.0

0.0 0.1 0.2 0.5

0.0

0.0

0.1 0.25 0.3 0.2

solution quality quality 00

0.4 0.0

061

0.1

0.2 0.09 0.0

0.01

0.3 0.05 0.01 0.0

057

0.4

s (F) (1) 10
/

0.2 0.0 0.0 0.0

0.01

0.1

quality

0.0 0.0 0.0 0.0

computing time

(a)

—— : :

computing time

(©)

computing time

(b)

Figure 1: Three performance profile representations: a) performance profile curve (PPCurve), b) performance profile table (PPTable), and

¢) a performance profile tree (PPTree).

more optimistic if the cell was reached via path B, but us-
ing the PPTable, the same stopping decision must be made
in both cases. (However, the PPTable yields optimal stop-
ping decisions in settings where the current solution quality
captures all of the information from the path that is pertinent
for projecting solution quality. This Markov assumption is
generally not satisfied, as the example above shows.)

In order to capture all of the information avail-
able for making stopping decisions, we introduced
the performance profile tree (PPTree) representa-
tion (Larson and Sandholm 2001). In a PPTree, the
nodes represent solutions at given time points, while each
edge carries the probability that the child node is reached
given that the parent was reached. Figure [1(c) exemplifies
one such tree. A PPTree can support conditioning on
any and all features that are deemed to be of importance
for making stopping decisions since the nodes can hold
information about solution quality and any other solution
feature that may be important. For example, in scheduling
applications, often the slack in a schedule is a good predictor
of future improvement. The solution information stored at a
node could therefore include a variable for solution quality
and a variable for slack.

A key aspect of the PPTree is that it automatically sup-
ports conditioning on the path so far. The performance pro-
file tree that applies given a path of computation is the sub-
tree rooted at the current node n. This subtree is denoted
by 7(n). If an agent is at a node n with solution qual-
ity ¢(n), then when estimating how much additional com-
puting would increase the solution quality, the agent need
only consider paths that emanate from node n. The prob-
ability, P, (n’), of reaching a particular future node n’ in
7T (n) is simply the product of the probabilities on the path
from n to n’. The expected solution quality after allocating
t more time steps to the problem, if the current node is n, is
> P,(n') - q¢(n') where the sum is over the set {n’|n’ is a
node in 7;(n) which is reachable in ¢ time steps}.

Deliberation policies for the PPTree are constructed by
optimizing the following rule

B Ula(n),)
V(g(n),t) = max { S, Pu(n)V(g(n'), t + At)

if d=stop
if d=continue

where n’ € {nodes in 7 (n) at depth At time steps}, to

determine the policy
_ U(q(n), t)

W(Q(n),ﬁ) = argmaxg { S0 Pa(n)V(q(n'), t + At)

if d=stop
if d=continue

Experimental setup

While a fully normative deliberation control method is re-
quired for game-theoretic analysis of computationally lim-
ited agents, to date no experimental work has been done to
show that (1) the performance profile tree based deliberation
control method is feasible in practice, and (2) that in practice
such sophisticated deliberation control is any better than ear-
lier decision-theoretic deliberation control methods that re-
lied on simpler performance profile representations . In this
paper we bridge this gap and show that performance profile
trees are desirable in practice also for single-agent delibera-
tion control. In the first set of experiments, we demonstrate
(1) and (2). In that experiment we use solution quality as the
only feature stored in a tree node (as we mentioned above,
the PPTree automatically conditions on the path followed to
reach the node). In the second set of experiments, we show
that it is feasible to use additional problem features to make
deliberation decisions.

Our deliberation control method is domain independent
and domain problem solver independent—yielding a clean
separation between the domain problem solver (a black box)
and the deliberation controller. This separation allows one to
develop deliberation control methodology that can be lever-
aged across applications. To demonstrate this we conduct
experiments in two different application domains using soft-
ware which was developed independently from the deliber-
ation controllers.

Example domain problem solving environments

We conducted our experiments in two different domain en-
vironments — vehicle routing and single-machine manufac-
turing scheduling.

In the real-world vehicle routing problem (VRP) in ques-
tion, a dispatch center is responsible for a certain set of tasks
(deliveries) and has a certain set of resources (trucks) to take

care of them (Sandholm 1993; Sandholm and Lesser 1997).
Each truck has a depot, and each delivery has a pickup loca-
tion and a drop-off location. The dispatch center’s problem
is to minimize transportation cost (driven distance) while
still making all of its deliveries and honoring the following
constraints: 1) each vehicle has to begin and end its tour at
its depot, and 2) each vehicle has a maximum load weight
and maximum load volume constraint. This problem is N"P-
complete.

To generate data for our experiments, an iterative im-
provement algorithm was used for solving the VRP. The
center initially assigned deliveries to trucks in round-robin
order. The algorithm then iteratively improved the solution
by selecting a delivery at random, removing it from the solu-
tion, and then reinserting it into the least expensive place in
the solution (potentially to a different truck, and with pickup
potentially added into a different leg of the truck’s route than
the drop-off) without violating any of the constraints. Each
addition-removal is considered one iteration. We let the al-
gorithm run until there was no improvement in the solution
for some predefined number, k, of steps. Figure[2 shows
the results of several runs of this iterative improvement al-
gorithm on different instances used in the experiments, with
k = 250. The algorithm clearly displays diminishing returns
to scale, as is expected from anytime algorithms.

The problem instances were generated using real-world
data collected from a dispatch center that was responsible
for 15 trucks and 300 deliveries. We generated training and
testing sets by randomly dividing the deliveries into a set of
210 training deliveries and 90 testing deliveries. To gener-
ate a training (testing) instance, we randomly selected (with
replacement) 60 deliveries from the training (testing) set.

The second domain is a single-machine manufacturing
scheduling problem with sequence-dependent setup times
on the machines, where the agent’s objective is to minimize
weighted tardiness = >, ;w;T; = > . ;w; max(f; —
d;,0), where T} is the tardiness of job j, and w;, f;, d; are
the weight, finish time, and due-date of job ;.

In our experiments, we used a state-of-the-art scheduler
developed by others (Cicirello and Smith 2002) as the do-
main problem solver. It is an iterative improvement algo-
rithm that uses a scheduling algorithm called Heuristic Bi-
ased Stochastic Sampling (Bresina 1996). We treated the
domain problem solver as a black box without any modifi-
cations.

The problem instances were generated according to a
standard benchmark (Lee et al. 1997). The due-date tight-
ness factor was set to 0.3 and the due-date range factor
was set to 0.25. The setup time severity was set to 0.25.
These parameter values are the ones used in standard bench-
marks (Lee er al. 1997). Each instance consisted of 100 jobs
to be scheduled. We generated the training instances and test
instances using different random number seeds.

Constructing performance profiles

Performance profiles encapsulate statistical information
about how the domain problem solver has performed on past
problem instances. To build performance profiles, we gen-
erated

2.5e+07 [

|

1.5e+07 — ‘

L | L |

0 500 1000
Number of iterations

Total Length of Route

Figure 2: Runs of the vehicle routing algorithm on different prob-
lem instances. The x-axis is number of iterations and the y-axis is
the total distance traveled by all trucks.

e 1000 instances for the vehicle routing domain. We ran the
algorithm on each instance until there was no improve-
ment in solution quality for 250 iterations.

e 10000 instances for the scheduling domain. We ran the al-
gorithm until there was no improvement in solution qual-
ity for 400 iterations.

From this data, we generated the performance profiles us-
ing each of the three representations: PPCurve, PPTable, and
PPTree. Like PPTable-based deliberation control, PPTree
requires discretization of computation time and of solution
quality (otherwise no two runs would generally populate the
same part of the table/tree, in which case no useful statistical
inferences could be drawn)/?

Computation time was discretized the same way for each
of the three performance profile representations. We did
this the obvious way in that one iteration of each algorithm
(routing and scheduling) was equal to one computation step.
For the solution quality we experimented with different dis-
cretizations. Due to space limitations we present only results
where the scheduling data was discretized into buckets of
width 100, and the vehicle routing data was discretized into
buckets of width 50000> For the vehicle routing domain
there turned out to be 1943 time steps, and 551 buckets of
solution quality. For the scheduling domain there turned out
to be 465 time steps, and 750 buckets of solution quality.

At first glance it may seem that this implies performance
profile trees of size 551943 for the trucking domain and
750465 for the scheduling domain. However, most of the
paths of the tree were not populated by any run (because
there are “only”” 1000 (or 10000) runs, one per instance). We
generated the tree dynamically in memory, such that only the
populated parts were stored. This way, we could be assured
that the number of edges in the tree for trucking was at most
1943 x #instances (because each instance can generate at

>The PPCurve does not require any discretization on solution
quality, so we gave it the advantage of no discretization.

3The results obtained from these discretizations were represen-
tative of the results obtained across all the tested discretizations.

40000
0038
continue

30000
037
continue

35000
0.53
continue

30000
086
continue

30000
083
stop

Figure 3: Subtree of a performance profile tree generated from
instances from the scheduling domain. In each node there are three
entries. The first entry is the (discretized) solution quality. The
second entry is the probability of reaching the node, given that its
parent was reached. The final entry represents the stopping policy.
An entry labelled “continue” means that the agent should compute
another step, while an entry labelled “stop” means that the agent
should stop all computation and act with the solution at hand.

most one new edge for each compute step). Similarly, for
scheduling it was 465 x #instances.

In practice, the trees were easy to generate, but they are
much too large to lay out in a paper. Therefore, in Figure 3
we present a subtree of a performance profile tree gener-
ated from the same 10000 scheduling instances, but with a
much coarser discretization: buckets of width 5000 on solu-
tion quality and computing steps that include 150 iterations
each (yielding 4 buckets on the computation time axis, i.e.,
4 depths to the tree—with root at depth 0).

Cost functions

In all the experiments we used cost functions of the form C'-¢
where C' was an exogenously given cost of one step of com-
puting and ¢ was the number of time steps computed. We
studied the behavior of deliberation control methods under a
wide range of values of C'. For the vehicle routing domain
we used C' € {0, 10, 100, 500, 1000, 5000, 10000, 25000,
35000, 50000, 100000, 1000000} In the scheduling domain
we used C' € {0, 1, 10, 50, 100, 500, 1000, 5000, 10000,
100000}. These value choices span the interesting range: at
the bottom end, no controller ever stops the deliberation, and
at the top end, each controller stops it immediately.

Comparison of performance profiles

In the first set of experiments we tested the feasibil-
ity of PPTree-based deliberation control and compared its
decision-making effectiveness against other performance-
profile representations (PPCurve and PPTable).

To evaluate the performance, we generated N = 500
new test instances of the trucking problem and N = 5000
new test instances from the scheduling domain. Each of the
three performance profile representations was evaluated on
the same test set.

40000
10
stop

0.8

- 0.6

0.4

GO ppCurve
02 |[ZE] PPTable |

A PPTree

ol el il il il
1 10 100 1000 10000 1e+05 1e+06

Cost per computing step (C)

Figure 4: Performance of the different performance profiles in the
vehicle routing domain. Values closer to 1.0 (optimal) are better.
PPTree outperforms both PPCurve and PPTable.

For each test instance we determined the optimal stopping
point, t?pt, given that the entire path of the run was known
in hindsight. (This stopping point is optimistic in the sense
that it does not use discretization of solution quality. Fur-
thermore, real deliberation controllers do not have hindsight
at their disposal.) This allowed us to determine the optimal
value that the agent could have possibly gotten on instance
i in hindsight: Upps (1) = ¢;(£5P") + C - t°P° where ¢;(t) is
the solution quality after computing for ¢ time steps, and C'
is the exogenously given cost of one step of computing.*

We evaluated the three performance profile representa-
tions P € {PPTree, PPTable, PPCurve} separately on the
test instances, recording for each instance the stopping point
t}) that deliberation controller, P, imposed and the resulting
value. That is, we stored Up (i) = ¢;(t}') + C - t¥'. We de-
termined how far from optimal the resulting value was as a

ratio R} = UU";’—?E;) Then, R* = & va RY gave an overall
measure of performance (the closer R is to 1.0, the better).
Figures 4 and|5 display the results.

When computation was free or exorbitantly expensive
compared to the gains available from computing, then all the
deliberation control methods performed (almost) optimally.
With free computing, the deliberation control problem is
trivial: it is simply best to compute forever. Similarly, when
computation is extremely expensive, it is best to not compute
at all. For the midrange costs (i.e., the interesting range),
the deliberation controllers performed quite differently from
each other. The PPTree outperformed both the PPCurve and
the PPTable. In the vehicle routing experiments, the PP-
Tree was, at worst, 93.0% of optimal (when C' = 35000)
and often performed better (Figure|4). In the scheduling ex-
periments, the PPTree was always within 99.0% of optimal
(Figure5).

In the scheduling domain, the PPCurve performed reason-
ably well with RF ranging from 0.95 to 1.00. In the vehi-

“In both application domain, lower solution quality is better.
Therefore, we add the cost function, instead of subtracting it in the
utility equation.

12+ —
4 A 58O 2
0.8 -
N L]
oo B
04 -
r |G© ppCurve
02 [3E] PPTable |
A4\ PPTree
ol v il

| | R | Lo
100 1000 10000 le+05

0
Cost per computing step (C)

1 1

Figure 5: Performance of the different performance profiles in
the scheduling domain. Values closer to 1.0 are better. PPTree out
performs both PPTable and PPCurve.

cle routing domain, its performance was not as good, with
RF ranging from 0.68 to 1.00. A possible explanation for
the difference is that in scheduling there was less variance
(in the stopping time) among instances. Therefore, in the
scheduling domain the optimal stopping point for the aver-
age algorithm run was a better estimate for any given run,
compared to the routing domain.

The PPTable had the widest variability in behavior. For
both low and high costs it performed well in both application
domains. However, for midrange costs it performed poorly,
as low as 0.07 in scheduling and 0.13 in vehicle routing.
In particular, the PPTable appeared to be overly optimistic
when determining a deliberation control policy, as it often
allowed too much computing. It was not able to differentiate
between algorithm runs which had flattened out and ones in
which additional improvement in solution quality was pos-
sible. While the dynamic programming approach used in
the PPTable produces an optimal policy if solution quality
improvement satisfies the Markov property as we discussed
earlier, it appears to not be robust when in practice that prop-
erty does not hold.

While the PPTree performs better than PPCurve and PPT-
able with respect to absolute difference in performance, it is
also important to determine whether there is statistical sig-
nificance to the results. Using a Fisher sign test, we com-
pared the PPTree against both the PPCurve and the PPTable.
We found in both the trucking and scheduling domains that
the dominance of the PPTree was truly significant, resulting
in p—values less than 1013 for all costs where there was
any difference in the performance between the performance
proﬁlesl5

We also experimented using different solution quality and
time step discretizations. The general patterns seen in Fig-
ures [4 and [5 were again observed. Furthermore, we ran
experiments where smaller training sets (of as low as 50
instances) were used. While the performance of all of the

>When costs were very low (C' = 0) or very high (C' = 10° in
the trucking domain and C' = 105 in the scheduling domain), all
performance profiles performed optimally, and thus, identically.

1.01 T

0.99
0.98
Q-m 0.97

0.96

r | G-© PPTree

095~ | (3] PPTree+Tasks

L | <> PPTree+Volume
094 | % PPTree+Weight

0.93 PR B RS AT B S S TT T R SR UET] M um\ L
1 10 100 1000 10000 le+05 le+06

Cost per computing step (C)

Figure 6: Performance of the PPTree when deliberation-control
decisions are conditioned on both solution quality and an addi-
tional solution feature (variance across trucks in number of tasks,
variance across trucks of the average volume to max-volume ratio,
and variance across trucks in the average weight to max-weight
ratio.

deliberation controllers was adversely affected, the relative
ranking of their performance did not change.

In summary, this first set of experiments showed that
PPTree-based deliberation control is feasible in practice and
outperforms the earlier performance profile representations.
It also showed that the method is close to optimal even when
solution quality and computation time are discretized and
conditioning is done only on the path of the solution quality
(instead of additional/all possible predictive features).

Conditioning on (the path of) additional solution
features

Using the PPTree as our performance profile representation,
we experimented using additional solution features to help
in making deliberation control decisions. In the vehicle rout-
ing domain, in addition to solution quality (total distance
driven) we also allowed conditioning on the following fea-
tures: 1) variance across trucks in the number of tasks, 2)
variance across trucks in the truck’s average weight to max-
weight ratio, and 3) variance across trucks in the truck’s av-
erage volume to max-volume ratio. The results are reported
in Figure[6. Using the additional solution features did lead
to slight improvement in the quality of stopping decisions
(a 3.0% absolute improvement for C = 25000; less im-
provement for other values of C'). Similarly, in experiments
conducted in the scheduling domain where slackness in the
schedule was used as an additional feature, there was also
slight improvement in the deliberation control results.
While the gains from using additional problem instance
features in our experiments seem small, it must be recalled
that the accuracy from conditioning on only solution quality
was close to optimal already. For example when C' = 25000
the overall performance improved from 94.0% to 97.0% of
optimal. So we are starting to hit a ceiling effect. Using a
Fisher sign test to analyze the significance of improvement
in solution quality when using additional features, we found

that for all features there was little significant improvement.
Again, we hypothesize that a ceiling effect is in action. In
summary, the second set of experiments demonstrated that
performance profile trees can support conditioning on (the
path of) multiple solution features in practice.

Conclusions and future research

Performance profile tree based stopping control of anytime
optimization algorithms has recently been proposed as a the-
oretical basis for fully normative deliberation control. In this
paper, we compared different performance profile represen-
tations in practice, and showed that the performance profile
tree is not only feasible to construct and use, but also leads
to better deliberation control decisions than prior methods.
We then conducted experiments were deliberation control
decisions were conditioned on (the path of) multiple solution
features (not just solution quality), demonstrating feasibility
of that idea.

There are several research directions that can be taken at
this point. First, the performance profile tree was developed
as a model of deliberation control for multiagent systems.
It would be interesting to conduct a series of experiments
to see the efficacy of the approach in multiagent settings.
Second, we believe that more work on identifying solution
features which help in deliberation control would be a bene-
ficial research endeavor.

Acknowledgements

We would like to thank Vincent Cicirello and Stephen Smith
for providing us with both the scheduler and the scheduling
instance generator. The material in this paper is based upon
work supported by the National Science Foundation under
CAREER Award IRI-9703122, Grant IIS-9800994, ITR IIS-
0081246, and ITR IIS-0121678.

References

[Baum and Smith 1997] Eric B Baum and Warren D Smith.
A Bayesian approach to relevance in game playing. Artifi-
cial Intelligence, 97(1-2):195-242, 1997.

[Boddy and Dean 1994] Mark Boddy and Thomas Dean.
Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence, 67:245—
285, 1994.

[Breese and Horvitz 1990] John Breese and Eric Horvitz.
Ideal reformulation of belief networks. In Proceedings of
UAI’90, pages 129-144, 1990.

[Bresina 1996] J. L. Bresina. Heuristic-biased stochastic
search. In Proceedings of AAAI’'96, pages 271-278, 1996.

[Cicirello and Smith 2002] Vincent Cicirello and Steven
Smith. Amplification of search performance through ran-
domization of heuristics. In Principles and Practice
of Constraint Programming — CP 2002, pages 124-138,
2002.

[Grass and Zilberstein 2000] Joshua Grass and Shlomo Zil-
berstein. A value-driven system for autonomous informa-

tion gathering. Journal of Intelligent Information Systems,
14(1):5-27, 2000.

[Hansen and Zilberstein 2001] Eric Hansen and Shlomo
Zilberstein. Monitoring and control of anytime algorithms:
A dynamic programming approach. Artificial Intelligence,
126:139-157, 2001.

[Horsch and Poole 1999] Michael Horsch and David Poole.
Estimating the value of computation in flexible informa-
tion refinement. In Proceedings of UAI’99, pages 297-304,
1999.

[Horvitz 1988] Eric J. Horvitz. Reasoning under varying
and uncertain resource constraints. In Proceedings of
AAAI'8S, pages 111-116, St. Paul, MN, August 1988.

[Horvitz 1990] Eric Horvitz. Computation and actions un-
der bounded resources. PhD thesis, Stanford University,
1990.

[Horvitz 2001] Eric Horvitz. Principles and applications of
continual computation. Artificial Intelligence, 126:159—
196, 2001.

[Larson and Sandholm 2001] Kate Larson and Tuomas
Sandholm. Bargaining with limited computation: Deliber-
ation equilibrium. Artificial Intelligence, 132(2):183-217,
2001.

[Lee et al. 1997] Y. H. Lee, K. Bhaskaran, and M. Pinedo.
A heuristic to minimize the total weighted tardiness with
sequence-dependent setups. IIE Transactions, 29:45-52,
1997.

[Russell and Subramanian 1995] Stuart Russell and Devika
Subramanian. Provably bounded-optimal agents. Journal
of Artificial Intelligence Research, 1:1-36, 1995.

[Russell and Wefald 1991] Stuart Russell and Eric Wefald.
Do the right thing: Studies in Limited Rationality. The
MIT Press, 1991.

[Russell 1997] Stuart Russell. Rationality and intelligence.
Artificial Intelligence, 94(1):57-77, 1997.

[Sandholm and Lesser 1997] Tuomas Sandholm and Victor
Lesser. Coalitions among computationally bounded agents.
Artificial Intelligence, 94(1):99-137, 1997.

[Sandholm 1993] Tuomas Sandholm. An implementation
of the contract net protocol based on marginal cost calcula-
tions. In Proceedings of AAAI’93, pages 256-262, Wash-
ington, D.C., July 1993.

[Simon 1982] Herbert A Simon. Models of bounded ratio-
nality, volume 2. MIT Press, 1982.

[Zilberstein and Russell 1996] Shlomo Zilberstein and Stu-
art Russell. Optimal composition of real-time systems. Ar-
tificial Intelligence, 82(1-2):181-213, 1996.

[Zilberstein ef al. 1999] Shlomo Zilberstein, Frangois
Charpillet, and Philippe Chassaing. Real-time problem

solving with contract algorithms. In Proceedings of
IJCAI'99, pages 1008-1013, Stockholm, Sweden, 1999.

